电子线路非线性部分实验报告调幅波信号的解调

合集下载

调幅波信号的解调实验报告

调幅波信号的解调实验报告

调幅波信号的解调实验报告一、实验目的本实验旨在通过解调调幅波信号,了解调幅波的特点、解调原理和应用。

二、实验原理1. 调幅波的特点调幅波是一种将模拟信号转换为载波信号的方法,其特点包括:能够传输音频、视频等模拟信号;易于产生和检测;但容易受到噪声和多径效应的影响。

2. 解调原理解调是指将调制后的信号还原为原始模拟信号的过程。

常见的解调方法包括:包络检波法、相干检波法和同步检波法。

其中,包络检波法是通过检测AM信号的包络来获得原始信号;相干检波法是通过将接收到的AM信号与本地振荡器产生同频率振荡,然后进行相减来获得原始信号;同步检波法则是在接收端使用一个与发送端同步的时钟来还原出原始信息。

3. 实验装置本次实验所需装置如下:(1)函数发生器:用于产生载频及模拟信息。

(2)功率放大器:用于放大载频及模拟信息。

(3)带通滤波器:用于滤除载波及其它高频干扰信号。

(4)检波器:用于解调信号。

(5)示波器:用于观察信号波形。

三、实验步骤1. 按照实验原理所述,连接实验装置。

2. 将函数发生器的输出接到功率放大器的输入端,将功率放大器的输出接到带通滤波器的输入端,将带通滤波器的输出接到检波器的输入端,将检波器的输出接到示波器上。

3. 设置函数发生器产生频率为1kHz、幅度为500mVp-p的正弦信号;设置载频频率为10kHz、幅度为100mVp-p;设置功率放大器增益为20dB;设置带通滤波器截止频率为11kHz~9kHz之间;设置示波器时基和电压增益适当。

4. 观察并记录示波器上解调后的信号,并比较其与原始模拟信号的差异。

四、实验结果与分析在完成实验步骤后,我们观察到了以下结果:1. 示波器上显示出了经过解调后的模拟信号,其幅度和频率与原始模拟信号相同。

2. 通过比较解调前后的信号,我们发现解调后的信号更加平滑,波形更加接近原始信号。

这说明我们成功地将调幅波信号解调出了原始模拟信号,并且解调后的信号比解调前的信号更加接近原始信息。

幅度调制与解调电路实验报告

幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验二、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真三、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。

四、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。

引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。

引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。

引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。

用来调节偏置电流I5 及镜像电流I0 的值。

五、 实验内容及步骤1、 乘法器失调调零2、 观察调幅波形调幅波形一-60-40-20020406001234567tU /m v图二:K502 1-2短接波形图调幅波形二-40-30-20-1001020304001234567tU /m v图三:K502 2-3短接波形图3、 观测解调输出解调波形-500-400-300-200-100010020030040050000.511.522.533.544.55tU /m v图四:解调输出波形图六、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。

既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。

即有式中m是调幅波的调制系数(调幅度)。

同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。

七、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。

温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。

调幅信号处理实验报告

调幅信号处理实验报告

一、实验目的1. 理解调幅信号的基本原理和特点。

2. 掌握调幅信号的解调方法。

3. 通过实验加深对调幅信号处理技术的理解。

二、实验原理调幅(AM)信号是指载波的幅度随信息信号的变化而变化的一种调制方式。

调幅信号可以表示为:\[ s(t) = (A + m(t)) \cos(2\pi f_c t) \]其中,\( A \) 为载波幅度,\( m(t) \) 为信息信号,\( f_c \) 为载波频率。

解调是指从调幅信号中恢复出原始信息信号的过程。

常见的解调方法有包络检波、相干解调和鉴频器等。

三、实验设备与软件1. 实验设备:信号发生器、示波器、函数信号发生器、频率计等。

2. 实验软件:MATLAB、Simulink等。

四、实验内容与步骤1. 调幅信号的产生(1)使用信号发生器产生一个频率为 \( f_c \) 的正弦波作为载波信号。

(2)使用函数信号发生器产生一个频率为 \( f_m \) 的正弦波作为信息信号。

(3)将载波信号与信息信号相乘,得到调幅信号。

(4)使用示波器观察调幅信号的波形。

2. 调幅信号的解调(1)使用包络检波器对调幅信号进行解调。

(2)使用相干解调器对调幅信号进行解调。

(3)使用鉴频器对调幅信号进行解调。

(4)使用示波器观察解调后的信号波形。

3. 实验数据分析(1)分析调幅信号的波形特点,包括幅度、频率和相位等。

(2)分析解调后的信号波形,比较不同解调方法的效果。

(3)计算解调后的信号与原始信息信号的相似度。

五、实验结果与分析1. 调幅信号的波形通过实验观察,调幅信号的波形为载波信号与信息信号的乘积。

在时域上,调幅信号的波形具有以下特点:(1)幅度随信息信号的变化而变化。

(2)频率与载波频率相同。

(3)相位在载波信号的基础上发生变化。

2. 解调信号的波形通过实验观察,不同解调方法的解调信号波形如下:(1)包络检波:解调后的信号波形与信息信号相似,但存在相位失真。

(2)相干解调:解调后的信号波形与信息信号相似,相位失真较小。

调幅波信号的解调实验报告

调幅波信号的解调实验报告

调幅波信号的解调实验报告引言调幅(Amplitude Modulation,AM)是一种广泛应用在无线通信领域的调制技术。

调幅波信号的解调是将调幅信号转换为原始信息信号的过程。

本实验旨在了解调幅波信号的解调过程,并通过实验验证解调的有效性。

实验步骤材料准备1.函数信号发生器2.调幅信号源3.幅度稳定控制器4.高频放大器5.示波器6.混频器与解调器实验步骤1.连接信号发生器输出端与调幅信号源的调制输入端。

2.将调幅信号源的输出端通过幅度稳定控制器连接到高频放大器的输入端。

3.连接高频放大器的输出端与示波器的输入端。

4.利用示波器观察调幅波信号并记录其波形特征。

5.将高频放大器的输出端连接到混频器和解调器的输入端。

6.连接混频器和解调器的输出端到示波器的输入端。

7.利用示波器观察解调器输出的波形,并记录其与原始信号的差异。

结果与分析经过上述步骤进行实验后,我们观察到以下结果。

原始信号的调幅1.在观察调幅波信号的波形特征时,我们发现调幅波信号具有一定的频率和幅度。

2.调幅波的波形是由一个载频信号加上一个调制信号形成的,可以通过调解调制信号的幅度和频率来改变调幅波的波形特征。

解调器输出的波形1.解调器经过处理后,输出的波形与原始信号存在差异。

2.解调器的输出波形会消除调幅信号中的载频信号,还原出原始信号。

3.解调器对调幅信号进行了解调,恢复了原始信号的幅度变化。

结论通过本实验,我们了解了调幅波信号的解调过程。

解调器能够有效地将调幅信号转换为原始信息信号。

实验结果验证了解调器对调幅信号的有效解调能力。

总结在现代通信领域中,调幅技术在广播和无线电通信中得到广泛应用。

掌握调幅波信号的解调过程对于有效传输信息至关重要。

本实验通过实际操作和观察,深入研究了调幅波信号的解调过程,并验证了解调器对调幅信号的解调有效性。

通过这次实验,我们对调幅波信号的解调有了更加深刻的理解。

致谢感谢指导老师对实验过程的指导和帮助。

参考文献[1] 《通信原理与实践》. 北京: 电子工业出版社, 2010. [2] 张扬. 《调幅信号解调原理与方法探讨》. 电子技术与软件工程, 2018(10).。

调幅与解调实验报告

调幅与解调实验报告

调幅与解调实验报告一、引言调幅(Amplitude Modulation,简称AM)是一种将信息信号调制到载波信号上的调制方式,而解调则是将调制信号中的信息信号分离出来的过程。

调幅与解调是通信领域中基础而重要的技术,本实验旨在通过搭建调幅与解调电路,实现调幅与解调的过程,并验证调幅电路和解调电路的正常工作。

二、实验设备与原理2.1 实验设备本实验所用设备如下:- 信号发生器- 三角波生成器- 振荡器- 信号变换电路- 甄别电路- 示波器- 电阻、电容等元件2.2 实验原理2.2.1 调幅原理调幅原理是将一个较低频率的信息信号通过乘法运算调制到一个高频的载波信号上。

设载波信号为c(t) = A_c\cdot \cos(2\pi f_c t),调制信号为m(t) =A_m\cdot \cos(2\pi f_m t),调幅信号为s(t) = (A_c + A_m\cdot m(t))\cdot \cos(2\pi f_c t)。

2.2.2 解调原理解调过程即提取调制信号中携带的信息信号,常用的解调方法是相干解调。

相干解调的基本原理是将收到的调幅信号再与一个同频率同相位的载波进行乘法运算,然后通过低通滤波器滤除高频成分,得到信息信号。

三、实验步骤3.1 调幅实验1. 搭建调幅电路,将信号发生器输出的正弦波作为调制信号,通过信号变换电路将其调制到振荡器产生的载波信号上。

2. 将调幅信号连接至示波器,调整信号发生器的频率和振荡器的幅度,观察调幅信号的波形特点。

3.2 解调实验1. 将调幅信号连接至甄别电路,通过相干解调原理进行解调。

2. 将甄别电路的输出信号通过低通滤波器滤除高频成分,并连接至示波器。

3. 调整振荡器的幅度和频率,观察解调后波形的恢复情况。

四、实验结果与分析4.1 调幅实验结果通过调幅电路实验,观察示波器上的调幅信号波形特点。

可以发现调幅信号的幅度在载波频率下发生变化,且幅度变化的幅度与调制信号的幅度成正比关系。

实验七调幅波信号的解调

实验七调幅波信号的解调

(2)同步检波器
实验原理
信号的调幅与解调
1.电路特点
① 对AM、DSB等调幅波均适用。 ② 工作时需要有一同步参考信号(与载波同频同 相)。
2.电路模型
3.同步检波器应用电路
实验原理
低通滤波器
信号的调幅与解调
1.检波线性好,即使在小 信号状态也不会产生 较大失真。 2. 相乘器的输出不包含 载频的基波分量,可 避免做接收机解调时 残留载波分量对中放 级产生的反馈。
随时比较输出的解调波形与原调制波形的异同, 若有失真,试分析其原因!
(二)同步检波器
实验内容
信号的调幅与解调
1、同样观察三种情况下的OUT输出处波形(>100%的情况不用做)。 (三个波形) 2、去掉滤波电容C4、C5后,再记录OUT处的三个波形,并与调制信 号相比。(三个波形)
实验报告要求: 按照教材上的要求进行数据处理,并认真完成!
信号的调幅与解调
实验七 调幅波信号的解调
解调(检波)
实验原理
信号的调幅与解调
调幅波的解调即是从调幅信号中取出调制信
号的过程,通常称之为检波。调幅波解调方 法有二极管包络检波器和同步检波器。
实验原理
信号的调幅与解调
检波器是收音机中一个必不可少的单元电路。它 从高频调幅波中解调出原调制信号,去掉载波信 号。
1 1 m RC f0 m
2
实验原理
底部切割失真
信号的调幅与解调
产生失真的条件:C5 的接入。 产生失真的原因:URL 过大。
实验原理
信号的调幅与解调
相当于给VD加了一额外的反偏电压,当URL很大,使 输入调幅波包络的大小在某个时段小于URL,导致VD 在这段时间截止,产生非线性失真。其底部被切去, 形成“底部切割失真”。

非线性调制信号的产生与解调

非线性调制信号的产生与解调

非线性调制信号的产生与解调一、 实验目的(1) 掌握产生不同调制指数FM 信号的模拟方法;(2) 观察各信号的波形与频谱以及调制指数对信号带宽的影响; (3) 掌握鉴频器的模拟方法;二、 实验要求(1) 产生不同调制指数的FM 信号,并通过FFT 求频谱;(2) 比较不同调制指数的FM 信号波形与频谱;(3) 用鉴频器解调FM 信号,并与调制信号进行比较;三、 实验内容1、 FM 信号的产生基带信号:3()sin(210)m t t π=⨯ 载 波:4()cos(210)c t t π=⨯抽样频率:42010s f H z =⨯调制指数:0.2,1,5r m =(a ) 产生长度为N 的()m t 序列的数据文件,以便随时调用:3()s i n (210/)sm i if π=⨯⨯ (b ) 生成不同调制指数的已调波序列:43()cos[210/sin(210/)]FM s r s S i i f m i f ππ=⨯⨯+⨯⨯(c ) 对不同的r m ,求出三组()FM S i ,存入磁盘,绘出()m i 与()FM S i 的图形,观察()m i 对()FM S i 的影响及不同r m 时()FM S i 的区别。

2、 FM 解调器的模拟(a ) 从磁盘取出某一已调信号的数据文件()FM S i ; (b ) 对()FM S i 求导,近似为:'()()(1)F M F M F M S i S i S i =-- 然后绘出图形;(c ) 调用包络检波子程序,对'()F MSi 进行包络检波,得到包络信号()V i ,绘出()m i ,()V i 图形并进行比较。

四、 实验结果1、 基带信号,如图:2、FM信号(0.2m=),如图:r3、FM信号(1m=),如图:r4、FM信号(5m=),如图:r5、解调信号(5m=),如图:r五、实验总结1、调制指数m越大,FM信号所占用的带宽就越宽;r2、调制指数m越大,解调器输出信号的功率越大,解调器抗干扰性能越好;r3、FM信号性能比线性调制信号性能好,但其带宽比线性调制信号更宽;4、FM信号性能的优越是以牺牲带宽为代价的;。

电子线路非线性部分实验报告实验四 振幅调制器

电子线路非线性部分实验报告实验四 振幅调制器

电子线路非线性部分实验报告振幅调制器班级:通信163同组人:姓名:学号:成绩:实验四 振幅调制器一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与输入信号的关系。

2.掌握测量调幅系数的方法。

3.通过实验中波形的变换,学会分析实验现象。

二、实验仪器1.双踪示波器。

2.高频信号发生器。

3.万用表。

4.实验板G3。

三、实验内容及步骤实验电路如图4-2 1.直流调制特性的测量(1)调R P2电位器使载波输入端平衡:在调制信号输入端IN2加峰值为100mv ,频率为1kH Z 的正弦信号,调节R P2电位器使输出信号最小,然后去掉输入信号。

(2)在载波输入端IN1加峰值V C 为10mV ,频率为100KH Z 的正弦信号,用万用表测量A 、B 之间的电压V AB ,用示波器观察OUT 输出端的波形,以V AB =0.1V 为步长,记录R P 1由一端调至另一端的输出波形及峰值电压,注意观察相位变化,根据公式)(0t v KV V C AB =计算出系数K 值,并填入表4-1。

2.实现全载波调幅(1)调节R P1使V AB =0.1V ,载波信号仍为V C (t)=10sin2π×105t (mV),将低频信号V S (t)= V S sin2π×103t (mV) 加至调制器输入端IN2 ,画出V S =30 mV 和100 mV 时的调幅波形(标明峰—峰值与谷—谷值)并测出其调制度M a 。

%100minmax minmax ⨯+-=V V V V M a(注M a =60%,V max =4V min ;M a =30%,V max =2V min )(2)加大示波器扫描速率,观察并记录M a =100%和M a >100%两种调幅波在零点附近的波形情况。

(3)载波信号V C(t)不变,将调制信号改为V S(t)= 100sin2 ×103t (mV)调节R P1,观察输出波形V AM(t)的变化情况,记录M a=30%和M a=100%调幅波所对应的V AB值。

实验七-调幅波信号调制与解调

实验七-调幅波信号调制与解调

实验七调幅波信号调制与解调一. 普通调幅波信号调制仿真与测试1.实验目的(1)掌握用晶体三极管进行集电极调幅的原理和方法;(2)研究已调波与调制信号及载波信号的关系;(3)掌握调幅系数测量与计算的方法。

2.实验电路集电极调幅电路:载波信号频率为46.5kHz,幅度峰峰值为5V;调制信号频率为4.65kHz,幅度为1.1V,这个幅度影响调幅度,仿真时变换调制信号幅度,观察调幅度的变化。

示波器上面波形为调制信号波形,下面为已调波波形。

如图1-1所示为普通调幅波信号调制电路图。

图1-1 普通调幅波信号调制电路图3.测试内容(1)测试丙类功放工作状态与集电极调幅的关系。

(2)观察调幅度、观察改变调幅度输出波形变化情况并计算调幅度。

图1-2所示为普通调幅波信号调制波形图图1-2 普通调幅波信号波形图二. 普通调幅波的解调1.实验目的(1)进一步了解调幅波的性质,掌握调幅波的解调方法;(2)掌握二极管峰值包络检波的原理;(3)掌握包络检波器的主要性能指标,检波效率及各种波形失真的现象,分析产生的原因并考虑克服的方法。

2.实验电路峰值包络检波:设置调幅度m=0.35,示波器中深红线为检波信号。

如图2-1所示为普通调幅波的解调电路图。

图2-1 普通调幅波的解调电路图如图2-2所示为普通调幅波的解调波形图。

图2-2 普通调幅波的解调波形图加大R9可观察到对角线失真。

在R5=510欧时可观察到负峰切割失真。

3.测试内容(1)完成普通调幅波的解调。

(2)观察普通调幅波解调中的对角切割失真、底部切割失真以及检波器不加高频滤波时的现象。

附调幅与解调实验电路图附图1 普通调幅实验电路附图2 普通调幅电路输入、输出波形附图3 过调幅时的输入、输出波形附图4 二极管包络检波器仿真实验电路附图5 检波器输出波形与输入调幅波的关系附图6 检波器出现惰性失真时的输出波形附图7 检波器出现负峰切割失真时的输出波形[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。

解调信号原理实验报告

解调信号原理实验报告

一、实验目的1. 理解解调信号的基本原理和过程。

2. 掌握模拟信号解调的基本方法,包括调幅(AM)、调频(FM)和调相(PM)信号解调。

3. 熟悉解调电路的组成和功能,通过实验加深对解调信号原理的理解。

二、实验原理解调信号是指将调制信号中的信息提取出来的过程。

根据调制方式的不同,解调信号可以分为调幅解调、调频解调和调相解调。

以下分别介绍这三种解调方式的基本原理。

1. 调幅解调(AM)调幅解调是指从调幅信号中提取出基带信号的过程。

调幅信号可以通过乘法器、低通滤波器等电路进行解调。

其基本原理如下:(1)将调幅信号与一个与载波频率相同、相位相反的本地振荡信号相乘,得到差频信号。

(2)通过低通滤波器,将差频信号中的基带信号提取出来。

2. 调频解调(FM)调频解调是指从调频信号中提取出基带信号的过程。

调频信号可以通过鉴频器、低通滤波器等电路进行解调。

其基本原理如下:(1)将调频信号与一个与载波频率相同、相位相反的本地振荡信号相乘,得到差频信号。

(2)通过鉴频器,将差频信号中的频率变化转换为电压变化。

(3)通过低通滤波器,将电压变化信号中的基带信号提取出来。

3. 调相解调(PM)调相解调是指从调相信号中提取出基带信号的过程。

调相信号可以通过鉴相器、低通滤波器等电路进行解调。

其基本原理如下:(1)将调相信号与一个与载波频率相同、相位相反的本地振荡信号相乘,得到差频信号。

(2)通过鉴相器,将差频信号中的相位变化转换为电压变化。

(3)通过低通滤波器,将电压变化信号中的基带信号提取出来。

三、实验内容1. 调幅信号解调实验(1)搭建调幅解调实验电路,包括乘法器、低通滤波器等。

(2)将调幅信号输入到实验电路中,观察输出信号波形。

(3)调整低通滤波器的截止频率,观察输出信号波形的变化。

2. 调频信号解调实验(1)搭建调频解调实验电路,包括鉴频器、低通滤波器等。

(2)将调频信号输入到实验电路中,观察输出信号波形。

(3)调整鉴频器的频率范围,观察输出信号波形的变化。

电子线路非线性部分实验报告调幅波信号的解调

电子线路非线性部分实验报告调幅波信号的解调

电子线路非线性部分实验报告调幅波信号的解调班级:通信163同组人:姓名:学号:成绩:实验五调幅波信号的解调一、实验目的1.通过实验,进一步了解调幅波的原理,掌握调幅波的解调方法。

2.了解二极管包络检波器的主要指标、检波效率及检波失真。

3.掌握用集成电路实现同步检波的方法。

二、实验仪器1.双踪示波器。

2.高频信号发生器。

3.万用表。

4.实验板G3。

三、实验内容及步骤注意:做此实验之前需恢复调幅实验的实验内容及步骤2(1)的内容或从信号发生器获取已调波信号。

(一)二极管包络检波器实验电路见图5-31.解调全载波调幅信号(1).M a<30%的调幅波的检波载波信号仍为V C(t)=10sin2π×105(t)(mV)调节调制信号幅度,按调幅实验中实验内容2(1)的条件获得调制度M a<30%的调幅波,并将它加至图5-3信号输入端,由OUT1处观察放大后的调幅波(确定放大器工作正常),在OUT2观察解调输出信号,调节R P1改变直流负载,观测二极管直流负载改变对检波幅度和波形的影响,记录此时的波形。

(2).适当加大调制信号幅度,重复上述方法,观察记录检波输出波形。

(3).接入C4,重复(1)、(2)方法,观察记录检波输出波形。

(4).去掉C4,R P1逆时针旋至最大,短接a、b两点,在OUT3观察解调输出信号,调节R P2改变交流负载,观测二极管交流负载对检波幅度和波形的影响,记录检波输出波形。

2.解调抑制载波的双边带调幅信号。

载波信号不变,将调制信号V S的峰值电压调至80mV,调节R P1使调制器输出为抑制载波的双边带调幅信号,然后加至二极管包络检波器输入端,断开a、b两点,观察记录检波输出OUT2端波形,并与调制信号相比较。

(二)集成电路(乘法器)构成解调器实验电路见图5-4。

1.解调全载波信号(1).将图5-4中的C4另一端接地,C5另一端接A,按调幅实验中实验内容2(1)的条件获得调制度分别为M a=30%,M a=100%及M a>100%的调幅波。

高频实验七_调幅波信号的解调

高频实验七_调幅波信号的解调

实验七调幅波信号的解调【实验目的】1.进一步了解调幅波的原理,掌握调幅波的解调方法;2.了解二极管包络检波的主要指标,检波效率以及波形失真;3.掌握用集成电路实现同步检波的方法。

【实验仪器设备】1.双踪示波器2.高频信号发生器3.万用表4.实验板G3【实验内容】利用二极管峰值检波电路实现调幅波信号的解调,电路如下:图1 二极管峰值检波电路输出波形及分析:(1)观察调幅波的解调输出波形,注意有无惰性失真,做好记录。

图2 调幅波的解调输出波形观察上图可知,解调输出波形存在一定的惰性失真。

(2)加大RC时间常数(R和C均加倍),观察输出波形,如图3.图3 RC均加倍后的解调输出波形观察上图,由于RC加倍,检波器的输出信号不再跟随调幅波包络的变化,产生底部切割失真。

(3)改成CRC滤波,C1=C2=1500Pf,R=1K,观察有无高频残留成分,有无惰性失真,记录波形和幅度。

图4 CRC滤波输出波形观察上图,存在一定的惰性失真。

(4)将电路改为带Cd和负载电阻Rl的电路,Cd=10uf,Rl=10K。

观察有无底部切割失真;图5 带Cd和负载电阻的电路输出波形(Rl=10K)改变Rl的值,观察失真的变化并记录;图6 带Cd和负载电阻的电路输出波形(Rl=1K)图7 带Cd和负载电阻的电路输出波形(Rl=5K)比较图5、6和7,在保持其他不变的条件下,随着Rl的减少,解调输出的波形失真越严重。

保持Rl=10K,改变Vi的调制度,观察失真的变化,记录波形。

图8 调制度=0.5的输出波形图9 调制度=1时的输出波形图10 调制度=1.5时输出波形由图8、9和10可知,保持Rl=10K,改变Vi的调制度,当调制度逐渐增大时,相应的输出波形失真越严重,惰性失真也较严重。

调幅波的解调实验4

调幅波的解调实验4

一、实验目的
1.熟悉电子元器件和高频电子线路实验系统。
2.掌握用包络检波器实现AM 波解调的方法。了解滤波电容 数值对AM 波解调的影响。 3.理解包络检波器只能解调m≤100%的AM 波,而不能解调 m>100%的AM 波以及DSB波的概念。 4.掌握用MC1496 模拟乘法器组成的同步检波器来实现AM波 和DSB波解调的方法。了解输出端的低通滤波器对AM 波解调、 DSB波解调的影响。 5.理解同步检波器能解调各种AM 波以及DSB波的概念。
+ 容C上很快建立输出电压uo(t)。 因为作用在二极管VD两端上的电压为ui(t)与uo(t)之差,ui 即uD= ui- uo。所以二极管的导通与否取决于uD
uo
-
uo
-
当uD= ui- uo> 0,二极管导通;
-
当uD= ui- uo< 0,二极管截止。
当ui(t)达到峰值开始下降以后,随着ui(t)的下降,使uD发生变化,当uD=0时,二极 管VD截止。C 把导通期间储存的电荷通过R放电。因放电时常数RC较大,放电较缓慢。 当输入信号的下一峰值到来时,uD>0,二 极管导通,对C 充电。峰值下降使uD<0时 通过R放电。 随着输入信号的变化,使二极管 输出电压不断进行充电或放电,
调幅波 检波输出 t 非线性电路 低通滤波器 t
包络检波输出
调幅波频谱 ωc-Ω ωc ωc+Ω
输出信号频谱
ω
Ω
ω
三、实验应知知识
1.调幅波解调的方法—同步检波法
同步检波,又称相干检波。它利用与已调幅波的载波 同步(同频、同相)的一个恢复载波(又称基准信号)与 已调幅波相乘,再用低通滤波器滤除高频分量,从而解调 得调制信号。 乘积型同步检波的电路模型:

调幅波信号的解调

调幅波信号的解调



同步检波器 利用一个和调幅信号的载波同频同相的载波信号 与调幅波相乘,在通过低通滤波器滤除高频分量 而获得调制信号。本实验如图7-3所示,采用1496 集成电路构成解调器,载波信号uC经过电容C1加 在⑧、⑩脚之间,调幅信号uAM经电容C2加在①、 ④脚之间,相乘后信号由⑿脚输出,经C4、C5、 R6组成的低通滤波器,在解调输出端,提取调制 信号。 五、预习要求 复习课本中有关调幅和解调原理。 分析二极管包络检波产生波形失真的主要原因。
m 2
主要有二极管D及RC低通滤波器组成,它利用二极管的单 向导电特性和检波负载RC的充放电过程实现检波。所以 RC时间常数选择很重要,RC时间常数过大,则会产生对 角切割失真。RC时间常数太小,高频分量会滤不干净。 综合考虑要求满足下式: 其中:m为调幅系数,f0为载波频率,为调制信号角频 率。
六、实验报告要求 通过两种检波实验,将下列内容整理在表格内,并 说明两种检波结果的异同。
输入的调幅波波形 二极管包络检波器输出 m<30℅ m=100℅ 抑制载波调幅波
同步检波输出
画出二极管包络检波器并联C2前后的检波输出波形, 并进行比较,分析原因。 再同一张坐标纸上画出同步检波解调全载波及抑制 载波时去掉低通滤波器中C4、C5前后各是什么波形, 并分析二者为什么有区别。
s sm
aV d
U
sm
D
us
C
RL
图 7-1 二极管检波器
式中,UAv为检波负载上的平均电压, 为二极管电流余弦脉冲通角。 g 3R 显然,RL越大,θ就越小,则Kd就越大。通常 UAv随Usm变化的特性称为检波特性。在大信 号检波时,如gDRL一定,则UAv与Usm之间保 持线性关系。

调幅信号的解调

调幅信号的解调

实验五 调幅信号的解调一、实验原理从高频已调信号中恢复出调制信号的过程称为解调。

解调是调制的逆过程。

调幅信号的解调,通常称为检波,其实现方法可分为包络检波和同步检波两大类。

前者只适用于AM 波,而DSB 或SSB 信号只能用同步检波。

当然同步检波也可解调AM 信号,但因比包络检波器电路复杂,所以AM 信号很少采用同步检波。

1、 二极管峰值包络检波器二极管包络检波分为峰值包络检波和平均包络检波。

前者输入信号电压大于0.5V 。

检波器输出、输入间是线性关系——线形检波;后者输入信号较小,一般几毫伏至几十毫伏,输出的平均电压与输入信号电压振幅的平方成正比,又称平方率检波,广泛用于测量仪表中的功率指示。

本实验仅研究二极管峰值包络检波,其原理电路如图6—1所示。

图中,输入回路提供调幅信号源。

检波二极管通常选用导通电压小、导通电阻小的锗管。

RC 电路有两个作用:一是作为检波器的负载,在两端产生调制信号电压;二是滤除检波电流中的高频分量。

为此,RC 网络必须满足1c R C ω 1f R Cω (6—1) 式中,c ω为载波角频率,f ω为调制角频率。

检波过程实质上就是信号源通过二极管向电容C 充电和电容对电阻R 放电的过程,充电时间常数为d R C ,d R 为二极管正向导通电阻。

放电时间常数为RC ,通常d R R >,因此对C 而言充电快,放电慢。

经过若干个周期后,检波器的输出电压o U 在充放电过程中逐步建立起来。

该电压对二极管D 形成一个大的负电压,从而使二极管在输入电压的峰值附近才导通,导通时间很短,电流通角θ很小。

当C 充放电达到动态平衡后,o v 按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号包络变化规律相同,从而实现了AM 信号的解调。

平均电压,即输出电压o V 包含直流dc V 及低频调制分量f v :()()o dc f v t V v t =+ (6—2)当电路元件选择正确时,dc V 接近但小于输入电压峰值。

调幅波的解调实验报告

调幅波的解调实验报告

调幅波的解调实验报告调幅波的解调实验报告引言:调幅(Amplitude Modulation,简称AM)是一种广泛应用于无线通信和广播领域的调制方式。

在调幅波的传输过程中,信号的幅度被调制到载波上,而解调则是将调幅波中的信息信号恢复出来的过程。

本实验旨在通过实际操作和数据分析,探究调幅波的解调原理和方法。

实验器材:1. 调幅信号发生器2. 调幅解调器3. 示波器4. 电缆和连接线5. 电源实验步骤:1. 将调幅信号发生器的输出端与调幅解调器的输入端相连,确保连接稳固。

2. 将调幅解调器的输出端与示波器的输入端相连,确保连接稳固。

3. 打开电源,调整调幅信号发生器的频率和幅度,使其适合实验要求。

4. 打开示波器,调整其垂直和水平控制,以便观察解调后的信号波形。

5. 通过调整调幅解调器的解调参数,如解调器的增益、滤波器的频率等,观察并记录解调效果。

6. 将实验数据整理并进行分析。

实验结果与讨论:在实验过程中,我们通过调整调幅信号发生器的频率和幅度,观察到了解调器输出的波形变化。

当调幅信号的频率和解调器的频率相匹配时,我们可以看到解调后的信号波形与原始信号波形相似,且幅度较大。

而当频率不匹配时,解调后的信号波形会出现明显的失真。

通过对解调参数的调整,我们发现解调器的增益对解调效果有着重要影响。

当增益过高时,解调器会将噪声放大,导致解调后的信号波形不清晰。

而当增益过低时,解调器无法有效恢复原始信号的幅度,导致解调后的信号波形过小。

因此,合适的增益设置是保证解调效果良好的关键。

此外,滤波器的频率也对解调效果产生影响。

滤波器可以去除解调过程中产生的高频噪声,使解调后的信号更加纯净。

经过实验我们发现,选择适当的滤波器频率可以有效提高解调信号的质量。

结论:通过本次实验,我们深入了解了调幅波的解调原理和方法。

我们通过实际操作和数据分析,发现调幅波的解调过程中,调幅信号的频率、解调器的增益以及滤波器的频率等因素都会对解调效果产生影响。

实验4 调幅波信号的解调-包含步骤

实验4  调幅波信号的解调-包含步骤

实验五 调幅波信号的解调一、实验目的:1.掌握调幅波的解调方法。

2.掌握二极管峰值包络检波的原理。

3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,产生的原因以及克服的方法。

二、实验内容:1.完成普通调幅波的解调2.观察抑制载波的双边带调幅波的解调3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波的现象。

三、实验电路说明调幅波的解调是调幅的逆过程,即从调幅信号中取出调制信号,通常称之为检波。

调幅波解调方法主要有二极管峰值包络检波器,同步检波器。

本实验板上主要完成二极管包络检波。

二极管包络检波器主要用于解调含有较大载波分量的大信号,它具有电路简单,易于实现的优点。

本实验电路如图5-1所示,主要由二极管D7及RC 低通滤波器组成,利用二极管的单向导电特性和检波负载RC 的充放电过程实现检波.所以RC 时间常数的选择很重要,RC 时间常数过大,则会产生对角切割失真又称惰性失真。

RC 常数太小,高频分量会滤不干净.综合考虑要求满足下式:a a m m RC 2m ax 1-<<Ω其中:m 为调幅系数,m ax Ω为调制信号最高角频率。

当检波器的直流负载电阻R 与交流音频负载电阻R Ω不相等,而且调幅度a m 又相当大时会产生负峰切割失真(又称底边切割失真),为了保证不产生负峰切割失真应满R R m a Ω<。

图5-1 包络检波电路四、实验步骤1.解调全载波调幅信号(1)m<30%的调幅波检波:从J45(ZF.IN)处输入455KHZ,0.1V. m<30%的已调波,短路环J46连通,调整CP6中周,使J51(JB.IN)处输出0.5V~1V已调幅信号。

将开关S13拨向左端,S14,S15,S16均拨向右端,将示波器接入J52(JB.OUT),观察输出波形.(2)加大调制信号幅度,使m=100%,观察记录检波输出波形.2.观察对角切割失真:保持以上输出,将开关S15拨向左端,检波负载电阻由3.3KΩ变为100KΩ,在J52处用示波器观察波形,并记录与上述波形进行比较.3.观察底部切割失真:将开关S16拨向左端,S15也拨向左端,在J52处观察波形并记录与正常鲜调波形进行比较。

非线性电子线路实验报告

非线性电子线路实验报告

高频实验报告班级:14021002 班级:14021002 姓名:余杨姓名:张幸幸学号:2010303508 学号:20103035092012年11月目录目录 (2)实验一、发射系统实验 (3)一、实验目的与内容 (3)二、实验原理 (3)三、实验步骤 (6)四、测试指标与测试波形 (8)实验二、调幅接收系统实验 (13)一、目的与内容 (13)二、实验原理 (14)三、实验步骤 (15)四、测试指标与测试波形 (15)实验三、接收系统实验 (18)一、实验目的与内容 (18)二、实验原理 (19)三、实验步骤 (20)四、测试指标与测试波形 (21)实验一、发射系统实验一、实验目的与内容图1为实验中的调幅发射系统结构图。

通过实验了解与掌握调幅发射系统,了解与掌握LC三点式振荡器电路、三极管幅度调制电路、高频谐振功率放大电路。

实验内容:1.LC三点式振荡器电路2.三极管幅度调制电路3.高频谐振功率放大电路4.调幅发射系统二、实验原理1、LC三点式振荡器电路:本振功率放大调幅信源图1 调幅发射系统结构图5BG1为三极管,与其外围电路构成三点式振荡电路。

调节5W2可以改变其静态工作点。

5BG2与其外围电路构成共集电极放大电路。

调节5C4,改变振荡频率。

调节5W1可以调节输出正弦波的幅度。

5K1接不通的电容,形成不通的反馈网络。

反馈振荡器是由主网络和反馈网络构成。

闭合环路形成反馈振荡的条件是:保证接通电源后从无到有地建立起振荡的起振条件,保证进入平衡状态,输入等幅持续振荡的平衡条件以及保证平衡状态不因外界不稳定因素影响而受到破坏的稳定条件。

2、三极管幅度调制电路:此电路为一三极管基极幅度调制电路。

振幅调制是用低频调制信号去控制高频正弦波的振幅,使其随调制信号波形的变化而呈现线性变化。

类似一乘法器。

设载波为uc(t)=Ucmcosωct,调制信号为单频信号,即uΩ(t)=UΩmcosΩt(Ωωc), 则普通调幅信号为:uAM(t)= (Ucm+kUΩm cos Ωt)cosωct=Ucm(1+MacosΩt)cosωct调幅信号的振幅由直流分量Ucm和交流分量kUΩm cosΩt迭加而成, 其中交流分量与调制信号成正比,调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路非线性部分实验报告
调幅波信号的解调
班级:通信163
同组人:
姓名:
学号:
成绩:
实验五调幅波信号的解调
一、实验目的
1.通过实验,进一步了解调幅波的原理,掌握调幅波的解调方法。

2.了解二极管包络检波器的主要指标、检波效率及检波失真。

3.掌握用集成电路实现同步检波的方法。

二、实验仪器
1.双踪示波器。

2.高频信号发生器。

3.万用表。

4.实验板G3。

三、实验内容及步骤
注意:做此实验之前需恢复调幅实验的实验内容及步骤2(1)的内容或从信号发生器获取已调波信号。

(一)二极管包络检波器
实验电路见图5-3
1.解调全载波调幅信号
(1).M a<30%的调幅波的检波
载波信号仍为V C(t)=10sin2π×105(t)(mV)调节调制信号幅度,按调幅实验中实验内容2(1)的条件获得调制度M a<30%的调幅波,并将它加至图5-3信号输入端,由OUT1处观察放大后的调幅波(确定放大器工作正常),在OUT2观察解调输出信号,调节R P1改变直流负载,观测二极管直流负载改变对检波幅度和波形的影响,记录此时的波形。

(2).适当加大调制信号幅度,重复上述方法,观察记录检波输出波形。

(3).接入C4,重复(1)、(2)方法,观察记录检波输出波形。

(4).去掉C4,R P1逆时针旋至最大,短接a、b两点,在OUT3观察解调输出信号,调节R P2改变交流负载,观测二极管交流负载对检波幅度和波形的影响,记录检波输出波形。

2.解调抑制载波的双边带调幅信号。

载波信号不变,将调制信号V S的峰值电压调至80mV,调节R P1使调制器输出为抑制载
波的双边带调幅信号,然后加至二极管包络检波器输入端,断开a、b两点,观察记录检波输出OUT2端波形,并与调制信号相比较。

(二)集成电路(乘法器)构成解调器
实验电路见图5-4。

1.解调全载波信号
(1).将图5-4中的C4另一端接地,C5另一端接A,按调幅实验中实验内容2(1)的条件获得调制度分别为M a=30%,M a=100%及M a>100%的调幅波。

将它们依次加至解调器V AM 的输入端,并在解调器的载波输入端加上与调幅信号相同的载波信号,分别记录解调输出波形,并与调制信号相比。

(2).去掉C4,C5观察记录M a=30%的调幅波输入时的解调器输出波形,并与调制信号相比较。

然后使电路复原。

2.解调抑制载波的双边带调幅信号
(1).按调幅实验中实验内容3(2)的条件获得抑制载波调幅波,并加至图5-4的V AM 输入端,其它连线均不变,观察记录解调输出波形,并与调制信号相比较。

(2).去掉滤波电容C4,C5观察记录输出波形。

六、实验报告要求
1.通过一系列两种检波器实验,将下列内容整理在表内,并说明二种检波结果的异同原因。

2.画出二极管包络检波器并联C4前后的检波输出波形,并进行比较,分析原因。

3.在同一张坐标纸上画出同步检波解调全载波及抑制载波时去掉低通滤波器中电容C4、C5前后各是什么波形,并分析二者为什么有区别。

七、思考题
1. 画出普通调幅广播通信系统框图,从频谱变换角度总结普通调幅发射机和接收机的单元电路功能,并画出系统各单元框图输出信号的时域波形(以单音调制为例)和频谱图(设调制信号频谱是100HZ~4500HZ的线性下降的连续谱)。

2. 当调制信号电压幅度一定而改变调制频率时,调幅系数M a是否会发生变化?为什么?。

相关文档
最新文档