二元一次方程应用题(难题)
二元一次方程组应用题经典题及答案
二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
二元一次方程组应用题(50题)
二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。
已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。
7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
二元一次方程组应用题(难题训练)
二元一次方程组应用题(难题训练)二元一次方程组应用题(难题训练)在高中数学课程中,二元一次方程组是一个重要的概念。
它涉及到两个未知数的线性方程组,通常用于解决实际问题。
本文将通过几个难题的训练来加深我们对二元一次方程组的理解和应用。
问题一:商务旅行小明去国外出差,在旅途中经过两个城市A和城市B。
他从城市A出发时速度为60公里/小时,在路上停留了2小时,然后以70公里/小时的速度继续行驶到达城市B。
如果整个旅程共耗时8小时,求两个城市之间的距离。
解析:设A到B的距离为d公里,则小明在A停留2小时后行驶的时间为(8-2)=6小时。
根据速度公式,我们得到以下两个方程:d = 60 * t1 + 70 * t2t1 + t2 = 6其中,t1为小明从A到B的行驶时间,t2为小明从B到A的行驶时间。
根据第二个方程,我们可以得到t1 = 6 - t2。
将其代入第一个方程中,整理得到:d = 60 * (6 - t2) + 70 * t2化简后得到:d = 420 + 10t2由于距离不能为负数,所以可以得到t2的取值范围为0 ≤ t2 ≤ 6。
将此范围代入上述方程,我们可以得到两个城市之间的距离d的取值范围为420 ≤ d ≤ 480。
因此,两个城市之间的距离为420到480公里之间。
问题二:环形跑道一个环形跑道的内侧是一个长为800米的椭圆,外侧是一个长为1000米的椭圆。
有两名运动员在该环形跑道上同时从同一起点开始跑,一圈跑完所用时间相差1分钟。
求解两名运动员的速度。
解析:设第一个运动员的速度为v1米/分钟,第二个运动员的速度为v2米/分钟。
根据题意,我们可以得到以下两个方程:800 = 2π * (800 / v1)1000 = 2π * (1000 / v2)其中,第一个方程表示内侧椭圆的周长,第二个方程表示外侧椭圆的周长。
令t1为第一个运动员跑一圈所用的时间,t2为第二个运动员跑一圈所用的时间。
根据题意,我们有t2 = t1 + 1。
苏科版数学七年级下第十章《二元一次方程组》难题训练(2)(含解析答案)
七下第十章《二元一次方程组》难题训练(2)班级:___________姓名:___________ 得分:___________ 一、选择题1. 为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A. 4种B. 3种C. 2种D. 1种2. 甲、乙二人跑步,如果甲让乙先跑10米,甲跑5秒就可追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒种分别跑x ,y 米,可列方程组为( )A. {5x =5y +104x −2=4y B. {5x +10=5y4x −4y =2 C. {5(x −y)=104(x −y)=2xD. {5x −5y =104(x −y)=2y3. 已知关于x ,y 的方程组{x +3y =4−a x −5y =3a,给出下列结论:①{x =5y =−1是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数; ③当a =1时,方程组的解也是方程x +y =4−a 的解; ④x ,y 的值都为自然数的解有4对。
其中正确的个数为A. 3个B. 2个C. 1个D. 4个4. 若x |k|+ky =2+y 是关于x 、y 的二元一次方程,则k 的值为( )A. 1B. −1C. 1或−1D. 05. 方程|x −2y −3|+|x +y +1|=1的整数解的个数是( )A. 1个B. 2个C. 3个D. 4个6. 某风景点有二人座、三人座、四人座的三种游船供游客租住,某旅行团20人准备同时租用这三种游船共7艘,且每艘游船都坐满,那么租船方案有( )A. 4种B. 3种C. 2种D. 1种7. 已知m 为正整数,且关于x ,y 的二元一次方程组{mx +2y =103x −2y =2有整数解,则m 2的值为( )A. 9B. 1,9C. 0,1,81D. 1,81二、填空题8. 已知x =3+t,y =3−t ,用x 的代数式表示y 为 .9. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有6张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________.10. 已知x ,y 取0,1,2,3,…,9中的数,且3x −4y =11,则2x +3y =________. 11. 甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时.设这艘轮船在静水中的速度为x 千米/小时,水流速度为y 千米/小时,根据题意可列方程组_____________________________.12. 已知{x =a y =b 是方程组{2x +y =−33x −2y =7的解,则5a −b 的值是_____.13. 爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:则9:00时看到的两位数是_____________14. 解关于x ,y 的方程组时,可以用①×2−②消去未知数x ,也可以用①×4+②×3消去未知数y ,试求a +b 的值为___________.15. 定义运算“∗”,规定x ∗y =ax 2+by ,其中a 、b 为常数,且1∗2=5,2∗1=6,则2∗3=________. 16. 现有八个大小相同的长方形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是 .三、解答题17.小颖解方程组{ax+2y=7cx−dy=4,时,把a看错后得到的解是{x=5y=1,而正确解是{x=3y=−1.请你帮小颖写出原来的方程组.18.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是多少平方厘米?.19.一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,该市政府可以决定甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,你能通过列方程(组)的方法分别求出几种车型的辆数吗?(3)求出哪种方案的运费最省?最省是多少元.20. 阅读下列材料:问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)解:设鸡、鸭、鹅的单价分别为x ,y ,z 元.依题意,得{13x +5y +9z =9252x +4y +3z =320 上述方程组可变形为{5(x +y +z)+4(2x +z)=9254(x +y +z)−(2x +z)=320设x +y +z =a ,2x +z =b ,上述方程组可化为①+4×②得:a =________,即x +y +z =________. 答:第三次买鸡、鸭、鹅各一只共需________元. 阅读后,细心的你.可以解决下列问题:(1)选择题:上述材料中的解答过程运用了________思想方法来指导解题. A .整体B.数形结合C.分类讨论(2)某校体育组购买体育用品甲、乙、丙、丁的件数和用钱金额如下表:品名次数甲 乙 丙 丁 用钱金额(元)第一次购买件数 5 4 3 1 1882 第二次购买件数97512764那么购买每种体育用品各一件共需多少元?21. 列二元一次方程组解应用题:某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工无盖竖式铁容器与无盖横式铁容器各1个,则共需要长方形铁片_____张,正方形铁片_____张;(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒。
二元一次方程应用题(难题)
二元一次方程1、 已知325ax by c ax by c +=⎧⎨-=⎩的解是12x y =⎧⎨=⎩求a :b :c2、给出下列程序:已知:输入的值为2=x 时,输出的值为6;输入的值为1=x 时,输出的值为3;当输入的 值为31=x 时,则输出的值为多少3、韩梅和李雷解同个方程组⎩⎨⎧-=-=+②①,14,155by x y ax 急性子的韩梅把方程①中的a 看错了,得到了方程组的解为⎩⎨⎧-=-=13y x ,而马虎的李雷把方程②中的b 看错了,得到方程组的解⎩⎨⎧==45y x ,你能根据他们两个的计算结果求出原方程组的解是多少吗4、植物园门票价格如下表所示: 购票人数1~50人 51~100人 100人以上 每人门票价 13元 11元 9元某学校七年级(3),(4)两个班共104人五一节去植物园春游,其中(3)班人数较少,不到50人,(4)班人数较多,有50多人,经估算如果两个班都以班为单位分别购票,则一共应付1240元。
(1)你能否算出两个班各有多少学生(2)他们如何购票比较合算5、戚继光是古代著名的抗倭将领,有一次,当倭寇来袭时,戚家军主力尚未到达,城里的兵力仅360人,戚继光思考着怎样布置兵力,使敌人不论从哪一方向察看,都有100名士兵在把手,经过思考,戚继光决定抽调100人去绕道袭击敌人的粮草。
有人担心城内兵力太少,戚继光却说:“没关系,我会重新布置,这260人在布置好后,敌人无论从哪一面察看,反而会认为士兵增加了25名。
”随后他画了一张图让大家看(如下图)(1)你知道戚继光第一次是怎样布阵的吗(2)第二次戚继光是怎样布置的兵力,你能算出来吗6、一群学生前往位于青天县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽,休息时候他们坐在一起,大家发现了一个有趣的现象,每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色的安全帽是红色的2倍,问题是:根据这些信息,请你猜测这群学生共有多少人7、一列快车长160米。
2020年七年级数学下册 二元一次方程组应用题 重难点培优练习(含答案)
重难点培优练习
一、选择题
1.某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准量的水价为 1.5 元/吨,
超过月用水标准量部分的水价为 2.5 元/吨。该市小明家 11 月份用水 12 吨,交水费 20 元,则
该市每户的月用水标准量为( )
A.5 吨
件,丙 1 件,共需 420 元。问购甲、乙、丙各 5 件,共需
元。
11.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水
管(进水管不关闭).若同时打开 2 个出水管,那么 8 分钟后水池空;如果同时打开 3 个出水管,
则 5 分钟后水池空.那么出水管比进水管晚开
分钟.
12.甲、乙、丙三种商品,如果购甲 3 件、乙 2 件、丙 1 件共需 315 元;购甲 1 件、乙 2 件、丙 3 件共需 285 元,那么购甲乙丙各 1 件共需______元
13.给出 x 值为-1 时,输出值为-3,则当输入的 x
已知生产 1 件甲种产品需要 A 种原料 3 千克,B 种原料 2 千克;生产 1 件乙种产品需要 A 种原料
2 千克,B 种原料 4 千克,则生产方案的种数为( )
A.4
B.5
C.6
D.7
4.若 二 元 一 次 联 立 方 程 式
A.9.5
B.10.5
的 解 为 x=a,y=b,则 a+b 之 值 为 何 ?( )
B.9 吨
C.10 吨
D.11 吨
2.有两支同样长的蜡烛,一支能点燃 4 小时,另一支能点燃 3 小时,一次遇到停电,同时点燃这两
支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(
二元一次方程较复杂练习题及答案
二元一次方程较复杂练习题及答案一.解答题1.求适合2.解下列方程组的x,y的值.3.解方程组:.4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有求k,b的值.当x=2时,y的值.当x为何值时,y=3?7.解方程组:;和..8.解方程组:9.解方程组:10.解下列方程组:11.解方程组:12.解二元一次方程组:;13.在解方程组.时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.14.15.解下列方程组:;.16.解下列方程组:二元一次方程组解法练习题精选参考答案与试题解析一.解答题1.求适合的x,y的值.2.解下列方程组.3.解方程组:二元一次方程组解法练习题一.解答题1.解下列方程组?x?2y?1??2??32?1?yx?2???1?2?3??5x?2y?11a?4x?4y?6a6).??x?y?2?x?y?x2?02.求适合的x,y的值.3.已知关于x,y的二元一次方程y=kx+b的解有和.求k,b的值.当x=2时,y的值.当x为何值时,y=3?;.;4)6);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.21.求适合的x,y的值.2.解下列方程组.3.解方程组:34.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.求k,b的值.当x=2时,y的值.当x为何值时,y=3?48.解方程组:7.解方程组:;.9.解方程组:5二元一次方程组一、判断 1、方程组??y?1?x的解是方程3x-2y=13的一个解3x?2y?5??x?3y?5??7??3x?2y??12?232、方程组?,可以转化为?5x?6y??272y?3x?4????2?5?33、若x+x+y=0是二元一次方程,则a的值为±14、若x+y=0,且|x|=2,则y的值为????、方程组??mx?my?m?3x有唯一的解,那么m的值为m≠- ????4x?10y?8?221?1?x?y?26、方程组?3有无数多个解 ?????x?y?6?7、x+y=5且x,y的绝对值都小于5的整数解共有5组 ????、方程组??3x?y?1?3x?y?1的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组?的x?5y?3x?5y?3??解???a29、若|a+5|=5,a+b=1则的值为?b3???7?3y10、在方程4x-3y=7里,如果用x的代数式表示y,则x?二、选择:1、任何一个二元一次方程都有一个解;两个解;三个解;无数多个解;、如果??x?y?a的解都是正数,那么a的取值范围是?3x?2y?4444; ?2?a?; a??;33?x?2y?3m3、关于x、y的方程组?的解是方程3x+2y=34的一组解,那么m的值是x?y?9m?a 2;-1; 1;4、在下列方程中,只有一个解的是 ??x?y?1?3x?3y?0?x?y?13x?3y?4?-2;??x?y?0?3x?3y??2?x?y?13x?3y?3?1?5、下列方程组中,是二元一次方程组的是 ?x?y?4?x?y?5??11 ?y?z?7??9??xy???x?13x?2y?6???x?y?xyx?y?1?6、已知方程组??x?y?5有无数多个解,则a、b的值等于ax?3y?b?1?a=-3,b=-14a=-1,b=9a=3,b=-7a=-3,b=14x?4y7、若5x-6y=0,且xy≠0,则的值等于 5x?3y21-18、若|3x+y+5|+|2x-2y-2|=0,则2x-3xy的值是14-4-1219、已知?k?k??x?4?x??2与?都是方程y=kx+b的解,则k与b的值为?y??2?y??51,b=-21,b=k??k??1,b=21,b=-2三、填空:1、在方程3x+4y=16中,若x、y都是正整数,那么这个方程的解为___________;、若??x?1?ax?2y?b?a?_______是方程组?的解,则?; y??14x?y?2a?1b?_______???3、方程|a|+|b|=2的自然数解是_____________;4、若4x+3y+5=0,则3-5的值等于_________;5、若x+y=a,x-y=1同时成立,且x、y都是正整数,则a的值为________;、从方程组??4x?3y?3z?0中可以知道,x:z=_______;y:z=________;?x?3y?z?0227、已知a-3b=2a+b-15=1,则代数式a-4ab+b+3的值为__________;四、解方程组?mn??3??5x?2y?11a?34; 1、?;、?4x?4y?6amn????13??23?x?y3x?4y????2?x?y?253、?;4、?;x?y???x?y?x?0?1??22五、解答题:107?x???471x的系数,解得?;乙看?y?58?47?81?x???76错了方程②中的y的系数,解得?,若两人的计算都准确无误,请写出这个方程组,并求出此17?y??19?方程组的解;22、使x+4y=|a|成立的x、y的值,满足+|3y-x|=0,又|a|+a=0,求a的值;3、要使下列三个方程组成的方程组有解,求常数a的值。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。
第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。
现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。
一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。
其中型号一有14个,型号二有6个,总共需要4240元。
如果购买型号一8个,型号二12个,需要4480元。
请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。
今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。
请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。
改用良种后,两块试验田共产生了532千克的花生。
已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。
请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。
如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。
请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。
如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。
XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。
请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。
一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。
七年级下册数学二元一次方程组应用难题汇总
七年级下册数学二元一次方程组应用难题汇总二元一次方程组的8个类型专治各种不会做的应用题二元一次方程大战应用题一实际问题与二元一次方程组的思路 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
二八大典型例题详解01和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系求这两个数各是多少。
典型例题思路点拨由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展思路点拨由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
02产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。
典型例题思路点拨本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展思路点拨根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
二元一次方程组应用题(难题训练)
二元一次方程组应用题(难题训练) 在我们的日常生活中,二元一次方程组的应用非常广泛。
今天,我们就来探讨一下二元一次方程组在实际问题中的应用,以及如何解决这些难题。
一、生活中的实际问题1.1 购物优惠假设你在一个商场购物,商家为了吸引顾客,给你提供了两种商品。
第一种商品的价格是x元,第二种商品的价格是y元。
如果你购买这两种商品的总金额达到一定数额,你可以享受到一定的优惠。
例如,总金额达到100元时,你可以享受到5%的优惠;总金额达到200元时,你可以享受到10%的优惠。
请问这两种商品的价格分别是多少?解答:设第一种商品的价格为x元,第二种商品的价格为y元。
根据题意,我们可以得到以下两个方程:x + y = 总金额(1 优惠百分比) * (x + y) = 总金额 * (1 优惠百分比)将第一个方程代入第二个方程,我们可以得到:(1 优惠百分比) * 总金额 = 总金额 * (1 优惠百分比)解这个方程,我们可以得到:优惠百分比 = 1 总金额 / 原价总额由于优惠百分比是一个小于1的小数,所以总金额必须大于原价总额。
因此,我们可以得出结论:当购买这两种商品的总金额达到原价总额时,可以享受到最大的优惠。
而要计算出具体的价格,我们需要知道原价总额和优惠百分比的具体数值。
1.2 行程问题假设你有两段路程需要走,第一段路程的距离是x千米,第二段路程的距离是y千米。
已知从第一段路程的起点出发走到第二段路程的起点所需的时间是t小时,同时已知从第二段路程的起点出发走到第一段路程的终点所需的时间也是t小时。
请问这两段路程的具体距离分别是多少?解答:设第一段路程的距离为x千米,第二段路程的距离为y千米。
根据题意,我们可以得到以下两个方程:x = vt + a1y = vt + a2其中v表示速度,a1表示第一段路程的起点到终点的水平距离,a2表示第二段路程的起点到终点的水平距离。
将第一个方程代入第二个方程,我们可以得到:y = x + a2 a1由于从第二段路程的起点出发走到第一段路程的终点所需的时间是t小时,所以我们可以得出结论:a1 = x y。
二元一次方程组的应用难题10道
二元一次方程组的应用难题10道1、甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?2、小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由。
3、李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?4、小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?5、现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?6、某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?7、一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.8、用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?9、今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄。
10、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
二元一次方程组应用题(人教版)(含答案)
二元一次方程组应用题(人教版)一、单选题(共9道,每道11分)1.某商店准备购进甲、乙两种商品,已知甲商品的进价是每件15元,乙商品的进价是每件35元,若同时购进两种商品100件,恰好用去2700元,求购进的甲、乙商品各多少件?若设购进甲商品x件,购进乙商品y件,根据题意可列方程组为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二元一次方程组的应用2.玉树地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶,乙种帐篷y顶,那么下面列出的方程组中正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:方程组应用题3.某景区门票价格为:成人票每张70元,儿童票每张35元.小明买了20张门票共花费了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:方程组应用题4.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:方程组应用题5.中国2010年上海世博会第三期平日出售门票分为普通票和优惠票,其中普通票每张150元人民币,优惠票每张90元人民币.某日一售票点共售出1000张门票,总收入12.6万元人民币,则当天售出的普通票和优惠票分别为多少张?( )A.500,500B.300,700C.400,600D.600,400答案:D解题思路:试题难度:三颗星知识点:二元一次方程组的应用6.小明:小红,你上周买的笔和笔记本的价格是多少啊?小红:哦,我也忘了,只记得先后买了两次,第一次买了5支笔和10本笔记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元.根据以上对话,可以求得小红所买的笔和笔记本的价格分别是( )A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本答案:D解题思路:试题难度:三颗星知识点:方程组应用题7.一列快车长168米,一列慢车长184米,如果两车相向而行,从相遇到离开需要4秒,如果同向而行,从相遇到离开需要16秒,设快、慢车的速度分别为x米/秒、y米/秒,则下列方程组正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:方程组应用题8.甲对乙说:“当我的岁数是你现在的岁数时,你才四岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将六十一岁.”则甲现在的年龄是( )A.19B.23C.38D.42答案:D解题思路:试题难度:三颗星知识点:方程组应用题9.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,则晚会上男生、女生人数分别是( )A.3,5B.5,3C.12,21D.21,12答案:C解题思路:试题难度:三颗星知识点:方程组应用题。
初中二元一次方程组应用题专项练习(含部分难题答案)
1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?3、初三(、初三(22)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况..根据他们的对话,请你分别求的销售情况,下图是调查后小敏与其他两位同学交流的情况出A,B两个超市今年“五一节”期间的销售额期间的销售额..4、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?7、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?8、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,元,6060座客车每日租金为每辆300元。
元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?)若租用同一种车,要使每个学生都有座位,怎样租用更合算?9、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天元,两人间每人每天 35 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?元,求两种客房各租了多少间?1111、、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。
二元一次方程组应用题及答案
二元一次方程组应用题及答案题目:某工厂生产两种产品A和B,已知生产一件产品A需要3小时,生产一件产品B需要2小时。
如果工厂每天有24小时的生产时间,且生产一件产品A的利润是100元,生产一件产品B的利润是150元。
现在工厂希望在有限的生产时间内最大化利润,问工厂每天应该生产多少件产品A和B?解答:设工厂每天生产x件产品A和y件产品B。
根据题意,我们可以得到以下两个方程:1. 3x + 2y ≤ 24 (生产时间限制)2. 100x + 150y (利润最大化)我们需要找到x和y的值,使得利润最大化。
首先,我们可以将第一个方程变形为:y ≤ (24 - 3x) / 2由于x和y都必须是非负整数,我们可以列出以下可能的组合:1. 当x = 0时,y ≤ 12,即y可以取0到12之间的任意整数。
2. 当x = 1时,y ≤ 10.5,向下取整得y ≤ 10。
3. 当x = 2时,y ≤ 9。
4. ...5. 当x = 8时,y ≤ 0。
接下来,我们计算每种组合下的利润:1. 当x = 0,y = 12时,利润 = 100 * 0 + 150 * 12 = 1800元。
2. 当x = 1,y = 10时,利润 = 100 * 1 + 150 * 10 = 1650元。
3. ...4. 当x = 8,y = 0时,利润 = 100 * 8 + 150 * 0 = 800元。
通过比较,我们发现当x = 0,y = 12时,利润最大,为1800元。
因此,工厂每天应该生产0件产品A和12件产品B,以最大化利润。
答案:工厂每天应该生产0件产品A和12件产品B。
二元一次方程解决问题课课练
二元一次方程解决问题课课练
一、应用二元一次方程解决问题:
1. 一个长方形和一个圆的周长相等,已知长方形的长为10厘米,宽为厘米.那么,这个圆的半径是多少厘米?
2. 一列火车长200米,它以每秒3米的速度穿过一个长2000米的大桥,从车头上桥到车尾离桥共需要多少秒?
3. 小明的爸爸想开一家服装店,在服装店里既有男装也有女装(每种装别都至少有3种型号).经测算:如果只经营一种装别,男装每件可获利40元,女装每件可获利44元.现在服装店经营的男装和女装每天卖出25件,而每降低1元售价,则每天可多卖出5件衣服.
(1)经营男装每天可获利多少元?
(2)经营女装每天可获利多少元?
(3)在经营的服装中,男装和女装分别有多少件?
4. 一支不准确的温度计(刻度均匀)放在标准大气压下沸水中,示数是90°C;放在冰水混合物中,示数是6°C.把它插入实际温度是25°C的温水中,示数是多少?。
二元一次方程解决问题专项练习(含解析答案)
二元一次方程解决问题专项练习一.解答题(共30小题)1.某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?2.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?3.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.4.某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?5.甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?6.4月9日上午8时,2019徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.7.(1)解方程组;(2)如图,点D在射线AE上,AB∥CD,∠CDE=140°,求∠A的度数.8.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.9.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)10.为了抓住2019年六一儿童节的商机,某商场决定购进甲、乙两种玩具进行销售,若购进甲种玩具1件,乙种玩具2件,需要160元,购进甲种玩具2件,乙种玩具3件,需要280元,购进甲、乙两种玩具每件各需要多少元?11.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?12.某电脑公司有A、B两种型号的电脑,其中A型电脑每台6 000元,B型电脑每台4 000元.学校计划花费150 000元从该公司购进这两种型号的电脑共35台,问购买A型、B型电脑各多少台?13.从A地到B地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,一辆客车从A地开往B地一共行驶了3.5h.求A、B两地间国道和高速公路各多少千米?14.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:速度y(公里/时)里程数s(公里)车费(元)小明60812小刚501016(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?15.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,求李师傅加工2个甲种零件和4个乙种零件共需多少分钟.16.有大小两种水桶,3个大桶与4个小桶一次最多可以装水220L,6个大桶与7个小桶一次最多可以装水415L.2个大桶与3个小桶一次最多可以装多少水?17.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应怎样分配工人才能使每天生产的螺栓和螺母恰好配套?18.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了11h.请你根据以上信息,就该汽车行驶的“路程”或“时间”提出一个用二元一次方程组解决的问题,并写出解答过程.19.用8张全等的小长方形纸片拼成了图①所示的大长方形,然后用这些纸片又拼成了图②所示的大正方形,但中间却多了一个面积为4cm2的小正方形的洞.求小长方形纸片的长与宽.20.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算.小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:时间(分钟)里程数(千米)车费(元)小明7512.1小亮6 4.510.8(1)求p,q的值;(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数?21.甲、乙两家公司组织员工游览某景点门票售价如下:人数1~50人50~100人100人以上票价120元/人100元/人80元/人(1)若甲公司有50人游览,则共付门票费元;若乙公司共付门票费12 000元,则乙公司有人游览;(2)若甲、乙两家公司共有120人游览,其中甲公司不超过50人,两家公司先后共付门票费12 800元,求甲、乙两家公司游览的人数.22.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,求这个三位数.23.某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套?24.小红和爷爷在400米环形跑道上跑步.他们从某处同时出发,如果同向而行,那么经过200s小红追上爷爷;如果背向而行,那么经过40s两人相遇,求他们的跑步速度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.25.列方程组解应用题:某船顺流航行,每小时行20km,逆流航行,每小时行16km,求船在静水中的航速及水流速度.26.两人骑自行车绕800米圆形跑道行驶,他们从同一地点出发,如果方向相反,每一分二十秒相遇一次,如果方向相同,每十三分二十秒相遇一次.假设二人速度不等,求各人速度.27.为感受老一辈红军艰难曲折的光辉历程,某校初一年级学生举行重走红色路线活动,活动当天共租5辆大客车,每辆车有座位60个,若该校初一年级的男生比女生多20人,而刚好每人都有座位,则该初一年级有男、女生各多少人?28.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时内把一批抗洪物质从物质局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物质局仓库离水库有多远?29.商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)求该商场购进甲、乙两种商品的件数;(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,本次经营活动获利为8160元,则乙种商品售价为每件多少元?30.如图,周长为68cm的长方形ABCD被分成7个相同的矩形,求长方形ABCD 的面积.二元一次方程解决问题专项练习参考答案与试题解析一.解答题(共30小题)1.(2019•张家界)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?【考点】9A:二元一次方程组的应用.【分析】设黑色文化衫x件,白色文化衫y件,依据黑白两种颜色的文化衫共140件,文化衫全部售出共获利1860元,列二元一次方程组进行求解.【解答】解:设黑色文化衫x件,白色文化衫y件,依题意得,解得,答:黑色文化衫60件,白色文化衫80件.【点评】本题主要考查了二元一次方程组的应用,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.2.(2019•威海)某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?【考点】9A:二元一次方程组的应用.【分析】设农场去年计划生产小麦x吨,玉米y吨,利用去年计划生产小麦和玉米200吨,则x+y=200,再利用小麦超产15%,玉米超产5%,则实际生产了225吨,得出等式(1+5%)x+(1+15%)y=225,进而组成方程组求出答案.【解答】解:设农场去年计划生产小麦x吨,玉米y吨,根据题意可得:,解得:,则50×(1+5%)=52.5(吨),150×(1+15%)=172.5(吨),答:农场去年实际生产玉米52.5吨,小麦172.5吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.3.(2019•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【考点】9A:二元一次方程组的应用.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.4.(2019•呼和浩特)某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B 两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【考点】9A:二元一次方程组的应用.【分析】设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据“买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再算出打折前购买500件A商品和450件B商品所需钱数,结合少花钱数即可求出折扣率.【解答】解:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:,解得:,500×16+450×4=9800(元),=0.8.答:打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.5.(2019•六盘水)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【考点】9A:二元一次方程组的应用.【分析】(1)根据“每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离”,即可得出关于x、y的二元一次方程组;(2)解(1)中的二元一次方程组,即可得出结论.【解答】解:(1)∵甲队每天铺设x米,乙队每天铺设y米,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,∴.(2),解得:.答:甲队每天铺设600米,乙队每天铺设500米.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)熟练掌握二元一次方程组的解法.6.(2019•徐州)4月9日上午8时,2019徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.【考点】9A:二元一次方程组的应用.【分析】设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得:,解得:.答:今年妹妹6岁,哥哥10岁.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.7.(2019•信丰县自主招生)(1)解方程组;(2)如图,点D在射线AE上,AB∥CD,∠CDE=140°,求∠A的度数.【考点】98:解二元一次方程组;JA:平行线的性质.【分析】(1)根据代入消元法,可得方程的解;(2)根据邻补角的性质,可得∠ADC,根据平行线的性质,可得答案.【解答】(1)解:由①得:x=﹣y+2③把③代入②得:2(﹣y+2)﹣y=3y﹣2解得:y=1,把y=1代入③得x=1,∴方程组的解为:;(2)解:∵∠CDE=140°,∠CDE+∠ADC=180°,∴∠ADC=40°,∵AB∥CD,∴∠A=∠ADC=40°.【点评】本题考查了解二元一次方程组,解(1)的关键是代入消元法,解(2)的关键是利用平行线的性质.8.(2019•临沭县校级模拟)已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.【考点】97:二元一次方程组的解.【专题】11 :计算题;521:一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)把x与y的值代入方程计算得到2a﹣3b的值,原式变形后代入计算即可求出值.【解答】解:(1),②﹣①得:y=3,把y=3代入①得:x=﹣2,则方程组的解为;(2)把代入方程得:﹣2a+3b=2,即2a﹣3b=﹣2,则原式=﹣2(2a﹣3b)=4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.(2019•河南模拟)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【考点】9A:二元一次方程组的应用.【分析】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【解答】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲做8天需要的费用+乙作8天需要的费用=3520元.列出方程组,再求解.10.(2019•个旧市一模)为了抓住2019年六一儿童节的商机,某商场决定购进甲、乙两种玩具进行销售,若购进甲种玩具1件,乙种玩具2件,需要160元,购进甲种玩具2件,乙种玩具3件,需要280元,购进甲、乙两种玩具每件各需要多少元?【考点】9A:二元一次方程组的应用.【分析】设购进甲种玩具每件需要x元,购进乙种玩具每件需要y元,根据“购进甲种玩具1件,乙种玩具2件,需要160元,购进甲种玩具2件,乙种玩具3件,需要280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设购进甲种玩具每件需要x元,购进乙种玩具每件需要y元,根据题意得:,解得:.答:购进甲种玩具每件需要80元,购进乙种玩具每件需要40元.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出关于x、y的二元一次方程组是解题的关键.11.(2019•苏州一模)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?【考点】9A:二元一次方程组的应用.【分析】设甲种奖品买了x件,乙种奖品买了y件.根据两种奖品共30件以及共花了396元,即可得出关于x、y的二元一次方程,解之即可得出结论.【解答】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.12.(2019•顺义区一模)某电脑公司有A、B两种型号的电脑,其中A型电脑每台6 000元,B型电脑每台4 000元.学校计划花费150 000元从该公司购进这两种型号的电脑共35台,问购买A型、B型电脑各多少台?【考点】9A:二元一次方程组的应用.【分析】设购买A型电脑x台,B型电脑y台,根据总价=单价×数量结合150000元购买了35台电脑,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设购买A型电脑x台,B型电脑y台,根据题意得:,解得:.答:购买A型电脑5台,B型电脑30台.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.13.(2019•莒县模拟)从A地到B地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,一辆客车从A地开往B地一共行驶了3.5h.求A、B两地间国道和高速公路各多少千米?【考点】9A:二元一次方程组的应用.【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=3.5,根据等量关系列出方程组,再解即可.【解答】解:设A、B两地间国道和高速公路分别是x、y千米,依题意得:,解得,答:A、B两地间国道和高速公路分别是90、200千米.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.14.(2019•阳谷县二模)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:速度y(公里/时)里程数s(公里)车费(元)小明60812小刚501016(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?【考点】9A:二元一次方程组的应用.【分析】(1)根据表格内容列出关于p、q的方程组,并解方程组.(2)根据里程数和时间来计算总费用.【解答】解:(1)小明的里程数是8km,时间为8min;小刚的里程数为10km,时间为12min.由题意得,解得;(2)小华的里程数是11km,时间为12min.则总费用是:11p+12q=17(元).答:总费用是17元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.15.(2019•环翠区模拟)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,求李师傅加工2个甲种零件和4个乙种零件共需多少分钟.【考点】9A:二元一次方程组的应用.【分析】设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,根据题中“加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟”列出方程组并解答.【解答】解:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y 分钟,依题意得:,由①+②,得7x+14y=140,所以x+2y=20,则2x+4y=40.答:李师傅加工2个甲种零件和4个乙种零件共需40分钟.【点评】本题考查了二元一次方程组的应用.解题的关键是弄清题意,找出题中的等量关系,列出方程组并能正确解答.16.(2019•大连一模)有大小两种水桶,3个大桶与4个小桶一次最多可以装水220L,6个大桶与7个小桶一次最多可以装水415L.2个大桶与3个小桶一次最多可以装多少水?【考点】9A:二元一次方程组的应用.【分析】设1个大桶一次最多可以装水xL,1个x桶一次最多可以装水yL,根据题意列出方程组,进而再求得2个大桶与3个小桶一次最多可以装多少水.【解答】解:设1个大桶一次最多可以装水xL,1个x桶一次最多可以装水yL,则,解得,2x+3y=2×40+3×25=155,答:2个大桶与3个小桶一次最多可以装水155L.【点评】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.17.(2019春•龙凤区校级期末)某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应怎样分配工人才能使每天生产的螺栓和螺母恰好配套?【考点】9A:二元一次方程组的应用.【分析】根据题意可知,本题中的等量关系是“现有工人28人”和“每个螺栓要两个螺母配套”,列方程组求解即可.【解答】解:设分配x人生产螺栓,y人生产螺母,由题意得:,解得:.答:应分配12人生产螺栓,16人生产螺母,才能使每天生产量刚好配套.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.18.(2019春•郾城区期末)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了11h.请你根据以上信息,就该汽车行驶的“路程”或“时间”提出一个用二元一次方程组解决的问题,并写出解答过程.【考点】9A:二元一次方程组的应用.【分析】提出问题:求A、B两地间的距离?设在普通公路行驶的时间为xh,A、B两地间的距离为3ykm,则普通公路的长度为ykm,根据路程=速度×时间结合汽车在两段路上行驶的速度以及两段路的长度,即可得出关于x、y的二元一次方程组,解之可得出x、y的值,将其代入3y即可.【解答】求A、B两地间的距离?解:设在普通公路行驶的时间为xh,A、B两地间的距离为3ykm,则普通公路的长度为ykm,根据题意得:,解得:,∴3y=900.答:A、B两地间的距离为900km.【点评】本题考查了二元一次方程组的应用,根据路程=速度×时间列出关于x、y的二元一次方程组是解题的关键.。
二元一次方程应用题 复杂
二元一次方程应用题复杂1. 小明和小红一共收集了30个邮票,小明有x个,小红有y个。
求x和y的值。
2. 一辆汽车和一辆摩托车从相距240公里的两个城市同时出发,相向而行。
汽车的速度是每小时60公里,摩托车的速度是每小时40公里。
求它们多久后相遇。
3. 一个班级有男生和女生共50人,男生人数是女生的两倍。
求男生和女生各有多少人。
4. 小华家的花园是一个长方形,长是宽的两倍。
如果花园的周长是60米,求花园的长和宽。
5. 一个数加上它的2/3等于30,这个数减去它的1/4等于多少?6. 两个数的和是48,其中一个数是另一个数的3倍。
求这两个数。
7. 一个班级有男生和女生共70人,男生人数比女生多10人。
求男生和女生各有多少人。
8. 一辆火车和一辆卡车同时从一个城市出发,火车每小时行驶120公里,卡车每小时行驶60公里。
如果火车比卡车早到一个小时,求它们各自行驶了多少时间。
9. 一个长方形的长比宽多10厘米,如果长方形的周长是60厘米,求长方形的长和宽。
10. 两个连续整数的和是39,求这两个整数。
11. 一个数的三倍加上另一个数的两倍等于100,这个数的两倍减去另一个数的三倍等于20。
求这两个数。
12. 两个数的差是16,较小数的三倍等于较大数的两倍。
求这两个数。
13. 一个班级有男生和女生共80人,男生人数是女生人数的5/4。
求男生和女生各有多少人。
14. 一个长方形花园的长是宽的三倍,如果宽是20米,求长方形花园的面积。
15. 一个数加上它的1/5等于30,这个数减去它的1/3等于多少?16. 两个数的积是144,其中一个数是另一个数的4倍。
求这两个数。
17. 一个班级有男生和女生共60人,男生人数比女生少20%。
求男生和女生各有多少人。
18. 一辆飞机和一辆汽车同时从一个城市出发,飞机每小时行驶800公里,汽车每小时行驶100公里。
如果飞机比汽车早到一个小时,求它们各自行驶了多少时间。
19. 一个正方形和一个长方形的周长相同,如果正方形的边长是10厘米,求长方形的长和宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程
1、 已知325ax by c ax by c +=⎧⎨
-=⎩的解是12x y =⎧⎨=⎩求a :b :c
2、给出下列程序:
已知:输入的值为2=x 时,输出的值为6;输入的值为1=x 时,输出的值为3;当输入的 值为3
1=x 时,则输出的值为多少?
3、韩梅和李雷解同个方程组⎩⎨⎧-=-=+②①
,14,155by x y ax 急性子的韩梅把方程①中的a 看错了,得到了方程组的解为
⎩⎨⎧-=-=13y x ,而马虎的李雷把方程②中的b 看错了,得到方程组的解⎩
⎨⎧==45y x ,你能根据他们两个的计算结果求出原方程组的解是多少吗?
购票人数
1~50人 51~100人 100人以上 每人门票价 13元 11元 9元
某学校七年级(3),(4)两个班共104人五一节去植物园春游,其中(3)班人数较少,不到50人,(4)班人数较多,有50多人,经估算如果两个班都以班为单位分别购票,则一共应付1240元。
(1)你能否算出两个班各有多少学生?
(2)他们如何购票比较合算?
5、戚继光是古代著名的抗倭将领,有一次,当倭寇来袭时,戚家军主力尚未到达,城里的兵力仅360人,戚继光
思考着怎样布置兵力,使敌人不论从哪一方向察看,都有100名士兵在把手,经过思考,戚继光决定抽调100人去绕道袭击敌人的粮草。
有人担心城内兵力太少,戚继光却说:“没关系,我会重新布置,这260人在布置好后,敌人无论从哪一面察看,反而会认为士兵增加了25名。
”随后他画了一张图让大家看(如下图)(1)你知道戚继光第一次是怎样布阵的吗?(2)第二次戚继光是怎样布置的兵力,你能算出来吗?
6、一群学生前往位于青天县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽,休息时候他们坐在一起,大家发现了一个有趣的现象,每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色的安全帽是红色的2倍,问题是:根据这些信息,请你猜测这群学生共有多少人?
7、一列快车长160米。
一列慢车长170米,如果两车相向而行,从相遇到离开需要5秒,如果同向而行,从快车追及慢车道离开需要33秒,求快车、慢车的速度。
8、某商场计划用万元从商家购进50台电视机,已知该厂家生产3种不同型号的电视机,出厂价分别为:甲种每台每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进两种不同型号的电视机50台,用去9万元,请你研究一下商场进货的方案;(2)若商场销售一台甲种电视机可获得利润150元,销售一台乙种电视机可获利200元。
销售一台丙种的电视机可获利250元。
在同时购进不同型号的电视机方案中,为了使销售获利最多,你选择哪种方案?。