北师大版八下平移和旋转培优提高题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八下平移和旋
转培优提高题
Revised by Petrel at 2021
北师大版八下平移和旋转一:知识点
1.平移的定义与规律
关键:平移不改变图形的形状和大小,也不会改变图形的方向.
(1)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).
(2)简单作图
平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的.
2.旋转的定义与规律
(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.
关键:旋转不改变图形的大小和形状,但改变图形的方向.
(2)旋转的规律
经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.
(3)简单的旋转作图:旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风
筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.
1.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为()
A.3 B.4 C.5 D.6
1题2题3题
2.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的面积是()A.4 B.2C.4D.8
3.如图,△ABC中,∠ACB=90°,∠CAB=30°,AB=4cm,D是AB的中点,现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,FE交AC于M,则△EFG与△ABC重叠部分的面积为()cm2.
A.B.C.D.
4.在平面直角坐标系中,将点A(m﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是()
A.m<0,n>0 B.m<1,n>﹣2 C.m<0,n<﹣2 D.m<﹣2,m >﹣4
5.下列生活现象中,属于平移的是()
A.足球在草地上滚动B.拉开抽屉
C.投影片的文字经投影转换到屏幕上D.钟摆的摆动
6.在长为20m,宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则花圃的面积是()A.64m2B.32m2C.128m2D.96m2
7.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿
A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为2016,则n的值为()
6题7题8题
A.400 B.401 C.402 D.403
8.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP逆时针旋转后,与△ACP′重合,如果AP=4,那么P,P′两点间的距离为()
A.4 B.4C.4D.8
9题10题11题
9.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠C OA′的度数是()A.50°B.60°C.70°D.80°
10.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,
BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰
好落在初始Rt △ABC 的边上,那么m 为( )A .70°
B .70°或120°
C .120°
D .80° 11.如图所示,已知△ACB △DF
E 与是两个全等的直角三角形,量得它们的斜边长为2cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B .C .
F .D 在同一条直线上,且点C 与点F 重合,将图(1)中的△ACB 绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点
G ,则线段FG 的长为( )
A .2
B .
C .
D .2
12.如图△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是( )
A .3
B .
C .
D .4
13、如图所示:正方形ABCD 中E 为BC 的中点,将面ABE 旋转后得到△CBF.
(1)指出旋转中心及旋转角度.(2)判断AE 与CF 的位置关系.
(3)如果正方形的面积为18cm 2,△BCF 的面积为4cm 2
,问四边形AECD 的面积是多少? 14、已知,如图△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 。 15.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时
针旋转90°
至DE ,连接AE 、CE ,△ADE 的面积为3,求BC 的长.
16.如图,有边长为1的等边△ABC 和顶角为120°的等腰△DBC ,•以D 为顶点作∠MDN=60°角,两边分别交AB 、AC 于M 、N 的三角形,连结MN ,(1)、求证MN=BM+CN ;(2)、试说明△AMN 的周长为2.(3)、若M,N 分别在AB,CA 的延长线上,则(1)中结论还成立吗如果不成立,MN,BM,CN 又满足什么关系
P A C