工程电磁场原理实用公式总结
电磁场公式总结
电磁场公式总结
整理了高考物理公式大全,所有公式均按知识点分类整理,有助于帮助大家集中掌握
高中物理公式考点。
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位t),1t=1n/a m
2.安培力f=bil;(备注:l⊥b) {b:磁感应强度(t),f:安培力(f),i:电流强度(a),l:导线长度(m)}
3.洛仑兹力f=qvb(注v⊥b);质谱仪〔见第二册p〕 {f:洛仑兹力(n),q:带电粒子电
量(c),v:带电粒子速度(m/s)}
4.在重力忽略不计(不考量重力)的情况下,带电粒子步入磁场的运动情况(掌控两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v=v0
(2)带电粒子沿横向磁场方向步入磁场:搞匀速圆周运动,规律如下a)f向=f洛
=mv2/r=mω2r=mr(2π/t)2=qvb;r=mv/qb;t=2πm/qb;(b)运动周期与圆周运动的半径和线
速度毫无关系,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、
圆心角(=二倍弦切角)。
备注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的`
正负;
(2)磁感线的特点及其常用磁场的磁感线原产必须掌控〔见到图及第二册p〕高中自
学方法;(3)其它有关内容:地磁场/磁电式电表原理〔见到第二册p〕/转盘加速器〔见到
第二册p〕/磁性材料。
电磁场与电磁波公式整理
电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。
工程电磁场期末知识点总结
工程电磁场课程总结大作业1. 静电场本章研究的对象是静电场,静电场是相对于观察者静止且量值不随时间变化的电荷所产生的电场,静电场中最主要的场量是电场强度E 和标量电位ϕ。
首先是从库伦定律121221204πq q R ε=⋅e F2112=-F F出发,注意此式适用条件:两个可视为点电荷的带电体之间的相互作用力; 且在真空中成立,真空中的介电常数1208.8510ε-=⨯F/m 。
进而引入电场强度:000=limq f E q →根据此式不难推出真空中单个点电荷引起的电场强度的一般表达式:30()(')4π'p q ε=--E r r r r rn 个点电荷产生的电场强度 ( 矢量叠加原理 ):310()1()4πN k k k k q ε='-='-∑r r E r r r 连续分布电荷产生的电场强度: 体电荷分布:201d 4πR V V Rρε''=⎰E e面电荷分布:201d 4πRS S Rσε''=⎰E e线电荷分布:21d4πRl l R τε''=⎰E e由上面公式可以看出,当电荷分布不具有规律时,此时求电场的分布是非常困难的,所以这个时候就要寻求一种新的求解电场的方法,根据亥姆霍兹定理可以知道,从旋度和散度的角度去求电场可以使得问题变得简单。
首先从静电场的环路定律,在静电场沿任何一条闭合路径做功为零,即:0lEdl =⎰这样由Stokes’定理,静电场在任一闭合环路的环量:d ()d 0ls⋅=∇⨯⋅≡⎰⎰E l E S0∇⨯=E此式说明了静电场中电场强度的旋度等于0,即电场力作功与路径无关,静电场是保守场,是无旋场。
又根据数学知识知,标量函数的梯度的旋度等于0,φ=-∇E因此可以用一个标量函数的负梯度来表示电场强度,即静电场的标量电位或简称电位,E 就是φ的最大减小率,负号表示电场强度的方向从高电位指向低电位。
电磁场公式梳理
公式总结注:此文档仅梳理了相关公式,需掌握的概念、知识点请仔细研读课件。
第一章•三种正交坐标系长度元,面积元和体积元表达式•三种正交坐标系坐标单位矢量的转换•标量场图和矢量场图对应的方程•方向导数,梯度•面元矢量:•场量穿过面元的通量:0=⨯r d r A)(le G dldf ⋅=∴zfe yf e x f e f zy x ∂∂+∂∂+∂∂=∇ G f =∇dSeS d n =dSA S d A θcos =⋅AA div ⋅∇=y zx A A A divA A x y z∂∂∂=∇⋅=++∂∂∂⎰⎰⋅∇=⋅VSdVA S d A⎰⎰=⋅CCdlA l d A θcos环量散度高斯散度定理环量面密度n n e A rot A rot ⋅=旋度AA rot ⨯∇=斯托克斯定理Sd A l d A SC⋅⨯∇=⋅⎰⎰)(0=∇⨯∇φ0)(=⨯∇⋅∇AԦe x∂A z ∂y −∂A y ∂z +Ԧe y ∂A x ∂z −∂A z∂x +Ԧe z ∂A y ∂x −∂A x ∂y∇×ԦA =第二章()SI J r dS=⋅⎰v J Vρ=s N lI J e dl=⋅⎰PE D +=0εEP e χε0=0r D E Eεεε===⎰⨯=222C Bl d I F Bv q E q F ⨯+=在线性各向同性介质中在线性各向同性磁介质中m M Hχ=MBH -=μB Hμ=⋅=-=-⎰⎰S V dQ dJ d S dVdtdt ρ∂=+=+∂t d DJ J J J tS d t DJ l d H S l⋅∂∂+=⋅⎰⎰)(Sd B dt d l d E S l ⋅-=⋅⎰⎰0SB d S ⋅=⎰∑⎰⎰==⋅qdV S d D VV Sρt D J H ∂∂+=⨯∇t BE ∂∂-=⨯∇=⋅∇B vD ρ=⋅∇⎪⎪⎩⎪⎪⎨⎧=-=-=-=-ρn n n n t t SN t t D D B B E E J H H 1212121200⎪⎪⎩⎪⎪⎨⎧=-⋅=-⋅=-⨯=-⨯ρ)(0)(0)()(12121212D D e B B e E E e JH H e n n n n第三章22RdS R e S d d R θcos =∙=Ω⎰⋅=PA A ld Eφφ-∇=E⎰∙=-BA B A ld Eφφ⎪⎩⎪⎨⎧==∙∇=⨯∇EDD E ερ0''s n v P e Pρρ⎧=∙⎪⎨=-∇∙⎪⎩束缚面电荷:束缚体电荷:ερφv -=∇212φφ=1212sn nφφεερ∂∂-=∂∂R RV d E v v⎰''=341ρπε⎰=vv Rdvρπεφ041⎩⎨⎧=∙∇=⨯∇00J EJ E=γ1212n nφφγγ∂∂=∂∂12φφ=p J E=∙焦耳定理恒定电场()322121mJ E E D w e ε=∙= ⎰=V e dvW ρφ21⎰=V e dvE W 221ε电场能量密度电场能量H J B ⎧∇⨯=⎨∇⋅=⎩B H μ=B A=∇⨯024RCIdl e B Rμπ⨯=⎰V d RJ A V '=⎰'πμ40Sv n J MJ M e ⎧'=∇⨯⎨'=⨯⎩介质内部束缚体电流密度:介质表面束缚面电流密度:)(H IL 单位:亨ψ=1()2m VW H B dV=∙⎰221Hw m μ=AB⨯∇=φ-∇=∂∂+tA EtA ∂∂-=⋅∇φμε()m e S w w pt∂-∇⋅=++∂⎰⎰⎰++=⋅-V Vm m S pdv dv w w dt dS d S )((,)Re j t E r t E e ω∙⎡⎤=⎢⎥⎣⎦()()()()x xm y ym z zm E r e E r e E r e E r =++复矢量0ωωρH J j DE j B B D ⎧∇⨯=+⎪∇⨯=-⎪⎨∇=⎪⎪∇=⎩1(()())2c S E r H r *=⨯⎪⎪⎪⎩⎪⎪⎪⎨⎧><<<--100101022ωεγωεγωεγ良好导体:有损耗介质:良介质:100()()()()()()c c c j j j γγωγωεεωεωμμωμω'''=-'''=-'''=-()⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙=∙∙-=∙∙+=∙⎰⎰⎰⎰⎰⎰⎰dv S d D S d B Sd B j l d E S d D j J l d H V CSSC SC ρωω 0ρω j J -=∙∇⎰⎰-=∙VSdv j S d J ρω EJ H B E Dγμε===⎥⎦⎤⎢⎣⎡⨯=*)()(Re r H r E S av 21第七章k ωμμηε==1z zH e E E H e ηη=⨯=⨯,k βωμε==22k ππλωμε==1p V fk ωλμε∴===avav e w S v ||=良介质12112,,,p c V j f γμαβωμεεμεμγμληεωεεμε⎧≈≈≈⎪⎪⎨⎛⎫⎪≈=+≈ ⎪⎪⎝⎭⎩良导体222222212,,()p c ff V j f ωμγωωπαβπμγβμγμγππωμλπηβωμγμγγ⎧≈≈==≈=⎪⎪⎨⎪=≈=≈+⎪⎩⎪⎩⎪⎨⎧====⋅-∙⋅-∙∙⋅-∙⋅-∙∙r k j r e jk rk j r e jk e H e H H e E eE E n n 0000沿任意方向传播的均匀平面波c cj K γεεωμεω=-=导电媒质引入复介电常数及复波速E =E 0•e −Γz =E 0•e −αz e −jβzn k e k=波矢量E =ηH ×Ԧe n ,H =1ηԦe n ×E极化的判别方法1、利用E x 和E y 的振幅和相位之间的关系判断x xm x y ym y E e E t kz e E t kz ωϕωϕ=-++-+cos()cos()线极化时,或当→±=-πϕϕ0x y 圆极化时,且当→±=-=2/,πϕϕx y xm xm E E )波传播的波为右旋(左旋,沿若)(z 2/z x y -+-=-πϕϕ椭圆极化其他一般情形,→)波传播的波为左旋(右旋,沿若)(z 2/z x y -++=-πϕϕ)波传播的波为右旋(左旋,沿若)(z z x y -+<-<-0ϕϕπ)波传播的波为左旋(右旋,沿若)(z z x y -+<-<πϕϕ02、利用复数形式判断)()(y x kz j ym y kz j xm x eE e e E e E ϕϕ+-+-∙+= y xj ym y j xm x eE e e E e z E ϕϕ +==∙)0()sin (cos )sin (cos y y ym y x x xm x j E e j E e ϕϕϕϕ+++=)sin sin ()cos cos (y ym y x xm x y ym y x xm x E e E e j E e E e ϕϕϕϕ+++=IR E j E +=线极化或或若:→==00//I R I R E E E E圆极化且若→=⊥||||I R I R E E E EI R I R E E E E 若、与波的传播方向符合右手螺旋关系,则为右旋波;若、与波的传播方向符合左手螺旋关系,则为左旋波。
电磁场与电磁波公式总结
电磁场与电磁波公式总结电磁场与电磁波是物质与能量在空间中相互作用的重要现象,而它们的本质则由一系列理论和数学公式所描述和解释。
本文将综述电磁场与电磁波的一些重要公式,总结它们的基本特征和应用。
首先,我们来介绍电磁场的公式。
电磁场是由电荷或电流产生的一种力场,它可以用麦克斯韦方程组来描述。
麦克斯韦方程组包括以下四个方程:1. 麦克斯韦第一方程:高斯定律∇·E = ρ/ε₀这个方程描述了电场强度E与电荷密度ρ之间的关系,其中ε₀是真空电介质常数。
2. 麦克斯韦第二方程:法拉第电磁感应定律∇×E = -∂B/∂t这个方程表明变化的磁场会产生电场强度的旋转,从而引发感应电流。
3. 麦克斯韦第三方程:高斯磁定律∇·B = 0这个方程说明磁场强度B是无源场,即它没有直接与任何电荷或电流相关。
4. 麦克斯韦第四方程:安培定律∇×B = μ₀J + μ₀ε₀∂E/∂t这个方程描述磁场强度B与电流密度J和电场强度E之间的关系,其中μ₀是真空磁导率。
这些方程共同描述了电场和磁场的产生、相互作用和传播的规律。
通过求解这些方程,我们可以获得电场和磁场的分布情况,从而进一步研究它们对物质和能量的影响。
接下来,我们将讨论电磁波的公式。
电磁波是由电场和磁场相互耦合并传播而成的波动现象,其具体表达式可以由麦克斯韦方程组推导出来。
麦克斯韦方程组的解是电场和磁场的波动方程,可以写成如下形式:E = E₀sin(kx - ωt)B = B₀sin(kx - ωt)其中E₀和B₀分别是电场和磁场的振幅,k是波数,ω是角频率,x是位置,t是时间。
根据这些波动方程我们可以得到电场和磁场的一些重要特征:1. 波长λ 和频率 f 的关系:λ = c/f其中c是光速,它等于电磁波的传播速度。
2. 光速与真空介电常数ε₀和真空磁导率μ₀的关系:c = 1/√(ε₀μ₀)这个公式说明光速与真空电磁特性有密切的关系。
电磁场与电磁波公式总结
电磁场与电磁波公式总结电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++= 面积元:===dxdy dS dxdz dS dydzdS zyx,dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,面积元======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl dr dl r sin ,面积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直角坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222 222?θθ?θ?θ (3)柱坐标系与球坐标系的关系=+=+====??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x ??+??+??=?=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→μμμμμ?1(3)球坐标系中:μθθμμμμ?θ??+??+??=?=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:z A y A x A A div zy X ??++??=→(2)柱坐标系中:zA A r rA r r A div zr ??++??=→1)(1 (3)球坐标系中:θθθθ?θ??++??=→A r A r A r rr A div r sin 1)(sin sin 1)(122 5、高斯散度定理:→→→→=??=?ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。
工程电磁场公式范文
工程电磁场公式范文1.波动方程电磁场满足波动方程,其一般形式为:∇²E-με∂²E/∂t²=0∇²B-με∂²B/∂t²=0其中E为电场强度,B为磁感应强度,μ为磁导率,ε为介质电容率。
这个方程描述了电磁波在介质中的传播规律。
2.麦克斯韦方程组麦克斯韦方程组是描述电磁场行为的基本方程,它包括两个电场方程和两个磁场方程:∇·E=ρ/ε0∇·B=0∇×E=-∂B/∂t∇×B=μ0J+μ0ε0∂E/∂t其中E为电场强度,B为磁感应强度,ρ为电荷密度,ε0为真空电容率,J为电流密度,μ0为真空磁导率。
这个方程组描述了电磁场与电荷、电流的相互作用。
3.平面电磁波的传播平面电磁波是一种特殊的电磁波,其电场和磁场沿着同一方向、垂直于传播方向,并且在空间上均匀分布。
平面电磁波的传播速度等于真空中的光速c,满足下面的关系:v=c=1/√(μ0ε0)其中v为波速。
根据麦克斯韦方程组可知,平面电磁波的电场和磁场满足以下关系:E = E0sin(ωt - k·r + φ)B = B0sin(ωt - k·r +φ + π/2)其中E0和B0为振幅,ω为角频率,k为波矢,r为位置矢量,φ为相位常数。
这个公式描述了平面电磁波在空间中的传播特性。
4.基本辐射公式对于一个辐射源,它会向周围空间辐射电磁波。
辐射功率受到距离的影响,辐射强度与距离的平方成反比。
基本辐射公式描述了辐射强度与距离之间的关系:I=P/4πr²其中I为辐射强度,P为辐射功率,r为距离。
这个公式说明了辐射强度随距离的变化规律。
5.波导中的电磁场波导是一种用于传送电磁波的结构,在波导中,电磁波沿着特定的路径传播,其传播速度小于真空中的光速。
波导中的电磁场可以用波导的特征阻抗来描述,其计算公式为:Z=√(μ/ε)其中Z为波导的特征阻抗,μ为波导的磁导率,ε为波导的电容率。
电磁场的公式
电磁场的公式电磁场是物理学中一个相当重要的概念,而其中涉及到的公式更是理解和解决相关问题的关键钥匙。
咱先来说说电场强度的公式 E = F / q 。
这其中,E 表示电场强度,F 是电荷所受到的电场力,q 则是电荷量。
想象一下,就好像在操场上,老师吹哨子让同学们集合,老师的哨声就相当于电场力 F ,而同学们的数量 q 就像是电荷的量,哨声的强度除以同学的数量,就得出了老师哨声在每个同学那里产生的“影响力”,也就是电场强度 E 。
再看看电势的公式φ = Ep / q 。
这里的φ 是电势,Ep 是电荷在电场中某点的电势能,q 还是电荷量。
打个比方,电势就像是一个山坡的高度,电势能就是你爬山所需要的能量,而电荷量就像是你的体重。
山坡越高,你需要的能量就越多,但如果你的体重很轻,那么相对来说你感受到的“高度压力”就会小一些。
还有电场力做功的公式 W = qU 。
W 代表电场力做功,q 是电荷量,U 是电势差。
想象一下,你在坐电梯,电荷量 q 就是你的体重,电势差 U 就是电梯上升或者下降的高度差,体重乘以电梯的高度差,就是电梯对你做的功,反过来就是你在电场中移动电荷时电场力做的功。
磁场强度的公式 B = F / (IL) 也很有趣。
B 是磁场强度,F 是磁场对通电导线的作用力,I 是电流强度,L 是导线在磁场中的有效长度。
这就好比你在游乐场坐过山车,磁场强度 B 就是过山车轨道的“刺激程度”,磁场对通电导线的作用力 F 就是过山车给你的“推背感”,电流强度 I 就是车上乘客的“兴奋度”,导线的有效长度 L 就是过山车轨道的长度。
乘客越兴奋,轨道越长,“推背感”就越强,也就反映出轨道的“刺激程度”越高。
电磁感应中的公式E = nΔΦ / Δt 也不能忽视。
E 是感应电动势,n是线圈匝数,ΔΦ 是磁通量的变化量,Δt 是时间的变化量。
好比你在骑自行车,车轮上的辐条就像线圈匝数 n ,你骑车速度的变化导致周围风景变化的快慢就是磁通量的变化量ΔΦ 除以时间的变化量Δt ,而你感受到的那种“向前冲的动力”就是感应电动势 E 。
工程电磁场知识点总结
工程电磁场知识点总结第一章矢量分析与场论1 源点是指。
2 场点是指。
3 距离矢量是,表示其方向的单位矢量用表示。
4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。
5 梯度是研究标量场的工具,梯度的模表示梯度的方向表示。
6 方向导数与梯度的关系为7 梯度在直角坐标系中的表示为?u?。
8 矢量A在曲面S上的通量表示为?? 9 散度的物理含义是 10 散度在直角坐标系中的表示为??A?。
11 高斯散度定理。
12 矢量A沿一闭合路径l的环量表示为。
13 旋度的物理含义是 14 旋度在直角坐标系中的表示为??A?。
15 矢量场A在一点沿el方向的环量面密度与该点处的旋度之间的关系为。
16 斯托克斯定理17 柱坐标系中沿三坐标方向er,e?,ez的线元分别为,18 柱坐标系中沿三坐标方向er,e?,e?的线元分别为,19 ?1111???'??2eR?2e'R RRRR???20 ??????'??'???????4??(R)?R??R??11?0(R?0)( R?0)第二章静电场1 点电荷q在空间产生的电场强度计算公式为。
2 点电荷q 在空间产生的电位计算公式为。
3 已知空间电位分布?,则空间电场强度E。
4 已知空间电场强度分布E,电位参考点取在无穷远处,则空间一点P处的电位?P。
5 一球面半径为R,球心在坐标原点处,电量Q均匀分布在球面上,?则点?,,??处的电位等于。
222??RRR6 处于静电平衡状态的导体,导体表面电场强度的方向沿7 处于静电平衡状态的导体,导体内部电场强度等于 8处于静电平衡状态的导体,其内部电位和外部电位关系为 9 处于静电平衡状态的导体,其内部电荷体密度为 10处于静电平衡状态的导体,电荷分布在导体的。
11 无限长直导线,电荷线密度为?,则空间电场E。
12 无限大导电平面,电荷面密度为?,则空间电场E。
13 静电场中电场强度线与等位面14 两等量异号电荷q,相距一小距离d,形成一电偶极子,电偶极子的电偶极矩p= 。
电磁场公式总结
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+…1/R并=1/R1+1/R2+1/R3+…
9.电势能:EA=qUA {EA:带电体在A点的电势能(J),q:电量(C),UA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
电磁场公式大全
电磁场公式大全电磁场是我们周围最为普遍的自然界现象之一, 它会影响到我们大自然生态系统中的每一个角落。
有关电磁场的科学概念及其相关证据已经广泛运用于航空航天、电力技术和通信技术等各类技术领域, 无论是工业应用还是实验室研究, 都需要掌握一些常用的电磁场公式。
为了更好地了解电磁场的特性和应用, 有必要先从“电磁场公式大全”入手, 下面将介绍电磁场大全中的几个常用的公式:1.电磁场力: 电磁场力F由电荷q、速度v及磁场B给出: F=qv ×B;2.电磁势: 电通量φ、电压U、电流I及磁通量B给出: U=φ/BI;3、电偶极子:电偶极子表示两个带电粒子构成的电场, 其公式:V=kq1q24/r;4.磁通量: 磁通量表示电磁场中电流线圈的数量, 由公式: B=μoI;5.磁密度: 由公式表示, 磁密度H=B/μ;6.磁力线: 磁力线表示一个磁场中的磁性物质的分布, 由公式: m=H/I;7、电磁功率: 由公式表示, 电磁功率P=U×I;8、电磁能量: 磁场中的电磁能量由公式表示, W=U2/2C;9、电磁感应强度: 由公式表示, E=B×v;10、磁矩: 磁矩由公式表示, M=BIA;上述九个公式中, 前五个是电磁力学, 后四个是电磁场的基本公式, 它们是电磁理论研究的重要基础。
无论是在哪个领域进行电磁场研究, 都要掌握和理解上述公式, 这有利于更好地掌握电磁场的性质及运用。
现代电磁场理论的发展也使得上述的公式可以进行更加复杂的分析, 包括电磁相位、电磁双极子、多维电磁场、电磁辐射以及强磁场等等, 但是其基础公式仍然是上述九条。
由于电磁场是物理学中十分重要的领域, 因此, 要想真正理解它们, 必须熟练掌握和掌握上述电磁场公式, 以便在实际应用中正确使用它们。
当然, 随着科学技术的发展, 电磁场理论也不断发展, 它们也将提供更多更强大的公式, 以帮助我们更好地理解和使用电磁场的特性和运用。
电磁场与电磁波公式.
一、静电学1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q8.电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(V o=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下)类似平抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d)二、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+三、磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
电磁场与电磁波公式整理
电磁场与电磁波公式整理首先,我们来介绍电磁场的基本概念和公式。
电磁场是指由带电粒子所产生的相互作用力所构成的场。
在电磁学中,通常使用电场和磁场来描述电磁场。
电场由带电粒子所产生,是带电粒子周围空间中存在的力场。
磁场由运动的带电粒子产生,是带电粒子周围空间中存在的力场。
电场和磁场分别有自己的公式来描述。
对于电场,其公式为库仑定律:F=k*(,q1,*,q2,)/r^2,其中F为电场力,k为库仑常数,q1和q2分别为两个带电粒子的电荷量,r为两个带电粒子之间的距离。
电场力的方向与电荷的正负性有关,同性电荷相斥,异性电荷相吸。
对于磁场,其公式为洛伦兹力公式:F=q*(vxB),其中F为磁场力,q为带电粒子的电荷量,v为带电粒子的速度,B为磁场。
磁场力的方向符合洛伦兹右手规则,即带电粒子运动方向与磁场垂直时,磁场力垂直于速度方向和磁场方向的平面内,并满足左手定则。
电磁场力的合成则满足叠加原理,即在空间中同时存在多个带电粒子或磁场时,两个电场力或磁场力的合力等于各个力的矢量和。
这样,我们就可以用公式来描述多个场对于一个带电粒子的作用。
接下来,我们来介绍电磁波的基本概念和公式。
电磁波是指由变化的电场和磁场相互耦合而成的一种波动形式。
电场和磁场的变化会相互激发,形成电磁波的传播。
电磁波的传播速度是光速(c),而电磁波的频率(f)和波长(λ)之间存在一个简单的关系,即c=f*λ。
频率是指电磁波每秒振动的次数,单位是赫兹(Hz),波长是指电磁波在媒质中传播一个完整波的距离,单位是米(m)。
此外,电磁波还可根据频率的不同进行分类。
根据频率从低到高排序,可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
不同频率的电磁波在应用中有着不同的用途,例如无线电通信、医疗影像等。
电磁波的强度可以用能量密度(u)、能流密度(S)和功率(P)等指标来表示。
能量密度是指单位体积内所含的电磁波能量,能流密度是指电磁波通过单位面积的能量传播速率,功率是指单位时间内传播的能量。
电磁场与电磁波必记公式
电磁场与电磁波考前必背公式【整理于2014年4月—5月】第一章 矢量分析()0cos cos cos ,cos cos cos 1M lx y zϕϕϕϕαβγαβγ∂∂∂∂=++∂∂∂∂、标量场的方向导数其中,,:l 为沿方向的方向余弦。
【是标量】()x y z e e e x y zϕϕϕϕ∂∂∂=++∂∂∂2、标量直角坐标场的梯度系下的表:grad 示方法; =.=x y z e e e x y zϕϕ∂∂∂++∂∇∂∇∂grad ,其中 【是矢量】3l l ϕϕ∂=∇∂方向导数与梯度的关系:、。
s=y x zA A A x y zA dS A A ψ∂∂∂++∂∂∂=∇=⎰4、矢量场的通量:;矢量场的散度:div 。
【均为标量】()sVAdV A d S ∇=⎰⎰5、散度定理(也称高斯定理):把体积分与面积分联系起来。
=xy y z lx y zzx e e e e A A A dl A A A y A A x y z z ⎛⎫=∇⨯∂== ⎪⎝⎭∂∂∂∂-∂∂∂∂∂⎰6、矢量场的环量;矢量场的旋度:rot z y z y x x e e z x x y A A A A ⎛⎫⎛⎫++∂∂∂∂--∂∂ ⎪ ⎪⎝∂⎝∂⎭⎭。
【是矢量】 ()slA d S A dl∇⨯=⎰⎰斯托克斯定理:(把线积分与面积分联系7、起来)。
8、根据矢量场的亥姆霍兹定理,在无界空间中,矢量场可由其散度和旋度唯一确定。
()() 00A ϕ∇∇⨯≡∇⨯∇≡9、旋度的散度恒等于零,即;梯度的旋度恒等于零矢量,即。
第二章 静电场()()0ss10;00lQE d S E QE dl E E d S E ρεεε=∇==∇⨯==∇⨯=⎰⎰⎰、静电场的高斯定理:积分形式;微分形式。
电场强度的环量与散度静电场是有源(通量源)无旋场,电荷:。
是电其中,说明场的源。
以上四个方程统称为真空中静电场的基本方程。
()()()()22002121=0=03004.5=Sl r n n s n n s E Laplace D d S q D E E dl D E D D D D ϕϕρϕϕρϕερεεερρ=-∇∇=-∇⎫=⎫⎪∇=⎪⎬⎬∇⨯==⎪⎪⎭⎭==-=⎰⎰2、电场强度E 与电位的关系:电位的微分方程为:泊松方程;当时,方程、介质中静电场的方程:微分形式,积分形式、对于各向同性介质有:、在不同介质面上静电场的边界条件为:或()21=0.t t E E =,第三章 恒定电流的电场和磁场()()()00010.2.0030,SSl J J d S J E J E B d S B B J B dl I B B J σσμμμ∇===⎫=⎫⎪∇=⎪⎬⎬∇⨯==⎪⎪⎭⎭∇=∇⨯=⎰⎰⎰、恒定电流的电流连续性方程:=0,其积分形式为:、欧姆定律的微分形式:是电导率;焦耳定律的微分形式:p 、真空中恒定磁场的基本方程:积分形式,微分形式其中说明恒定磁场是无源散()004.5,.r lBH M B H H H dl I H J μμμμ===∇⨯=⎰度源有旋场,旋涡源是电流。
电磁场公式总结
电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的.电位差(电压):单位正电荷的电位能差.即:U =匕=九=f B Edl .AB q q A在介质中求电(磁)场感应强度:电(磁)场能量:位移电流与传导电流比较四种电动势的比较:楞次定律:闭合回路中感应电流的方向,总是使得它所激发的磁场来阻止引起感应电流的磁通量的变化。
高斯定理和环路定理:麦克斯韦方程组:O O 。
电场和磁场的本质及内在联系:静电场问题求解基础问题1.场的唯一性定理:①已知V内的自由电荷分布②V的边界面上的。
值或西/dn值,则V内的电势分布,除了附加的常数外,由泊松方程p /8V 2。
= _及在介质分界面上的边值关系。
盘,8 (丝)_8(「°i j i dn j dn唯一的确定。
两种静电问题的唯一性表述:⑴给定空间的电荷分布,导体上的电势值及区域边界上的电势或电势梯度值T空间的电势分布和导体上的面电荷分布(将导体表面作为区域边界的一部分)⑵给定空间的电荷分布,导体上的总电荷及区域边界上的电势或电势梯度值T空间的电势分布和导体上的面电荷分布(泊松方程及介质分界面上的边值关系)2.静电场问题的分类:分布性问题:场源分布p = E电场分布边值性问题:场域边界上电位或电位法向导数T电位分布和导体上电荷分布3.求解边值性问题的三种方法:分离变量法①思想:根据泊松方程初步求解。
的表达式,再根据边值条件确定其系数电像法①思想:根据电荷与边值条件的等效转化,用镜像电荷代替导体面(或介质面)上的感应电荷(或极化电荷)格林函数法①思想:将任意边值条件转化为特定边值条件,根据单位点电荷来等价原来边界情况静电场,恒流场,稳恒磁场的边界问题:电磁场的认识规律一. 静电场的规律:1.真空中的静电场;电场强度EE(x, y, z) = J ----------- Rdv4KS v R3 0电场电势V静电场的力F静电场的能量2.介质中的静电场;电位移矢量DD = sE + P极化强度P—►万=('一P = X£ E (各向同性介质)-I- e 0二. 稳恒磁场与稳恒电流场1.真空中的磁场强度B4K cl 17?3 8侦)=或 ^^小471 Q R3 471 v R3 4TI/?32.真空中的电流密度J涎V« j =-——卢密度J = p -V3.磁场矢位AA = -^f -J(r!W 一一4TI v /? B = VxA94.介质中的磁场感应强度HB =」H5.磁化强度MM=(u^-1)H (各向M = x H同性介质)m6.磁场中的力F7.磁场中的能量三. 麦克斯韦方程组与介质中的麦克斯韦方程组实质:反映场与电荷及其运动形式(电流)的联系,揭示电场与磁场的相互转换关系电荷:(自由电荷,极化电荷)V- D= p ▽• P= —Pp电流:(传导电流,位移电流,磁化电流)—►—►了_6D f 6EJ D F = F,麦克斯韦方程组与介质中的麦克斯韦方程组包含是各种矢量的散度与旋度运算,有微分,四. 三大定律:欧姆定律———_J =Q E焦耳定律安倍定律五. 守恒定律:电荷守恒能量守恒六. 在边界条件下的电磁现象:__ - (D — D)= p自由电荷面密度),或万-(E — E)= K2 1 S 2 1 8-_ -_前-(B — B2) = 0__ x (E — E ) = 0一2_ ,一一一一、n x (H — H ) = J (传导电流面密度) 七. 静电场与稳恒磁场的比较:积分形式两种[ J J J J一一d—E - dl = —— } B -dS u_^ —^Hdl =七dt s+— J D - ds D - ds = Q (自由电荷)s p 、B - ds- = 0、Vx E =—、dBdtX.dE V • E=—_V-B = 0八稳恒电流场与介质中静电场的比较:O边界条件标量形式矢量形式A M M2-瓦)=p&玖W=电1a—晶)=0跖=8裁H,(耳—)=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1
力������ = q′ ������ =
������������ ������������
=
������������ 2
功率P = γ������ 2
真空高斯定理∮ ������ ∙ ������������ =
∫ ������������������ ������
=
������ ������
∆������→0 ������ ������ ������
媒质构成方程������ = ε������ ������ = μ������ ������ = γ������
������������������ ������������ ∆������→0
散度∇ ∙ ������ = lim ∮ ������ ∙ ������������⁄∆������ = ������
电荷线密度分布τ(������′ ) = lim ∆������(������′)⁄∆������ ′ = ������������(������′)⁄������������ ′ (������/������)
∆������`→0
R = ������������⁄������ ������������ = ������(������������ × ������)
������ ������ 2������������������ ������
������ = tan ������
������ 4������������������������
������������ = sec ������ 2 ������������ dq = ρdv ′ = σds ′ = τdl′
2������2
1 +������2
静电场连续介质的边界条件������1������ = ������2������ ������1������ = ������2������ 镜象法φ = 2������������ ������������ ������2
1
������
������
������ = ������
散度定理∮ ������ ∙ ������������ = ∫������ (∇ ∙ ������) ������������ ������
变化磁场:运动e = ∮ (������ × ������) ∙ ������������ 磁场变化e = − ������ ∮ ������ ∙ ������������ = − ∫
1
ln( ������0)������������ ������′′ = ������
2������1
1 +������2
������
φ = ∫������
������ 1 ������0
������ ∙ ������������ 磁场边界条件������1������ = ������2������ ∮ ������ ∙ ������������ = ������������ ������ = 2������������ ������∅
1 2
������
0
������′ = ������1 +������2 ������
1 2
������ −������
���� 2 功W = ∑������ ������=1 ������������ ������������ = ∫ ������������ ������������ = ∫ (������ ∙ ������)������������ 电场能量密度ω = ������������ 2 2
无限长直线电荷������������ =
������������ =
1 4������������
∫
������(������′) ������
������������ ′ =
τL = ∮ ������ ∙ ������������ = ∫ ������������������ = ������
������ = ∫ ������ ∙ ������������ 电荷密度������1������ = σ ������ ′′ = ������
������
镜象法������′ = ������2 +������1 ������
1 2
������ −������
������
������ = ������ ⁄2������������
磁能W = 2 ∫ ������ ∙ ������������������
密度w ′ = 2 ������ ∙ ������
无限长直载流直导线磁场������ = ������0 ������ ⁄2������������
������������������′ ������
0 矢量磁位������(������) = 4������ ∫
������ = ∇ × ������
无限长直载流直导线矢量磁位������ = ������1������ = ������2������
������0 ������ 2������
������2������
真空中的安培环路定律 ∮ ������ ∙ ������������ = ������0 ∫ ������ ∙ ������������ = ������0 ������
0 ������ = 4������ ∫
������
������������������′×������������ ������2 ������
������
������ ∫ ������������ ������
������ ∙ ������������ ∮ ������ ∙ ������������ = ∫ − ������������ ∙ ������������ ������������
������������ 1 ������ ������������ ������������ (������������������ )������������ = − ∙ ������������ ∙ = ∇ × ������ ������������ = ������������ ������ ������������ ������������ ������������
点功率体密度p = ������������⁄������������ = ������������ 自由电荷面密度σ =
������2 ������1 −������1 ������2 ������1 ������2
电流场边界条件������1������ = ������2������ ������1������ = ������2������ 球形接地电导G = 4πγa ∇ × ������ = ������0 ������ ������������ = ������0 ������(sin ������1 + sin ������2 )⁄4������������
1
+
������������������ ������������
+
������������������ ������������
旋度∇ × ������ = lim |∮ ������ ∙ ������������|⁄∆������ ������������ ������ 斯托克斯定理∫������ (∇ × ������)������������ = ∮ ������ ∙ ������������ ������
1 ������ 1
直角变柱ds = ρdρd∅ dl = ρd∅ ∇ (������) = − ������3 = −∇′(������) 直角变球dv = ������ 2 sin ������������������������������������∅ ������(������) = −∇φ(������) = 1 ������(������′ ) ������ ∫ 2 ������������ ������������ ′ = ������ 4������������ ������ 4������������������ 2 ������
体电流密度|������| = lim ∆������ ⁄∆������ = ������������⁄������������ (������/������2 ) 磁场中受力d������ = dq(������ × ������)
∆������→0
电位移矢量 D(C/m2) 磁场强度 H(A/m) 梯度∇= ������������ ������������ + ������������ ������������ + ������������ ������������