高考物理二轮复习专题

合集下载

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的
受力和运动分析
(1)建立运动模型。
(2)抓住运动过程之间运动参量的联系。
(3)分阶段或全过程列式计算。
(4)对于选定的研究过程,只考虑初、末位置而不用考虑中间过程。
注意摩擦力做功特点
深化拓展
应用动能定理解题应注意的三个问题
(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比
动力学研究方法要简捷。
则重力的瞬时功率不为0,C错误;随着运动员在圆弧跳台上升高,速率逐渐
减小,所需要的向心力也在减小,向心力由台面的支持力与重力垂直接触面
向下的分力提供,由牛顿第二定律有FN-mgcos θ=m
大,v在减小,所以FN在减小,D正确。
2
,随着高度升高,θ在增

2.(命题角度1、2)(多选)一个质量为5 kg静止在水平地面上的物体,某时刻
能定理
1
Pt-W=2 m 2 ,则这一过程中小汽车克服阻力做的功为
D 错误。

W=Pt- 2 ,率启动
1
a-图像和
1
a-v 图像
1
F-图像问题
恒定加速度启动
1
F-v 图像
恒定功率启动
1
a- 图像
v
恒定加速度启动
1
F- 图像
v
①AB 段牵引力不变,做匀加速直线运动;
1
1
2
由动能定理得-mg·2r-W=2 2 − 2 1 2 ,联立解得小球克服阻力做的功
W=mgr,A 错误,B 正确;设再一次到达最低点时速度为 v3,假设空气阻力做
功不变,从最高点到最低点根据动能定理得
最低点,根据牛顿第二定律
1
mg·2r-W= 3 2

新高考适用2025版高考物理二轮总复习第1部分专题突破方略专题6物理实验第2讲电学实验及创新

新高考适用2025版高考物理二轮总复习第1部分专题突破方略专题6物理实验第2讲电学实验及创新

第一部分专题六第2讲基础题——学问基础打牢1. (2024·新课标Ⅰ卷)某同学用伏安法测量一阻值为几十欧姆的电阻R x,所用电压表的内阻为1 kΩ,电流表内阻为0.5 Ω.该同学采纳两种测量方案,一种是将电压表跨接在图(a)所示电路的O、P两点之间,另一种是跨接在O、Q两点之间.测量得到如图(b)所示的两条U­I图线,其中U与I分别为电压表和电流表的示数.回答下列问题:(1)图(b)中标记为Ⅱ的图线是采纳电压表跨接在_O、P__(填“O、P”或“O、Q”)两点的方案测量得到的.(2)依据所用试验器材和图(b)可推断,由图线_Ⅰ__(填“Ⅰ”或“Ⅱ”)得到的结果更接近待测电阻的真实值,结果为_50.5__Ω(保留1位小数).(3)考虑到试验中电表内阻的影响,需对(2)中得到的结果进行修正,修正后待测电阻的阻值为_50.0__Ω(保留1位小数).【解析】(1)若将电压表接在O、P之间,I=UR V +UR x则U=R x R VR x+R V·I依据一次函数关系可知对应斜率为R x R VR x+R V若将电压表接在O、Q之间,电流表分压为U A=IR A依据欧姆定律变形可知R x=U-IR AI解得U=I(R x+R A)依据一次函数可知对应斜率为(R x+R A),对比图像的斜率可知kⅠ>kⅡ所以Ⅱ图线是采纳电压表跨接在O、P之间.(2)因为待测电阻为几十欧姆的电阻,通过图像斜率大致估算待测电阻为50 Ω左右,依据1 kΩ50 Ω<50 Ω0.5 Ω说明电流表的分压较小,电压表的分流较大,所以电压表应跨接在O、Q之间,所以选择图线I得到的结果较为精确.依据图像可知R x=3 V-1 V59.6 mA-20 mA≈50.5 Ω.(3)考虑电流表内阻,则修正后的电阻为R x′=R x-R A=50.5 Ω-0.5 Ω=50.0 Ω.2. (2024·四川成都二诊)为将一只毫安表A(量程3 mA,内阻约几十欧姆)改装成量程为1.5 V的电压表,试验室供应了下列器材:电源E(电动势约6 V,内阻不计);滑动变阻器R1(0~50 Ω);滑动变阻器R2(0~5 kΩ);电阻箱R(0~999.9 Ω);开关两个、导线若干.某同学先按图示电路连接线路,测量表A的内阻.他的操作步骤如下:a.将滑动变阻器的阻值调到最大,闭合S1后调整变阻器的阻值,使表A的指针满偏;b.闭合S2保持变阻器的阻值不变,调整电阻箱R的阻值,使表A的指针偏转到量程的1 2位置;c.登记R的阻值为30.0 Ω.(1)上述试验中,滑动变阻器应选用_R2__(选填“R1”或“R2”).(2)表A的内阻测量值R A=_30.0或30__Ω.此测量值_小于__(选填“大于”“等于”或“小于”)表A内阻的真实值.(3)若取表A内阻的测量值R A进行计算,为达成改装的目的,可将表A与电阻箱R_串联__(选填“串联”或“并联”),且将电阻箱R的阻值调到_470.0或470__Ω.【解析】(1)毫安表A的量程3 mA,则电路中的最大电流为3 mA,电路的最小电阻为R=EI g =63×10-3Ω=2 000 Ω,故滑动变阻器应选用R2.(2)试验中用半偏法测电表的内阻,所以R的阻值即为电表的测量值,则表A的内阻测量值R A=30 Ω,由于闭合S2,电阻箱R并入电路,电路的总电阻变小,干路电流变大,而流过毫安表的电流为满偏的一半,所以流过电阻箱R的电流大于满偏的一半,依据并联电路的特点,可知电阻箱R的阻值小于毫安表的内阻,即测量值小于表A内阻的真实值.(3)应把毫安表与电阻箱串联,改装成电压表,量程为1.5 V,则有U=I g(R A+R),则将电阻箱R的阻值调到R=470 Ω.3. (2024·新课标Ⅱ卷)某同学要探讨一小灯泡L(3.6 V,0.30 A)的伏安特性.所用器材有:电流表A1(量程200 mA,内阻R g1=10.0 Ω),电流表A2(量程500 mA,内阻R g2=1.0Ω)、定值电阻R0(阻值R0=10.0 Ω)、滑动变阻器R1(最大阻值10 Ω)、电源E(电动势4.5 V,内阻很小)、开关S和若干导线.该同学设计的电路如图(a)所示.(1)依据图(a),在图(b)的实物图中画出连线.(2)若I1、I2分别为流过电流表A1和A2的电流,利用I1、I2、R g1和R0写出:小灯泡两端的电压U=_I1(R g1+R0)__,流过小灯泡的电流I=_I2-I1__.为保证小灯泡的平安,I1不能超过_180__mA.(3)试验时,调整滑动变阻器,使开关闭合后两电流表的示数为零.逐次变更滑动变阻器滑片位置并读取相应的I1和I2.所得试验数据在下表中给出.I1/mA325585125144173I2/mA1712292993794244701_11.6__Ω(保留1位小数).(4)假如用另一个电阻替代定值电阻R0,其他不变,为了能够测量完整的伏安特性曲线,所用电阻的阻值不能小于_8.0__Ω(保留1位小数).【答案】(1)见解析图【解析】(1)依据电路图连接实物图如图所示(2)①依据电路图可知灯泡两端的电压为电流表A 1和R 0的总电压,故依据欧姆定律有U =I 1(R g1+R 0 );②依据并联电路特点可知流过小灯泡的电流为I =I 2-I 1;③因为小灯泡的额定电压为3.6 V ,故依据题目中已知数据带入①中可知I 1不能超过180 mA.(3)依据表中数据可知当I 1=173 mA 时,I 2=470 mA ;依据前面的分析代入数据可知此时灯泡两端的电压为U =3.46 V ;流过小灯泡的电流为I =297 mA =0.297 A ;故依据欧姆定律可知此时小灯泡的电阻为R =U I =3.460.297Ω=11.6 Ω.(4)要测量完整的伏安特性曲线则灯泡两端的电压至少要达到3.6 V ,而电流表A 1不能超过其量程200 mA ,此时结合①有3.6=0.2×(10+R 0),解得R 0=8 Ω,即要完整的测量小灯泡伏安特性曲线所用电阻的阻值不能小于8 Ω.4. (2024·新课标Ⅲ卷)已知一热敏电阻当温度从10 ℃升至60 ℃时阻值从几千欧姆降至几百欧姆,某同学利用伏安法测量其阻值随温度的变更关系.所用器材:电源E 、开关S 、滑动变阻器R (最大阻值为20 Ω)、电压表(可视为志向电表)和毫安表(内阻约为100 Ω).(1)在所给的器材符号之间画出连线,组成测量电路图.(2)试验时,将热敏电阻置于温度限制室中,记录不同温度下电压表和毫安表的示数,计算出相应的热敏电阻阻值.若某次测量中电压表和毫安表的示数分别为5.5 V 和3.0 mA ,则此时热敏电阻的阻值为_1.8__kΩ(保留2位有效数字).试验中得到的该热敏电阻阻值R 随温度t 变更的曲线如图(a)所示.(3)将热敏电阻从温控室取出置于室温下,测得达到热平衡后热敏电阻的阻值为2.2 kΩ.由图(a)求得,此时室温为_25.5__℃(保留3位有效数字).(4)利用试验中的热敏电阻可以制作温控报警器,其电路的一部分如图(b)所示.图中,E 为直流电源(电动势为10 V ,内阻可忽视);当图中的输出电压达到或超过6.0 V 时,便触发报警器(图中未画出)报警.若要求起先报警时环境温度为50 ℃,则图中_R 1__(填“R 1”或“R 2”)应运用热敏电阻,另一固定电阻的阻值应为_1.2__kΩ(保留2位有效数字).【答案】 (1)见解析图【解析】 (1)滑动变阻器应用分压式,电压表可视为志向表,所以用电流表外接.连线如图.(2)由部分电路欧姆定律得R =U I = 5.53×10-3Ω≈1.8 kΩ.(3)由图(a)可以干脆读该电阻的阻值为2.2 kΩ对应的温度为25.5 ℃.(4)温度上升时,该热敏电阻阻值减小,分得电压削减.而温度高时要求输出电压上升,以触发报警,所以R 1为热敏电阻.由图线可知,温度为50 ℃时,R 1=0.8 kΩ,由欧姆定律可得E =I (R 1+R 2),U =IR 2,代入数据解得R 2=1.2 kΩ.5. (2024·全国乙,23,10分)一同学探究阻值约为550 Ω的待测电阻R x 在0~5 mA 范围内的伏安特性.可用器材有电压表V(量程为3 V ,内阻很大),电流表A(量程为1 mA ,内阻为300 Ω),电源E (电动势约为4 V ,内阻不计),滑动变阻器R (最大阻值可选10 Ω或1.5 kΩ),定值电阻R 0(阻值可选75 Ω或150 Ω),开关S ,导线若干.(1)要求通过R x 的电流可在0~5 mA 范围内连续可调,将图甲所示的器材符号连线,画出试验电路的原理图.(2)试验时,图甲中的R 应选最大阻值为_10_Ω__(选填“10 Ω”或“1.5 kΩ”)的滑动变阻器,R 0应选阻值为_75_Ω__(选填“75 Ω”或“150 Ω”)的定值电阻.(3)测量多组数据可得R x 的伏安特性曲线.若在某次测量中,电压表、电流表的示数分别如图乙和图丙所示,则此时R x 两端的电压为_2.30__V ,流过R x 的电流为_4.20__mA ,此组数据得到的R x 的阻值为_548__Ω(保留3位有效数字).【答案】 (1)见解析图【解析】 (1)电流表内阻已知,电流表与R 0并联扩大电流表量程,进而测量通过R x 的电流,电压表测量R x 两端的电压;滑动变阻器采纳分压式接法,满意通过R x 的电流在0~5 mA 内连续可调的条件,电路图如下.(2)电路中R 应选最大阻值为10 Ω的滑动变阻器,便利电路的调整,测量效率高、试验误差小;通过R x 的电流最大为5 mA ,须要将电流表量程扩大为原来的5倍,依据并联分流,即并联电路中电流之比等于电阻的反比,可知5 mA -1 mA 1 mA =300 ΩR 0,解得R 0=75 Ω.(3)电压表每小格表示0.1 V ,向后估读一位,即U =2.30 V ;电流表每小格表示0.02mA ,本位估读,即读数为0.84 mA ,电流表量程扩大5倍,所以通过R x 的电流为I =4.20 mA ;依据欧姆定律可知R x =UI≈548 Ω.6. (2024·浙江1月高考)小明同学依据图1的电路连接器材来“探究导体电阻与其影响因素的定量关系”.试验时多次变更合金丝甲接入电路的长度l 、调整滑动变阻器的阻值,使电流表的读数I 达到某一相同值时记录电压表的示数U ,从而得到多个U I 的值,作出U I­l 图像,如图2中图线a 所示.(1)在试验中运用的是_0~20_Ω__(选填“0~20 Ω”或“0~200 Ω”)的滑动变阻器. (2)在某次测量时,量程为3 V 电压表的指针位置如图3所示,则读数U =_1.32(1.31~1.34)__V.(3)已知合金丝甲的横截面积为7.0×10-8m 2,则合金丝甲的电阻率为_1.1×10-6(0.90×10-6~1.3×10-6)__Ω·m(结果保留2位有效数字).(4)图2中图线b 是另一根长度相同、材料相同的合金丝乙与合金丝甲并联后采纳同样的方法获得的UI­l 图像,由图可知合金丝甲的横截面积_小于__(选填“大于”“等于”或“小于”)合金丝乙的横截面积.【解析】 (1)由试验原理可知R x =U I ,而由U I­l 图像可知待测电阻最大约为8 Ω,为了使电压表有明显的读数变更,则滑动变阻器的阻值不能太大,故选0~20 Ω比较合适.(2)量程为 3 V 的电压表,精度为0.1 V ,估读到0.01 V ,则电压为 1.32 V(1.31~1.34).(3)依据电阻定律有U I =R x =ρS ·l 则U I ­l 图像的斜率为k =ρS可得合金丝甲的电阻率为ρ=kS =7.4-3.60.44-0.20×7.0×10-8(Ω·m)≈1.1×10-6(Ω·m).(4)另一根长度相同、材料相同的合金丝乙与合金丝甲并联后,电阻率不变,而横截面积变为S′=S+S乙由图2中图线b可得S′=ρk b=1.1×10-62.2-1.00.44-0.15≈26.6×10-8 m2解得S乙=S′-S≈19.6×10-8 m2>S故合金丝甲的横截面积小于合金丝乙的横截面积.7. (2024·贵州押题卷)李老师为了让同学们更好地理解电表的改装原理,将量程为0~3 V~15 V的电压表底座拆开后,展示其内部结构,如图甲所示.图中a、b、c是该表的3个接线柱,李老师已依据图甲画出如图乙所示的电路图.(1)依据图乙可以推断,当须要选择0~3 V的量程时,应接入电路的两个接线柱是_b、c__.(2)若电压表的表头内阻为200 Ω,满偏电流为600 μA,则可以计算出R1=_20_000__Ω,R2=_4_800__Ω.(3)某同学受到启发后,接着探讨量程为0~0.6 A~3 A的电流表.拆开电流表底座后,发觉其内部结构如图丙所示,其中“-”为电流表的负接线柱,d、e为其余两个接线柱.在所给的器材符号之间画出连线,组成该电流表的电路图;(4)已知电流表中R4=0.22 Ω,表头与电压表的表头相同,则R3=_0.88__Ω.【答案】(3)见解析图【解析】(1)电压表量程越大,与表头G串联的总电阻越大,所以当须要选择0~3 V 的量程时,表头G只与R2串联,应接入电路的两个接线柱是b、c.(2)依据串联电路规律有I G(R2+r G)=3 V,I G(R1+R2+r G)=15 V,联立解得R1=20 000 Ω,R2=4 800 Ω.(3)依据题图丙作出电路图如图所示.(4)电流表量程越大,分流总电阻越小,所以e接线柱对应0.6 A量程,d接线柱对应3 A量程,依据串并联电路规律有I1=I G+I G r G+R5R3+R4=0.6 A,I2=I G+I G r G+R3+R5R4=3A,联立解得R3=0.88 Ω.应用题——强化学以致用8. (2024·全国高考甲卷)某同学用图(a)所示电路探究小灯泡的伏安特性,所用器材有:小灯泡(额定电压2.5 V,额定电流0.3 A)电压表(量程300 mV,内阻300 Ω)电流表(量程300 mA,内阻0.27 Ω)定值电阻R0滑动变阻器R1(阻值0~20 Ω)电阻箱R2(最大阻值9 999.9 Ω)电源E(电动势6 V,内阻不计)开关 S、导线若干.完成下列填空:(1)有3个阻值分别为10 Ω、20 Ω、30 Ω的定值电阻可供选择,为了描绘小灯泡电流在0~300 mA的U­I曲线,R0应选取阻值为_10__ Ω的定值电阻.(2)闭合开关前,滑动变阻器的滑片应置于变阻器的_a__(填“a”或“b”)端.(3)在流过电流表的电流较小时,将电阻箱R2的阻值置零,变更滑动变阻器滑片的位置,读取电压表和电流表的示数U、I,结果如图(b)所示.当流过电流表的电流为10 mA 时,小灯泡的电阻为_0.7__ Ω(保留1位有效数字).(4)为使得电压表满量程时对应于小灯泡两端的电压为 3 V ,该同学经计算知,应将R 2的阻值调整为_2_700_Ω__.然后调整滑动变阻器R 1,测得数据如下表所示:U /mV 24.0 46.0 76.0 110.0 128.0 152.0 184.0 216.0 250.0 I /mA140.0160.0180.0200.0220.0240.0260.0280.0300.0增大__(大”“减小”或“不变”).(6)该同学观测到小灯泡刚起先发光时流过电流表的电流为160 mA ,可得此时小灯泡电功率P 1=_0.074__W(保留2位有效数字);当流过电流表的电流为300 mA 时,小灯泡的电功率为P 2,则P 2P 1=_10__(保留至整数).【解析】 (1)因为小灯泡额定电压2.5 V ,电动势6 V ,则滑动滑动变阻器时,为了保证电路平安,须要定值电阻分担的电压U =6 V -2.5 V =3.5 V ,则有R 0=3.5 V0.3 A≈11.7 Ω则须要描绘小灯泡在0~300 mA 的伏安特性曲线,即R 0应选取阻值为10 Ω. (2)为了爱护电路,滑动变阻器的滑片应置于变阻器的a 端.(3)由图可知当流过电流表的电流为10 mA 时,电压为7 mV ,则小灯泡的电阻为R =7×10-310×10-3 Ω=0.7 Ω. (4)由题知电压表满量程时对应于小灯泡两端的电压为3 V 时,有3R 2+R V =0.3R V解得R 2=2 700 Ω.(5)由图(b)和表格可知流过小灯泡电流增加,图像中U I变大,则灯丝的电阻增大. (6)依据表格可知当电流为160 mA 时,电压表的示数为46 mV ,依据(4)的分析可知此时小灯泡两端电压为0.46 V ,则此时小灯泡电功率P 1=0.46 V×0.16 A≈0.074 W同理可知当流过电流表的电流为300 mA 时,小灯泡两端电压为2.5 V ,此时小灯泡电功率P 2=2.5 V×0.3 A=0.75 W故有P 2P 1=0.750.074≈10.9. (2024·广西南宁二模)某物理试验小组设计了如图甲所示的电路图,采纳半偏法测量一电流计G 的内阻R g ,然后将该电流计G 改装为电压表,并对改装后的电压表进行检验.(1)请依据图甲所示电路图,在图乙中用笔画线表示导线连接相应的实物电路:(2)测量R g的步骤如下:①按图甲所示连接好试验电路,将R1的阻值调到最大,闭合开关S1,调整R1的阻值,使电流计指针满偏;②闭合开关S2,调整R2的阻值,使电流计指针转到满偏刻度的一半处,登记R2的阻值并断开S1;③待测电流计内阻R测=R2.由于存在系统误差,按上述试验步骤测出的电流计内阻R测与电流计内阻的真实值R g相比较,R测_<__R g(选填“>”“<”或“=”).(3)该小组在上述试验中,测得电流计G(量程3 mA)的内阻为400 Ω.他们将此电流计与电阻R串联后改装成量程为6 V的电压表,然后利用一标准电压表,依据图丙所示电路对改装后的电压表进行检验.①与电流计串联的电阻R=_1_600__Ω;②调整滑动变阻器,当标准电压表读数为4.10 V时,电流计G的读数为2.00 mA,则改装后的电压表实际量程为_6.15__V.该小组发觉改装的电压表量程不是6 V,通过分析,缘由是由于电流计G的内阻测量不精确造成的,此时不用做其他改动,要达到预期目的,只需将与电流计串联的电阻R换为一个阻值为_1_550__Ω的电阻即可.【答案】(1)见解析图【解析】(1)依据电路图连接实物图如图所示(2)③当R1保持不变时,再闭合S2时,这样电路中的总电阻变小,总电流将大于I g,当电流半偏时,电阻箱的电流比I g2大,所以电阻箱的电阻小于电流表,即测量值小于真实值.(3)①将电流表改装成电压表,须要串联一较大的分压电阻R =U I g -R g =63×10-3 Ω-400 Ω=1 600 Ω.②由题意,当微安表的示数为2 mA 时,理论上的电压U 理=I (R +R g )=2×10-3×(1 600+400)V =4 V但实际电压U ′有4.10 V .那么实际电流表G 的内阻R g ′=U ′I -R = 4.102×10-3 Ω-1 600 Ω=450 Ω实际量程为U 实=I (R g ′+R )=3×10-3×(450+1 600)V =6.15 V依据表头与分压电阻的串联关系,要达到预期6 V 的目的,只需将R 减小50 Ω即可,即换为1 550 Ω的定值电阻.。

高三物理第二轮总复习全套精品(共10个专题)

高三物理第二轮总复习全套精品(共10个专题)

全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。

2023届高考物理二轮复习专题练习:验证力的平行四边形定则

2023届高考物理二轮复习专题练习:验证力的平行四边形定则

验证力的平行四边形定则专题1.“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,和为细绳。

图乙是在白纸上根据实验结果画出的图。

(1)如果没有操作失误,图乙中的F与两力中,方向一定沿AO方向的是。

(2)本实验采用的科学方法是___________。

A .理想实验法B .等效替代法C .控制变量法D .建立物理模型法(3)在此实验过程中必须注意以下几项:其中正确的是___________。

(填入相应的字母)A .两根细绳必须等长B .橡皮条应与两绳夹角的平分线在同一直线上C .在使用弹簧秤时要注意使弹簧秤与木板平面平行D .在用两个弹簧秤同时拉细绳时要注意使两个弹簧秤的读数相等E .用两个弹簧秤同时拉细绳时须将橡皮条的另一端拉到用一个弹簧秤拉时记下的位置2.用等效代替法验证力的平行四边形定则的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是白纸上根据实验结果画出的图。

(1)本实验中“等效代替”的含义是_____。

A .橡皮筋可以用细绳替代B .左侧弹簧测力计的作用效果可以替代右侧弹簧测力计的作用效果C .右侧弹簧测力计的作用效果可以替代左侧弹簧测力计的作用效果D .两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代(2)图乙中的与两力中,方向一定沿着AO方向的是,图中是、合力的理论值。

3.做“验证力的平行四边形定则”的实验时:(1)本实验采用的科学方法是____(填正确答案标号)。

A .理想实验法B .等效替代法C .控制变量法D .建立物理模型法(2)从如图可读得弹簧秤B的示数为N。

(3)某同学认为实验中应该注意下列要求,其中正确的是____A .两根细绳必须等长B .在使用弹簧秤时要使弹簧秤与木板平行C .两根细绳的夹角必须成90°角D .在不超出量程的前提下,要使弹簧秤读数适当大一些(4)图乙是在白纸上根据实验结果画出的力的图示。

高三物理二轮复习力学专题

高三物理二轮复习力学专题

高三物理二轮复习力学专题第一课时:物体平衡【考点分析】1、要熟练掌握重力、弹力、摩擦力以及电场力、安培力(洛仑兹力)的性质和特点,能利用共点力平衡条件解题。

2、对力的处理方法主要是利用平行四边形法则(三角形法则)和正交分解法;对研究对象的处理方法主要是利用整体法和隔离法。

【知识要点】1、 共点力平衡状态及条件:静止或匀速直线运动状态都称为平衡状态,处在平衡状态的物体所受合外力一定为0。

即所有外力在任意一个方向上的投影的代数和为02、 共点力平衡的动态分析法:平衡中涉及大量的动态问题,所谓动态问题就是通过控制某一物理量,使物体的状态发生缓慢变化,在这过程中物体始终处于一系列的平衡状态,处理方法是解析法和图解法,解析法能详细分析出过程中各物理量的变化,也适用讨论某一瞬间的平衡,图解法仅适用于三力平衡的定性判断。

3、 整体法和隔离法:合理选择研究对象是研究力学问题的关键,有时选择一个物体为研究对象分析较为烦琐,但选用整个系统作为研究对象却简洁明了,整体法的优点是未知量少,方程数少,求解简捷。

【思路点拨】本专题内容高考涉及的主要是三力平衡,往往以选择填空为主,在电场磁场中带电粒子及导体的平衡计算题出现较多。

近几年考查在运动中受变力(如f=kx ,f=kv 、f=Kv 2)出现的变化过程和稳定状态(平衡态)较为频繁,应引起足够的重视。

【解题指导】[例1]如图示,在倾角为45°的光滑斜面上放上质量为m 的圆球,在球前放一光滑档板,试分析甲乙两种情况下斜面及档板对小球的弹力N 1 N 2(甲图中档板竖直,乙图中档板与斜面垂直)变1:在甲图中若档板可绕斜面一固定点逆时针转动,试讨论斜面、档板对小球的弹力变化情况。

变2:若斜面体上表面光滑,撤去档板,力F 作用在物块上,使木块沿斜面向上作匀速运动,求最小力F 的大小及方向?甲 乙 45° 45°变3:竖直绝缘墙壁上的P点用相同长度的绝缘丝线悬挂两个带电小球A和B,两小球因带电而相互排斥,使B球的丝线与竖直方向成θ角,如图所示,由于漏电使AB两小球带电量减少,θ减少,则在电荷漏完之前丝线PB对悬点的拉力变化情况。

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。

题型多为选择题、计算题。

主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。

本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。

复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。

预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。

知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。

高考物理二轮复习专题训练——动量(word版含答案)

高考物理二轮复习专题训练——动量(word版含答案)

动量一、选择题(共15题)1.从同一高度落下的玻璃杯掉在水泥地上易碎,而掉在毛毯上就不易碎,这是因为玻璃杯掉在水泥地上时A.受到的冲量大B.受到地面的作用力大C.动量的变化量大D.动量大2.一静止的物体所受到的合外力随时间的变化关系如图所示,图中F1、F2未知.已知物体从t=0时刻出发,在3t0时刻恰又返回到出发点,则()A.0—t0物体做匀加速直线运动,t0—3t0物体做匀减速直线运动B.物体在F1作用下的位移与在F2作用下的位移相等C.t0时刻物体的速度与3t0时刻物体的速度大小之比为2 3D.F1与F2大小之比为5 63.下列说法正确的是()A.不受外力作用的系统,其动量和机械能必然同时守恒B.只要系统受到摩擦力,动量不可能守恒C.物体受到的冲量越大,它的动量变化一定越快D.某物体做直线运动,受到一个-6N˙s的冲量作用后其动量不一定减小4.下列关于动量和冲量的说法中正确的是()A.物体的动量改变,一定是速度的大小改变B.物体的动量改变,一定是速度的方向改变C.物体的运动状态改变,其动量一定改变D.以上说法均不对5.2020年7月23日,中国首个火星探测器“天问一号”在海南文昌卫星发射中心发射升空。

该探测器经过多次变轨,进入环火轨道,预计5月中旬,将择机开展着陆、巡视等任务,进行火星科学探测。

假设在火星表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m的小球(可视为质点),如图所示,当给小球一水平向右的瞬时冲量Ⅰ时,小球恰好能在竖直平面内做完整的圆周运动。

若已知圆轨道半径为r ,火星的半径为R 、万有引力常量为G ,则火星的质量为( )A .222I r Gm RB .2225I r Gm RC .222I R GrmD .2225I R Grm 6.一人站在滑板上以速度0v 在冰面上滑行忽略滑板与冰面间的摩擦某时刻人沿水平方向向正前方距离滑板离开时人相对冰面的速度大小为02v 。

2023届高考物理二轮专题复习:电磁感应+电容+试题

2023届高考物理二轮专题复习:电磁感应+电容+试题

电磁感应之电容模型模型1无外力充电式(电容器+单棒)例1 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。

电容器的电容为C ,击穿电压足够大,开始时电容器不带电。

棒ab 长为L ,质量为m ,电阻为R , 初速度为v 0,金属棒运动时,金属棒与导轨始终垂直且接触良好。

(1) 请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。

(2) 若电容器储存的电能满足 212E CU ,忽略电磁辐射损失,求导体棒ab 在整个过程中产生的焦耳热。

模型2.放电式(电容器+单棒)例2 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。

棒ab 长为L ,质量为m ,电阻为R ,静止在导轨上。

电容器的电容为C ,先给电容器充电,带电量为Q ,再接通电容器与导体棒。

金属棒运动时,金属棒与导轨始终垂直且接触良好。

请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。

模型3.有恒力的充电式电容器例3. 水平金属导轨光滑,电阻不计,匀强磁场与导轨垂直,磁感应强度为B 。

棒ab 长为L ,质量为m ,电阻为R ,初速度为零,在恒力F 作用下向右运动。

电容器的电容为C ,击穿电压足够大,开始时电容器不带电。

请分析导体棒的运动情况。

4.模型迁移:(分析方法完全相同,尝试分析吧!)(1)导轨不光滑(2)恒力的提供方式不同,如导轨变成竖直放置或倾斜放置等(3) 电路结构变化1. ( 2017年天津卷12题)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。

电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。

两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。

炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。

首先开关S 接1,使电容器完全充电。

2023新教材高考物理二轮专题复习专题:牛顿运动定律与直线运动

2023新教材高考物理二轮专题复习专题:牛顿运动定律与直线运动

专题三运动学图像和动力学图像高频考点·能力突破考点一常规图像1.常规图像2.图像问题的解题思路例 1 [2022·河北卷]科学训练可以提升运动成绩,某短跑运动员科学训练前后百米全程测试中,速度v与时间t的关系图像如图所示.由图像可知( )A.0~t1时间内,训练后运动员的平均加速度大B.0~t2时间内,训练前、后运动员跑过的距离相等C.t2~t3时间内,训练后运动员的平均速度小D.t3时刻后,运动员训练前做减速运动,训练后做加速运动[解题心得]预测1 (多选)如图所示为甲、乙两物体在同一直线上运动的位移—时间图像,由图像可知( )A.甲、乙两物体开始运动时的速度方向相反B.甲、乙两物体同时同地开始运动C.甲物体在0~4 s内的平均速率比乙物体在1~4 s内的平均速率大D.两图线交点表示两物体速度相同预测2 (多选)2020东京奥运会田径男子4×100米接力比赛,由汤星强、谢震业、苏炳添和吴智强组成的中国队取得优异成绩.如图(a)所示,假设某接力比赛中甲、乙两运动员在直道交接棒过程的v-t图像大致如图(b)所示.设t1时刻为交接棒时刻,下列说法正确的是( )A.甲为交棒运动员,乙为接棒运动员B.0~t1过程中,甲在前,乙在后,二者距离越来越小C.t1~t2过程中,接棒运动员的加速度越来越小D.交接棒时的速度越大,因交接棒而损失的时间越少预测3 [2022·北京押题卷]很多智能手机都有加速度传感器,能通过图像显示加速度情况.用手掌托着手机,打开加速度传感器,手掌从静止开始迅速上下运动,得到如图所示的竖直方向上加速度随时间变化的图像,该图像以竖直向上为正方向.由此可判断出( )A.手机可能离开过手掌B.手机在t1时刻运动到最高点C.手机在t2时刻改变运动方向D.手机在t1~t3时间内,受到的支持力先减小再增大考点二非常规图像1.非常规图像a - F图像2.解决非常规图像的方法对于这类新型图像问题,关键是认清图像中横、纵轴所代表的物理量,找出它们的函数关系,并能迁移运用物理知识和方法清楚理解图像中的“点”“线”“斜率”“截距”和“面积”的物理意义.例2 [2022·河北押题卷]无人驾驶汽车在新冠疫情期间对疫情防控起到了积极作用.某自主品牌的一款无人驾驶汽车在直线测试时的速度平方与位移关系v2- x图像如图所示.从汽车经过x=0位置时开始计时,则以下说法中正确的是( )A.汽车做匀加速直线运动B.汽车的加速度大小为10 m/s2C.该车在2 s内的位移大小为2.0 mD.该车在2 s内的位移大小为3.6 m[解题心得]预测4 一质点沿直线运动,如图所示是从t=0时刻开始的质点的xt- t(式中x为位移)图像,可以推知( )A.质点做匀减速运动B.加速度的大小是1 m/s2C.t=2 s时的速度是1 m/sD.t=2 s时位移是3 m预测5 [2022·安徽示范高中皖北协作区联考](多选)如图1所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A,滑块A受到随时间t变化的水平拉力F作用时,用传感器测出滑块A的加速度a,得到如图2所示的a- F图像,已知g取10 m/s2,则( )A.滑块A的质量为2 kgB.木板B的质量为6 kgC.当F=12 N时,木板B的加速度为4 m/s2D.滑块A与木板B间的动摩擦因数为0.4素养培优·情境命题与体育运动、交通有关的v - t图像问题情境1 [2022·湖南株洲4月质检]为节约运行时间,设想一种高铁进站不停车模式.如图(a)所示,站台内铁路正上方有一固定轨道AB,高铁分为可分离的上下副、主车两部分,副车可在主车车顶轨道上滑行,主车保持匀速过站,需下车的乘客提前进入副车甲中,需上车的乘客已在静止于A端的副车乙中等待.车尾到B端瞬间,甲刚好完全滑上固定轨道AB,主、副车分离,副车甲立即减速,甲的车头到A端时刚好停下,乘客下车.当主车车头到A 端时,副车乙立即从固定轨道开始加速滑上车顶轨道,当乙的车尾与主车车尾对齐时主、副车刚好共速,锁死一起前进.设高铁以40 m/s 速度匀速驶来,副车长均为20 m,副车甲、乙运动的v - t图像如图(b)所示,则主车长为( )A.180 m B.200 mC.220 m D.820 m[解题心得]情境2 图(a)为2022年北京冬奥会冰壶比赛中的一个画面.比赛中,为了使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小.假设某运动员以初速度v0沿冰面将冰壶推出,冰壶做直线运动直到停止的过程中,其速度—时间(v - t)图像如图(b)所示,则下列判定正确的是( )A.0~t1和t2~t3时间内,运动员在用毛刷擦冰面B.t1~t2时间内,冰壶的加速度大小为v1−v2t2C.t1~t2时间内,冰壶的位移大小为1(v1+v2)·(t2-t1)2(v0+v1+v2)D.0~t3时间内,冰壶的平均速度大小为13[解题心得]情境3 (多选)2021年7月31日,第二十届全国大学生机器人大赛ROBOCON圆满闭幕,本次大赛的主题项目为“投壶行觞”和“机器马术”.如图甲,在一次比赛中a、b两机器人从同一起跑线沿同一方向做直线运动,它们的速度—时间图像如图乙所示,则下列说法正确的是( )A.20 s时,a、b两机器人在运动方向上相距约500 mB.40 s时,a、b两机器人速度相等,在运动方向上相距最远,为400 mC.60 s时,b机器人在a机器人的前方,在运动方向上相距400 mD.a、b加速时,b机器人的加速度大于a机器人的加速度[解题心得]专题三 运动学图像和动力学图像高频考点·能力突破考点一例1 解析:根据v - t 图像的斜率表示加速度,及题图可知0~t 1时间内,训练后运动员的平均加速度比训练前的小,故A 错误;根据v - t 图像围成的面积表示位移,及题图可知0~t 2时间内,训练前运动员跑过的距离比训练后的大,故B 错误;根据v - t 图像围成的面积表示位移,及题图可知t 2~t 3时间内,训练后运动员的位移比训练前的位移大,根据平均速度等于位移与时间的比值,可知训练后运动员的平均速度大,故C 错误;由v - t 图像可直接看出,t 3时刻后,运动员训练前速度减小,做减速运动,运动员训练后速度增加,做加速运动,故D 正确.答案:D预测1 解析:甲物体开始运动时沿正向运动,乙物体开始运动时沿负向运动,A 正确;甲物体从0时刻在x =-5 m 位置开始运动,乙物体从1 s 时开始运动,开始运动的位置为x =0 m ,B 错误;x ­ t 图线的斜率的绝对值表示速度大小,则甲物体在0~4 s 内平均速率为v 甲=5−(−5)4m/s =2.5 m/s ,乙物体在1~4 s 内平均速率为v 乙=|−5|3m/s =53 m/s ,则甲物体在0~4 s 内的平均速率比乙物体在1~4 s 内的平均速率大,C 正确;x ­ t 图线的交点表示该时刻位置坐标相同,即两物体相遇,速度应看图线斜率,D 错误.答案:AC预测2 解析:由图(b)可知,交接棒过程中,接棒运动员在前,从静止开始向前加速运动,交棒运动员在后,开始时交棒运动员速度大于接棒运动员速度,二者之间的距离越来越小,当二者速度相等时,二者距离达到最小,此时要完成交接棒动作.交接棒完成后,接棒运动员继续加速直到达到最大速度,交棒运动员继续减速直到停下,综上分析,甲为交棒运动员,乙为接棒运动员,A 正确.0~t 1过程中,乙在前,甲在后,二者距离越来越小,B 错误.由图(b)可知,t 1~t 2过程中,接棒运动员乙做加速度逐渐减小的加速运动,C 正确.交接棒时的速度越大,移动相同位移所需时间越短,因交接棒而损失的时间越少,D 正确.答案:ACD预测3 解析:根据Δv =a Δt 可知,a - t 图像与坐标轴围成的面积表示速度变化量,可知手机在t 1时刻速度为正,还没有到最高点,故B 错误;根据Δv =a Δt 可知a ­ t 图像与坐标轴围成的面积表示速度变化量,可知手机在t 2时刻前后速度均为正,运动方向没有发生改变,故C 错误;由图可知t 1~t 2时间内加速度向上不断减小,根据牛顿第二定律得N -mg =ma ,即N =ma +mg .可知t 1~t 2时间内支持力不断减小,t 2~t 3时间内加速度向下,不断增大,根据牛顿第二定律得mg -N =ma ′得N =mg -ma ′,可得支持力还是不断减小,故D 错误;由图可知,手机的加速度某一段时间内等于重力加速度,则手机与手掌没有力的作用,手机可能离开过手掌,故A 正确.答案:A 考点二例2 解析:根据速度—位移关系v 2−v 02=2ax , 当x =0时,车的初速度为v 0=6 m/s , 将x =2 m ,v 2=16 m 2/s 2代入可得a =-5 m/s 2.可知车做匀减速运动,则车的速度减小为零的时间为t =0−6−5s =1.2 s<2 s. 所以该车在2 s 内的位移大小为x =62×1.2 m=3.6 m ,故D 正确,A 、B 、C 错误. 答案:D预测4 解析:由题分析可得图线的函数表达式为x t =1+12t ,即x =t +12t 2,又因为匀变速直线运动中位移公式为x =v 0t +12at 2,根据对应关系得v 0=1 m/s ,a =1 m/s 2>0,v 0与a 方向相同,则质点做匀加速运动,故A 项错误,B 项正确.当t =2 s 时,根据公式v =v 0+at ,求出速度是3 m/s ,故C 项错误.当t =2 s 时,代入表达式x =t +12t 2,可得位移是4 m ,故D 项错误.答案:B预测5 解析:设滑块A 的质量为m ,木板B 的质量为M ,滑块A 与木板B 间的动摩擦因数为μ.由题图2可知,当F =F m =10 N 时,滑块A 与木板B 达到最大共同加速度a m =1ms 2,根据牛顿第二定律有F m =(M +m )a m ,解得M +m =10 kg.当F >10 N 时,A 与B 将发生相对滑动,对A 单独应用牛顿第二定律有F -μmg =ma ,整理得a =Fm -μg .根据题图2解得m =2 kg ,μ=0.4,则M =8 kg ,故A 、D 正确,B 错误;当F =12 N 时,木板B 的加速度为a B =μmg M=1ms 2,故C 错误.答案:AD 素养培优·情境命题情境1 解析:根据题意,对副车乙和主车的运动进行简化分析,如图所示.已知副车长20 m ,由v ­ t 图像可知,副车乙发生的位移为x 1=12×(24.5-15.5)×40 m=180 m ,在这一段时间内,主车做匀速直线运动,主车发生的位移为x 2=(24.5-15.5)×40 m=360 m ,故主车的长度为L =x 2-x 1+20 m =360 m-180 m +20 m =200 m ,故选B 正确.答案:B情境2 解析:v ­ t 图线的斜率表示加速度,由图知t 1~t 2时间内图线斜率小,说明加速度小,由牛顿第二定律a =fm =μmg m=μg ,知t 1~t 2时间内冰壶与冰面间的动摩擦因数小,说明运动员在用毛刷擦冰面;0~t 1和t 2~t 3时间内图线斜率大,动摩擦因数大,说明此时间段运动员没有用毛刷擦冰面,故A 错误;由加速度定义式a =ΔvΔt 知t 1~t 2时间内,冰壶的加速度大小为a =v 1−v2t 2−t 1,故B 错误;v ­ t 图线与坐标轴围的面积表示位移,在t 1~t 2时间内,冰壶的位移大小为x =12(v 1+v 2)(t 2-t 1),故C 正确;根据平均速度的定义式v ̅=xt 知在0~t 3时间内,冰壶的平均速度大小为v̅=x总t总=12(v0+v1)t1+12(v1+v2)(t2−t1)+12v2(t3−t2)t3=(v0−v2)t1+v1t2+v2t32t3,故D错误.答案:C情境3 解析:根据图像可知,t=20 s时b车才出发,20 s时两者间距即为a在0~20 s内的位移;速度—时间图像与坐标轴围成的“面积”表示位移,则Δx=x a=10+402×20m=500 m,故A正确;由图像所围面积可知:0~40 s内a比b多运动的位移S=(10+402×20+12×40×20)m=900 m,故B错误;由a、b图像所围面积可知,60 s时二者的位移之差等于20 s时的位移差,由A选项分析可知,此时b机器人在a机器人的后方,在运动方向上相距500 m,故C错误;速度—时间图像图线的斜率表示加速度,由图像可知:a、b加速时,a图线的斜率小于b图线的斜率,说明b机器人的加速度大于a机器人的加速度,故D正确.答案:AD。

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第1讲功和能课件

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第1讲功和能课件
第一部分
专题突破方略
专题二 能量与动量 第1讲 功和能
真题速练·明考情 核心知识·固双基 命题热点·巧突破 应用创新·提素养
真题速练·明考情
1.(多选)(2022·广东高考)如图所示,载有防疫物资的无人驾驶小
车,在水平MN段以恒定功率200 W、速度5 m/s匀速行驶,在斜坡PQ段
以恒定功率570 W、速度2 m/s匀速行驶.已知小车总质量为50 kg,MN
③摩擦生热是指滑动摩擦生热,静摩擦不会生热.
2.几个重要的功能关系 (1)重力的功等于重力势能的减少量,即WG=-ΔEp. (2)弹力的功等于弹性势能的减少量,即W弹=-ΔEp. (3)合力的功等于动能的变化,即W=ΔEk. (4)重力和系统内弹簧弹力之外的其他力的功等于机械能的变化,即 W其他=ΔE. (5) 系 统 内 一 对 滑 动 摩 擦 力 做 的 功 是 系 统 内 能 改 变 的 量 度 , 即 Q =
v1=
P额=1 200 Tm 300
m/s
=4 m/s,此过程所用时间和上升高度分别为 t1=va11=45 s=0.8 s,h1=2va211
=2×42 5
m=1.6
m,重物以最大速度匀速时,有
vm=PT额=
P额 =1 200 mg 200
m/s
=6 m/s,重物最后以最大加速度做匀减速运动的时间和上升高度分别为
做匀加速上升,当功率达到额定功率时,保持功率不变直到重物达到最
大速度,接着做匀速运动,最后以最大加速度做匀减速上升至平台速度
刚好为零,重物在第一阶段做匀加速上升过程,根据牛顿第二定律可得
a1=
Tm-mg= m
300-20×10 20
m/s2=5
m/s2,

2024高考物理二轮复习第8讲动量定理和动量守恒定律专题训练

2024高考物理二轮复习第8讲动量定理和动量守恒定律专题训练

第8讲动量定理和动量守恒定律一、选择题(每小题6分,共42分)1.(2024海南海口质检)如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,全部的碰撞都是弹性碰撞,且都发生在竖直方向,碰撞时间均可忽视不计。

已知m2=3m1,则A反弹后能达到的高度为( )A.hB.2hC.3hD.4h2.某同学质量为60 kg,在训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓慢驶来的小船上,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上,则( )A.人和小船最终静止在水面上B.该过程人的动量改变量的大小为105 kg·m/sC.船最终速度的大小为0.95 m/sD.船的动量改变量的大小为70 kg·m/s3.在空中相同高度处以相同的速率分别抛出质量相同的三个小球,一个竖直上抛,一个竖直下抛,一个平抛,若不计空气阻力,三个小球从抛出到落地的过程中( )A.三个小球动量的改变量相同B.下抛球和平抛球动量的改变量相同C.上抛球动量改变量最大D.三球落地时的动量相同4.(2024河北石家庄质检)质量分别为m1与m2的甲、乙两球在水平光滑轨道上同向运动,已知它们的动量分别是p1=5 kg·m/s,p2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为8 kg·m/s,则甲、乙两球质量m1与m2的关系可能是( )A.m1=m2B.2m1=m2C.3m1=2m2D.4m1=m25.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙,右侧靠一质量为M 2的物块,今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止起先落下,与半圆槽相切于A 点进入槽内,则以下结论中正确的是( )A.小球在槽内运动的全过程中,小球与半圆槽组成的系统在水平方向动量守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒C.小球离开C 点以后,将做竖直上抛运动D.半圆槽将不会再次与墙接触6.(多选)如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,起先时AB 和C 都静止,当突然烧断细绳时,C 被释放,使C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽视一切摩擦,以下说法正确的是( )A.弹簧伸长过程中C 向右运动,同时AB 也向右运动B.C 与B 碰前,C 与AB 的速率之比为M∶mC.C 与油泥粘在一起后,AB 马上停止运动D.C 与油泥粘在一起后,AB 接着向右运动7.(2024山西太原一模)(多选)如图所示,长为L 的轻杆两端分别固定a 、b 金属球,两球质量均为m,a 放在光滑的水平面上,b 套在竖直固定光滑杆上且离地面高度为√32L,现将b 从图示位置由静止释放,则( )A.在b 球落地前的整个过程中,a 、b 组成的系统水平方向上动量守恒B.从起先到b 球距地面高度为L2的过程中,轻杆对a 球做功为√3-18mgLC.从起先到b 球距地面高度为L2的过程中,轻杆对b 球做功为-√38mgLD.在b 球落地的瞬间,重力对b 球做功的功率为mg √√3gL二、非选择题(共38分)8.(10分)如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能达到C 板的最右端,已知A 、B 、C 质量均相等,木板C 长为L,求:(1)A 物体的最终速度; (2)A 在木板C 上滑行的时间。

2024届高考物理二轮复习专题课件:+电磁感应

2024届高考物理二轮复习专题课件:+电磁感应

【考向】自感、互感
A.如图甲,人造地球卫星经过地面跟踪站上空,地面接收到信号频 率先增大后减小 B.如图乙,A、B两灯均发亮,若断开开关,A灯和B灯都会立即熄灭 C.如图丙,高频感应炉是利用炉外线圈产生的热量使炉内的金属熔 化 D.如图丁,利用该装置验证向心力与角速度的关系时,要保持皮带 连接的两个塔轮半径相同
A.线圈abcd中的电流方向为顺时针B.线圈abcd中的电流
方向为逆时针C.线圈abcd受到的安培力方向与车前行方向
一致D.线圈abcd受到的安培力方向与车前行方向相反
【答案】BC 【详解】AB.当汽车保险杠撞上前面的障碍物C时,电磁缓冲器是磁场相对于保 险杠上的线圈运动,可以反过来以磁场为参考系,则保险杠上的线圈abcd相对于 磁场反方向运动,根据右手定则或楞次定律,可知线圈abcd中的电流方向为逆时 针,故A错误,B正确; CD.根据左手定则可知bc边受到的安培力方向与车前行方向一致,故C正确,D 错误。故选BC。
二、网络构建、知识梳理
“三个定则”“一个定律”的比较
名称 电流的磁效应 磁场对电流的作用
电磁感应
应用的定则或定律 安培定则 左手定则 右手定则 楞次定律
基本现象 运动电荷、电流产生磁场 磁场对运动电荷、电流有作用力 部分导体做切割磁感线运动
闭合回路磁通量变化
自感、互感问题
通电自感和断电自感的比较
B.闭合回路中的感应电动势为 k S1 2S2
C.定值电阻两端的电流大小为 k S1 S2
D.定值电阻两端的电压为
Rk
S1
R
2S2
r
Rr
例2、如图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ, 它们的电阻可忽略不计,在M和P之间接有阻值为R的定值电阻,导体棒ab长 L=0.5m,其电阻为r,与导轨接触良好,整个装置处于方向竖直向上的匀 强磁场中,磁感应强度B=0.4T,现使ab以=10m/s的速度向左做匀速运动.

(新高考适用)2023版高考物理二轮总复习专题2 能量与动量 第2讲 动量 动量守恒定律

(新高考适用)2023版高考物理二轮总复习专题2 能量与动量 第2讲 动量 动量守恒定律

第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a ­t 图像如图(b)所示,S 1表示0到t 1时间内A的a ­t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a ­t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a ­t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty ­t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。

高中物理大二轮物理复习专题目录

高中物理大二轮物理复习专题目录

二轮物理
选择题48分专练(一) 选择题48分专练(二) 实验题15分专练(一) 实验题15分专练(二) 计算题32分专练(一) 计算题32分专练(二) 选考题15分专练(一) 选考题15分专练(二)
第二部分 考前冲刺增分练
二轮物理
小卷冲刺抢分练(一)——(8+2实验) 小卷冲刺抢分练(二)——(8+2实验) 小卷冲刺抢分练(三)——(8+2计算) 小卷冲刺抢分练(四)——(8+2计算) 高考模拟标准练
大二轮专题复习与测试
物理
二轮物理
第一部分 专题一 力与运动 第1讲 物体的平衡 考向一 力学中的平衡问题 考向二 电学中的平衡问题 考向三 平衡中的临界极值问题 第2讲 牛顿运动定律和直线运动 考向一 运动图象的理解及应用 考向二 匀变速直线运动应用规律 考向三 牛顿运动定律的综合应用
专题整合突破
二轮物理
第2讲 电学实验与创新 考向一 电表改装与读数、多用电表原理与使用 考向二 以伏安法测电阻为核心的实验 考向三 以测电源电动势和内阻为核心的实验 考向四 电学创新设计实验
二轮物理
专题七 选考部分 第1讲 (选修3-3) 分子动理论、气体及热力学定律 考向一 热学基础知识与气体实验定律的组合 考向二 热学基础知识、热力学定律与气体定律的组合 第2讲 (选修3-4) 机械振动和机械波 光 电磁波 考向一 振动(或波动)与光的折射、全反射的组合 考向二 光学基础知识与波动(或振动)的组合 考向三 电磁波、光学、波动(或振动)的组合
二轮物理
第三部分 一、物理学史和物理思想方法 (一)高中物理的重要物理学史 (二)高中物理的重要思想方法 二、高考必知的五大解题思想 (一)守恒的思想 (二)等效的思想 (三)分解的思想 (四)对称的思想 (五)数形结合的思想

2023新教材高考物理二轮专题复习专题:牛顿运动定律与直线运动教师用书

2023新教材高考物理二轮专题复习专题:牛顿运动定律与直线运动教师用书

专题二牛顿运动定律与直线运动高频考点·能力突破考点一匀变速直线运动规律的应用1.基本公式v=v0+at,x=v0t+12at2,v2−v02=2ax.2.重要推论v t2=v0+v2=v̅(利用平均速度求瞬时速度);初、末速度平均值vt2=√t02+t22;Δx=aT2(用逐差法测加速度).3.符号法则选定正方向,将矢量运算转化为代数运算.4.解决运动学问题的基本思路例 1 [2022·湖北卷]我国高铁技术全球领先,乘高铁极大节省了出行时间.假设两火车站W和G间的铁路里程为1 080 km,W和G之间还均匀分布了4个车站.列车从W站始发,经停4站后到达终点站G .设普通列车的最高速度为108 km /h ,高铁列车的最高速度为324 km /h .若普通列车和高铁列车在进站和出站过程中,加速度大小均为0.5 m /s 2,其余行驶时间内保持各自的最高速度匀速运动,两种列车在每个车站停车时间相同,则从W 到G 乘高铁列车出行比乘普通列车节省的时间为( )A .6小时25分钟B .6小时30分钟C .6小时35分钟D .6小时40分钟[解题心得]预测1 钢架雪车也被称为俯式冰橇,是2022年北京冬奥会的比赛项目之一.运动员需要俯身平贴在雪橇上,以俯卧姿态滑行.比赛线路由起跑区、出发区、滑行区及减速区组成.若某次运动员练习时,恰好在终点停下来,且在减速区AB 间的运动视为匀减速直线运动.运动员通过减速区时间为t ,其中第一个t 4时间内的位移为x 1,第四个t 4时间内的位移为x 2,则x 2:x 1等于( )A .1∶16B .1∶7C .1∶5D .1∶3预测2 [2022·福建泉州高三联考]如图为某轿车在行驶过程中,试图借用逆向车道超越客车的示意图,图中当两车相距L =4 m 时,客车正以v 1=6 m /s 速度匀速行驶,轿车正以v 2=10 m /s 的速度借道超车.客车长L 1=10 m ,轿车长L 2=4 m ,不考虑变道过程中车速的变化和位移的侧向变化.(1)若轿车开始加速并在3 s内成功超越客车L3=12 m后,才能驶回正常行驶车道,其加速度多大?(2)若轿车放弃超车并立即驶回正常行驶车道,则至少要以多大的加速度做匀减速运动,才能避免与客车追尾?[试解]考点二动力学基本规律的应用动力学两类基本问题的解题思路温馨提示动力学中的所有问题都离不开受力分析和运动分析,都属于这两类基本问题的拓展和延伸.例2 [2022·浙江卷1月]第24届冬奥会在我国举办.钢架雪车比赛的一段赛道如图1所示,长12 m水平直道AB与长20 m的倾斜直道BC在B点平滑连接,斜道与水平面的夹角为15°.运动员从A点由静止出发,推着雪车匀加速到B点时速度大小为8 m/s,紧接着快速俯卧到车上沿BC匀加速下滑(图2所示),到C点共用时5.0 s.若雪车(包括运动员)可视为质点,始终在冰面上运动,其总质量为110 kg,sin 15°=0.26(取g=10 m/s2),求雪车(包括运动员)(1)在直道AB上的加速度大小;(2)过C点的速度大小;(3)在斜道BC上运动时受到的阻力大小.[试解]预测3 (多选)14岁的奥运冠军全红婵,在第14届全运会上再次上演“水花消失术”夺冠.在女子10 m 跳台的决赛中(下面研究过程将全红婵视为质点),全红婵竖直向上跳离跳台的速度为5 m/s,竖直入水后到速度减为零的运动时间与空中运动时间相等,假设所受水的阻力恒定,不计空气阻力,全红婵的体重为35 kg,重力加速度大小为g=10 m/s2,则( )A.跳离跳台后上升阶段全红婵处于失重状态B.入水后全红婵处于失重状态C.全红婵在空中运动的时间为1.5 sD.入水后全红婵受到水的阻力为612.5 N预测4 衢州市2022年5月1日起部分县、区超标电动车不得上道路行驶,新的电动自行车必须符合国标GB17761-2018的标准,新标准规定最高车速不能高于25 km/h,整车质量应当小于或等于55 kg,制动性能要符合如下规定:某人体重m=50 kg,骑着符合新标准、质量M=50 kg的电动自行车在水平路面行驶.电动自行车的刹车过程可简化为匀变速直线运动.(1)当遇到紧急情况时,若他同时使用前后车闸刹车,在干燥路面上该车的最小加速度是多少?此时受到的制动力是多大?(保留两位有效数字)(2)若此人私自改装电瓶输出功率,致使车速超标(其他条件不变),当他以32 km/h速度在雨后的路面上行驶,遇见紧急情况,采取同时使用前后车闸方式刹车,则该车刹车后行驶的最大距离是多少?(3)根据你所学物理知识,分析电动自行车超速超载有什么危害?[试解]考点三连接体问题1.处理连接体问题的常用方法2.连接体问题中常见的临界条件例3 [2022·全国甲卷]如图,质量相等的两滑块P、Q置于水平桌面上,二者用一轻弹簧水平连接,两滑块与桌面间的动摩擦因数均为μ.重力加速度大小为g.用水平向右的拉力F拉动P,使两滑块均做匀速运动;某时刻突然撤去该拉力,则从此刻开始到弹簧第一次恢复原长之前( )A.P的加速度大小的最大值为2μgB.Q的加速度大小的最大值为2μgC.P的位移大小一定大于Q的位移大小D.P的速度大小均不大于同一时刻Q的速度大小[解题心得]预测5 如图所示,将一盒未开封的香皂置于桌面上的一张纸板上,用水平向右的拉力将纸板迅速抽出,香皂盒的移动距离很小,几乎观察不到,这就是大家熟悉的惯性演示实验(示意图如图所示),若香皂盒和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ,重力加速度为g.若本实验中,m1=100 g,m2=5 g,μ=0.2,香皂盒与纸板左端的距离d=0.1 m,若香皂盒移动的距离超过l=0.002 m,人眼就能感知,忽略香皂盒的体积因素影响,g取10 m/s2,为确保香皂盒移动不被人感知,纸板所需的拉力至少是( )A.1.41 N B.1.42 NC.1 410 N D.1 420 N预测6 [2022·全国乙卷]如图,一不可伸长轻绳两端各连接一质量为m的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L.一大小为F的水平恒力作用在轻绳的中点,方向与两球连线垂直.当两球运动至二者相距35L时,它们加速度的大小均为( )A.5F8m B.2F5mC.3F8m D.3F10m预测7 如图所示,在倾角为θ=30°的光滑固定斜面上端系有一劲度系数为k=100 N/m的轻质弹簧,弹簧下端连一个质量为m=8 kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.从t=0时刻开始挡板A以加速度a=1 m/s2沿斜面向下匀加速运动,则:(g=10 m/s2)(1)t=0时刻,挡板对小球的弹力多大?(2)从开始运动到小球与挡板分离所经历的时间为多少?(3)小球向下运动多少距离时速度最大?[试解]素养培优·情境命题实际情境中的直线运动情境1 [2022·山东押题卷]高速公路的ETC电子收费系统如图所示,ETC通道的长度是识别区起点到自动栏杆的水平距离,总长为19.6 m.某汽车以5 m/s的速度匀速进入识别区,ETC用0.3 s的时间识别车载电子标签,识别完成后发出“滴”的一声,汽车又向前行驶了2 s司机发现自动栏杆没有抬起,于是紧急刹车,汽车恰好没有撞杆.已知司机的反应时间和汽车系统的反应时间之和为0.8 s.则刹车的加速度大小约为( )A.2.52 m/s2B.3.55 m/s2C.3.75 m/s2D.3.05 m/s2[解题心得]情境2 驾驶员看见过马路的人,从决定停车,直至右脚刚刚踩在制动器踏板上经过的时间,叫反应时间,在反应时间内,汽车按一定速度匀速行驶的距离称为反应距离;从踩紧踏板(抱死车轮)到车停下的这段距离称为刹车距离;司机从发现情况到汽车完全停下来,汽车所通过的距离叫做停车距离.如图所示,根据图中内容,下列说法中正确的是( )A.根据图中信息可以求出反应时间B.根据图中信息可以求出汽车的制动力C.匀速行驶的速度加倍,停车距离也加倍D.酒后驾车反应时间明显增加,停车距离不变[解题心得]情境3 [2022·浙江6月]物流公司通过滑轨把货物直接装运到卡车中,如图所示,倾斜滑轨与水平面成24°角,长度l1=4 m,水平滑轨长度可调,两滑轨间平滑连接.若货物从倾斜滑轨顶端由静止开始下滑,其与滑轨间的动摩擦因数均为μ=2,货物可视为质点(取9cos 24°=0.9,sin 24°=0.4).(1)求货物在倾斜滑轨上滑行时加速度a1的大小;(2)求货物在倾斜滑轨末端时速度v的大小;(3)若货物滑离水平滑轨末端时的速度不超过2 m/s,求水平滑轨的最短长度l2.[试解]情境4 疫情期间,为了减少人与人之间的接触,一餐厅推出了一款智能送餐机器人进行送餐(如图甲).该款机器人的最大运行速度为4 m/s,加速度大小可调节在1 m/s2≤a≤3 m/s2范围内,要求:送餐过程托盘保持水平,菜碟与托盘不发生相对滑动,机器人到达餐桌时速度刚好为0.现把送餐过程简化为如图乙的直线情境图,已知机器人恰好以最大运行速度v=4 m/s通过O处,O与餐桌A相距x0=6 m,餐桌A和餐桌F相距L=16 m,机器人、餐桌都能看成质点,送餐使用的菜碟与托盘之间的动摩擦因数为μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10 m/s2.(1)在某次从O到餐桌A的过程中,机器人从O开始匀减速恰好到A停下,求机器人在此过程加速度a的大小.(2)完成(1)问中的送餐任务后,机器人马上从A继续送餐到F,若要求以最短时间从A 送餐到F,求机器人运行的最大加速度a m和加速过程通过的位移x加.[试解]专题二 牛顿运动定律与直线运动高频考点·能力突破考点一例1 解析:108 km/h =30 m/s ,324 km/h =90 m/s由于中间4个站均匀分布,因此节省的时间相当于在任意相邻两站间节省的时间的5倍,为总的节省时间,相邻两站间的距离x =1 080×1035m =2.16×105m普通列车加速时间t 1=v1a=300.5 s =60 s加速过程的位移x 1=12at 12=12×0.5×602m =900 m根据对称性可知加速与减速位移相等,可得匀速运动的时间t 2=x −2x 1v=2.16×105−2×90030s =7 140 s同理高铁列车加速时间t ′1=v 1′a=900.5s =180 s加速过程的位移x ′1=12at1′2=12×0.5×1802m =8 100 m根据对称性可知加速与减速位移相等,可得匀速运动的时间t ′2=x −2x 1′v 1′=2.16×105−2×8 10090s =2 220 s相邻两站间节省的时间Δt =(t 2+2t 1)-(t ′2+2t ′1)=4 680 s ,因此总的节省时间Δt 总=5Δt =4 680×5 s=23 400 s =6小时30分,B 正确.答案:B预测1 解析:由题意知,在减速区AB 间的运动视为匀减速直线运动,且最终减为零,将此减速过程由逆向思维,可看作初速度为零的匀加速直线运动,则根据初速度为零的匀加速直线运动,连续相等时间内位移之比为1∶3∶5…可知,x 2∶x 1之比即为初速度为零的匀加速直线中第一个t4时间内的位移与第四个t4时间内的位移之比,即x 2∶x 1=1∶7,故选B.答案:B预测2 解析:(1)设轿车的加速度大小为a ,经过t 1=3 s ,客车和轿车位移分别为s 1、s 2,由运动学公式得s 1=v 1t 1,s 2=v 2t 1+12at 12,s 2=s 1+L 1+L 2+L +L 3,解得a =4 m/s 2.(2)设轿车减速的加速度大小为a ′,经过时间t 2,轿车、客车达到共同速度,则v 2-a ′t 2=v 1,客车和轿车位移分别为s ′1、s ′2,满足s ′2=v 2t 2−12a ′t 22, s ′1=v 1t 2, s ′2=s ′1+L ,解得a ′=2 m/s 2,即轿车至少以2 m/s 2的加速度做匀减速运动,才能避免与客车追尾. 答案:(1)4 m/s 2(2)2 m/s 2考点二例2 解析:(1)设雪车从A →B 的加速度大小为a 、运动时间为t ,根据匀变速直线运动的规律有2al AB =v B 2、v B =at解得t =3 s 、a =83 m/s 2.(2)方法一 由题知雪车从A →C 全程的运动时间t 0=5 s ,设雪车从B →C 的加速度大小为a 1、运动时间为t 1,故t 1=t 0-t ,根据匀变速直线运动的规律有l BC =v B t 1+12a 1t 12v C =v B +a 1t 1代入数据解得a 1=2 m/s 2、v C =12 m/s.方法二 由于雪车在BC 上做匀变速运动,故l BC =v BC ̅̅̅̅·t 1=v B +v C 2(t 0-t )解得v C =12 m/s.(3)方法一 设雪车在BC 上运动时受到的阻力大小为f ,根据牛顿第二定律有mg sin 15°-f =ma 1代入数据解得f =66 N方法二 对雪车在BC 上的运动过程由动量定理有 (mg sin 15°-f )(t 0-t )=mv C -mv B 代入数据解得f =66 N.方法三 对雪车从B →C 由动能定理有(mg sin 15°−f )l BC =12tt t 2−12tt t 2解得f=66 N.答案:(1)83m/s2(2)12 m/s (3)66 N预测3 解析:跳离跳台后上升阶段,加速度向下,则全红婵处于失重状态,A正确;入水后全红婵的加速度向上,处于超重状态,B错误;以向上为正方向,则根据-h=v0t-12gt2,可得t=2 s,即全红婵在空中运动的时间为2 s,C错误;入水时的速度v1=v0-gt=5 m/s-10×2 m/s=-15 m/s,在水中的加速度大小a=0−v1t=7.5 m/s2,方向竖直向上,根据牛顿第二定律可得f=ma+mg=35×10 N+35×7.5 N=612.5 N,D正确.答案:AD预测4 解析:(1)根据匀变速运动公式2ax=t2−t02解得t=t2−t022t=-3.4 m/s2根据牛顿第二定律得:制动力F=(M+m)a=340 N.(2)根据匀变速运动公式2a1x1=v12,2a1x2=v22,x1x2=t12t22联立解得x2=36 m.(3)超速时,加速度不变但刹车距离变大,超载时,质量变大,减速的加速度变小,刹车距离变大.答案:(1)-3.4 m/s2340 N (2)36 m (3)见解析考点三例3 解析:撤去力F后到弹簧第一次恢复原长之前,弹簧弹力kx减小,对P有μmg+kx=ma P,对Q有μmg-kx=ma Q,且撤去外力瞬间μmg=kx,故P做加速度从2μg减小到μg的减速运动,Q做加速度从0逐渐增大到μg的减速运动,即P的加速度始终大于Q的加速度,故除开始时刻外,任意时刻P的速度大小小于Q的速度大小,故P的平均速度大小必小于Q的平均速度大小,由x=v̅t可知Q的位移大小大于P的位移大小,可知B、C错误,A、D正确.答案:AD预测5 解析:香皂盒与纸板发生相对滑动时,根据牛顿第二定律可得μm1g=m1a1解得a1=2 m/s2对纸板,根据牛顿第二定律可得F-μm1g-μ(m1+m2)g=m2a2为确保实验成功,即香皂盒移动的距离不超过l=0.002 m,纸板抽出时香皂盒运动的最大距离为x1=12a1t12纸板运动距离为d+x1=12a2t12纸板抽出后香皂盒运动的距离为x2=12a3t22则l=x1+x2由题意知a1=a3,a1t1=a3t2代入数据联立得F=1.42 N,故B正确,A、C、D错误.答案:B预测6解析:如图可知sin θ=12×3L5L2=35,则cos θ=45,对轻绳中点受力分析可知F=2T cos θ,对小球由牛顿第二定律得T=ma,联立解得a=5F8m,故选项A正确.答案:A预测7 解析:解答本题的关键是要能分析得出板和小球分离时,板对小球的作用力为零;当球的速度最大时,球的加速度为零.(1)因开始时弹簧无形变,故对小球,根据牛顿第二定律得mg sin 30°-F1=ma解得F1=32 N.(2)当挡板和小球分离时,根据牛顿第二定律得mg sin 30°-kx=ma,其中x=12at2解得t=0.8 s,x=0.32 m.(3)当小球的速度最大时,加速度为零,此时mg sin 30°=kx1解得x1=0.4 m.答案:(1)32 N (2)0.8 s (3)0.4 m素养培优·情境命题情境1 解析:设刹车的加速度大小为a,则有x=t0(t1+t2+tt)+t022t代入数据有19.6=5×(0.3+2+0.8)+522a解得a=3.05 m/s2,所以D正确;A、B、C错误.答案:D情境2 解析:图中知道汽车速度,反应距离,根据x=v0t可以求出反应时间,故A 正确;由于不知汽车质量,则无法求出汽车的制动力,故B错误;设停车距离为x,反应时间为t0.则x=t0t0+t022t,可知匀速行驶的速度加倍,停车距离不是简单的加倍,故C错误;除了反应时间,其他条件不变的情况下,根据公式x=t0t0+t022t,酒后驾车反应时间明显增加,停车距离增加,故D错误.答案:A情境3 解析:(1)根据牛顿第二定律mg sin 24°-μmg cos 24°=ma1a1=2 m/s2(2)在倾斜滑轨上运动过程为匀加速直线运动v2=2a1l1v=4 m/s(3)在水平滑轨上的运动过程为匀减速直线运动v12-v2=2a2l2a2=-μgl2=2.7 m答案:(1)2 m/s2(2)4 m/s (3)2.7 m情境4 解析:(1)从O点到A点,由运动公式0-v2=2ax0,解得a=0−v22x0=-422×6m/s2=-43m/s2,机器人在此过程加速度a的大小为43m/s2.(2)要想用时最短,则机器人先以最大加速度加速,然后匀速一段时间,再以最大加速度做减速到零.最大加速度为a m=μg=2 m/s2,加速的位移为x加=v22a m=4 m.答案:(1)43m/s2(2)2 m/s2 4 m。

2023新教材高考物理二轮专题复习专题:力学实验

2023新教材高考物理二轮专题复习专题:力学实验

专题十六力学实验高频考点·能力突破考点一力学基本仪器的使用与读数注意事项:1.游标卡尺在读数时先确定各尺的分度,把数据读成以毫米为单位的,先读主尺数据,再读游标尺数据,最后两数相加.2.游标卡尺读数时不需要估读.3.螺旋测微器读数时,要准确到0.01 mm,估读到0.001 mm,结果若用mm作单位,则小数点后必须保留三位数字.4.游标卡尺在读数时注意区分游标卡尺的精度.5.螺旋测微器在读数时,注意区别整毫米刻度线与半毫米刻度线,注意判断半毫米刻度线是否露出.例1 某同学用50分度的游标卡尺测量一圆柱体工件的长度,如图1所示,则工件的长度为________ mm;用螺旋测微器测量工件的直径如图2所示,则工件的直径为________ mm.[解题心得]预测1 用刻度尺测量遮光条宽度,示数如图所示,其读数为________ cm.预测2 如图甲所示,某同学用弹簧OC和弹簧测力计a、b做“验证力的平行四边形定则”实验.在保持弹簧伸长量及方向不变的条件下:(1)若弹簧测力计a、b间夹角为90°,弹簧测力计a的读数是________ N;(如图乙所示)(2)若弹簧测力计a、b间夹角小于90°,保持弹簧测力计a与弹簧OC的夹角不变,增大弹簧测力计b与弹簧OC的夹角,则弹簧测力计a的读数________、弹簧测力计b的读数________.(选填“变大”“变小”或“不变”)预测 3 (1)某同学用游标卡尺的________(选填“内测量爪”“外测量爪”或“深度尺”)测得一玻璃杯的内高,如图甲所示,则其内高为________ cm.(2)该同学随后又用螺旋测微器测得玻璃杯的玻璃厚度如图乙所示,则厚度为________ mm.(3)该同学用螺旋测微器测得一小球直径如图丙所示,正确读数后得小球直径为1.731 mm,则a=________,b=________.(4)该同学测定一金属杆的长度和直径,示数分别如图丁、戊所示,则该金属杆的长度和直径分别为________ cm和________ mm.考点二纸带类实验综合纸带的三大应用(1)由纸带确定时间:要区别打点计时器打出的计时点与人为选取的计数点之间的区别与联系,若每五个点取一个计数点,则计数点间的时间间隔Δt=0.02×5 s=0.10 s.(2)求解瞬时速度:利用做匀变速直线运动的物体在一段时间内的平均速度等于中间时刻的瞬时速度求打某一点时的瞬时速度,如图甲所示,打点n时的速度v n=x n+x n+12T.(3)用“逐差法”求加速度:如图乙所示,因为a1=x4−x13T2,a2=x5−x23T2,a3=x6−x33T2,所以a=a1+a2+a33=x4+x5+x6−x1−x2−x39T2.当位置间隔数是奇数时,应舍去位置间隔小的数据.例2 [2022·福建押题卷]某实验小组利用如图甲所示的装置,探究加速度与小车所受合外力和质量的关系.(1)下列做法正确的是________;A.实验前应先将木板左端适当垫高,以平衡摩擦力B.实验时应满足砝码桶与砝码总质量远小于小车和车内砝码总质量C.释放小车前应将小车靠近打点计时器,并使纸带尽量伸直D.实验时为了安全应先释放小车再接通打点计时器的电源E.在探究加速度与质量的关系时,应保持拉力不变,即只需要保持砝码桶和砝码总质量不变(2)实验时得到一条如图乙所示的纸带,打点计时器的频率为50 Hz,任意两个计数点间还有四个计时点未画出,由图中数据可计算小车的加速度为________ m/s2.(结果保留两位有效数字)(3)在保持小车和车中砝码质量一定,探究小车的加速度与受到的合外力的关系时,甲、乙两位同学分别得到了如图丙所示的a - F图像,则甲同学的a - F图线不过原点的原因是________________________________________________________________________.[解题心得]预测4 [2022·辽宁押题卷](1)在下列实验中,能用图中装置完成且仅用一条纸带就可以得出实验结论的是________(单选);A.验证小车和重物组成的系统机械能守恒B.探究小车速度随时间变化的规律C.探究小车加速度与力、质量的关系D.探究不同力做功与小车速度变化的关系(2)某次实验中按规范操作打出了一条纸带,其部分纸带如下图.已知打点计时器接在频率为50 Hz的交流电源上,纸带左端接小车,请根据图中纸带判断其做的是________(填“匀速”“匀变速”或“加速度变化的变速”)运动,此次实验中打点计时器打下A点时小车的速度为________m/s;(保留两位有效数字)(3)如下图所示,在水平气垫导轨上用光电门记录数据的方式做“验证动量守恒定律”实验,测量滑块A的质量记为m1,测量滑块B的质量记为m2,测量滑块A上的遮光条宽度如下图所示,其宽度d1=________cm,测得滑块B上的遮光条宽度为d2.滑块A从右向左碰静止的滑块B,已知m1>m2,光电门计时器依次记录了三个遮光时间Δt1、Δt2、Δt3,验证动量守恒需要满足的关系式为____________________________(用测量的物理量符号表示).考点三“弹簧”“橡皮条”“碰撞”类实验例3 [2022·浙江6月](1)①“探究小车速度随时间变化的规律”实验装置如图1所示,长木板水平放置,细绳与长木板平行.图2是打出纸带的一部分,以计数点O为位移测量起点和计时起点,则打计数点B时小车位移大小为________ cm.由图3中小车运动的数据点,求得加速度为________ m/s2(保留两位有效数字).②利用图1装置进行“探究加速度与力、质量的关系”的实验,需调整的是________(多选).A.换成质量更小的车B.调整长木板的倾斜程度C.把钩码更换成砝码盘和砝码D.改变连接小车的细绳与长木板的夹角(2)“探究求合力的方法”的实验装置如图4所示,在该实验中①下列说法正确的是________(单选).A.拉着细绳套的两只弹簧秤,稳定后读数应相同B.在已记录结点位置的情况下,确定一个拉力的方向需要再选择相距较远的两点C.测量时弹簧秤外壳与木板之间不能存在摩擦D.测量时,橡皮条、细绳和弹簧秤应贴近并平行于木板②若只有一只弹簧秤,为了完成该实验至少需要________(选填“2”“3”或“4”)次把橡皮条结点拉到O.[解题心得]例4 [2022·全国甲卷]利用图示的实验装置对碰撞过程进行研究.让质量为m1的滑块A 与质量为m2的静止滑块B在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后A和B的速度大小v1和v2,进而分析碰撞过程是否为弹性碰撞.完成下列填空:(1)调节导轨水平.(2)测得两滑块的质量分别为0.510 kg和0.304 kg.要使碰撞后两滑块运动方向相反,应选取质量为________ kg的滑块作为A.(3)调节B的位置.使得A与B接触时,A的左端到左边挡板的距离s1与B的右端到右边挡板的距离s2相等.(4)使A以一定的初速度沿气垫导轨运动,并与B碰撞,分别用传感器记录A和B从碰撞时刻开始到各自撞到挡板所用的时间t1和t2.(5)将B放回到碰撞前的位置,改变A的初速度大小,重复步骤(4).多次测量的结果如下表所示.(6)表中的k2=________(保留2位有效数字).的平均值为________(保留2位有效数字).(7)v1v2判断.若两滑块的碰撞(8)理论研究表明,对本实验的碰撞过程,是否为弹性碰撞可由v1v2为弹性碰撞,则v1的理论表达式为________(用m1和m2表示),本实验中其值为________(保留v22位有效数字);若该值与(7)中结果间的差别在允许范围内,则可认为滑块A与滑块B在导轨上的碰撞为弹性碰撞.[解题心得]预测 5 某兴趣小组同学想探究橡皮圈中的张力与橡皮圈的形变量是否符合胡克定律,若符合胡克定律,则进一步测量其劲度系数(圈中张力与整圈形变量之比).他们设计了如图甲所示实验:橡皮圈上端固定在细绳套上,结点为O,刻度尺竖直固定在一边,0刻度与结点O水平对齐,橡皮圈下端悬挂钩码,依次增加钩码的个数,分别记录下所挂钩码的总质量m 和对应橡皮圈下端P的刻度值x,如下表所示:(1)请在图乙中,根据表中所给数据,充分利用坐标纸,作出m - x图像;(2)作出m - x图像后,同学们展开了讨论:甲同学认为:这条橡皮圈中的张力和橡皮圈的形变量基本符合胡克定律;乙同学认为:图像的斜率k即为橡皮圈的劲度系数;丙同学认为:橡皮圈中的张力并不等于所挂钩码的重力;……请参与同学们的讨论,并根据图像数据确定:橡皮圈不拉伸时的总周长约为______ cm,橡皮圈的劲度系数约为________ N/m(重力加速度g取10 m/s2,结果保留三位有效数字).(3)若实验中刻度尺的0刻度略高于橡皮筋上端结点O,则由实验数据得到的劲度系数将________(选填“偏小”“偏大”或“不受影响”);若实验中刻度尺没有完全竖直,而读数时视线保持水平,则由实验数据得到的劲度系数将________(选填“偏小”“偏大”或“不受影响”).预测 6 某研究小组做“探究两个互成角度的力的合成规律”实验,所用器材有:方木板一块、白纸、量程为5 N的弹簧测力计两个、橡皮条(带两个较长的细绳套)、小圆环、刻度尺、三角板、图钉(若干个).主要实验步骤如下:a.橡皮条的一端与轻质小圆环相连,另一端固定;b.用手通过两个弹簧测力计共同拉动小圆环,小圆环运动至O点,记下两弹簧测力计的读数F1和F2及两细绳套的方向;c.用一个弹簧测力计将小圆环拉到O点,记下弹簧测力计的读数F及细绳套的方向;d.在白纸上做出力F、F1和F2的图示,猜想三者的关系,并加以验证.(1)b 、c 步骤中将小圆环拉到同一位置O 的目的是________________________.(2)某次操作后,在白纸上记录的痕迹如图丁所示,请你在图丁中完成步骤d.预测7 [2022·北京押题卷]如图1所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球碰撞前后的动量关系.图1中的O 点为小球抛出点在记录纸上的垂直投影.实验时,先使A 球多次从斜轨上位置P 静止释放,找到其平均落地点的位置E .然后,把半径相同的B 球静置于水平轨道的末端,再将A 球从斜轨上位置P 静止释放,与B 球相碰后两球均落在水平地面上,多次重复上述A 球与B 球相碰的过程,分别找到碰后A 球和B 球落点的平均位置D 和F .用刻度尺测量出水平射程OD 、OE 、OF .测得A 球的质量为m A ,B 球的质量为m B .图1(1)实验中,通过测量小球做平抛运动的水平射程来代替小球碰撞前后的速度.①实验必须满足的条件有________.A .两球的质量必须相等B .轨道末端必须水平C .A 球每次必须从轨道的同一位置由静止释放②“通过测量小球做平抛运动的水平射程来代替小球碰撞前后的速度”可行的依据是________________.A.运动过程中,小球的机械能保持不变B .平抛运动的下落高度一定,运动时间相同,水平射程与速度大小成正比(2)当满足表达式__________________时,即说明两球碰撞中动量守恒;如果再满足表达式________________时,则说明两球的碰撞为弹性碰撞. (用所测物理量表示)(3)某同学在实验时采用另一方案:使用半径不变、质量分别为16m A 、13m A 、12m A 的B 球.将A 球三次从斜轨上位置P 静止释放,分别与三个质量不同的B 球相碰,用刻度尺分别测量出每次实验中落点痕迹距离O 点的距离OD 、OE 、OF ,记为x 1、x 2、x 3.将三组数据标在x 1 - x 3图中.从理论上分析,图2中能反映两球相碰为弹性碰撞的是________.图2考点四力学其他实验例 5 某实验小组的同学利用如图甲所示的实验装置完成了“探究向心力与线速度关系”的实验,将小球用质量不计长为L的细线系于固定在铁架台上的力传感器上,小球的下端有一长度极短、宽度为d的挡光片,测得小球的直径为D,重力加速度用g表示.请回答下列问题:(1)用游标卡尺测量挡光片的宽度如图乙所示,则挡光片的宽度为________mm;如果挡光片经过光电门时的挡光时间为10 ms,则小球通过光电门时的速度大小为v=________m/s(结果保留3位有效数字).(2)小球通过光电门时力传感器的示数为F0,改变小球释放点的高度,多次操作,记录多组F0、v的数据,作出F0-v2的图像,如果图线的斜率为k,则小球(含挡光片)的质量为________;向心力大小为F=________.(用已知物理量的符号表示)[解题心得]预测8 用如图甲所示装置研究平抛运动的轨迹.将白纸和复写纸对齐重叠并固定在竖直的木板上.钢球沿斜槽PQ滑下后从Q点飞出,落在竖直挡板MN上.由于竖直挡板与竖直木板的夹角略小于90°,钢球落在挡板上时,钢球侧面会在白纸上挤压出一个痕迹点.每次将竖直挡板向右平移相同的距离L,从斜槽上同一位置由静止释放钢球,如此重复,白纸上将留下一系列痕迹点.(1)实验前需要检查斜槽末端是否水平,正确的检查方法是______________________.(2)以平抛运动的起始点为坐标原点,水平向右为x轴正方向,竖直向下为y轴正方向建立坐标系.将钢球放在Q点,钢球的________(选填“最右端”“球心”或“最下端”)对应白纸上的位置即为坐标原点.(3)实验得到的部分点迹a、b、c如图乙所示,相邻两点的水平间距均为L,ab和ac的竖直间距分别是y1和y2,当地重力加速度为g,则钢球平抛的初速度大小为________,钢球运动到b点的速度大小为_______________________________________________________.预测9 [2022·济南市测评]某实验小组在实验室用单摆做测定重力加速度的实验,实验装置如图甲所示.(1)摆球的直径用螺旋测微器测出,如图乙所示,其读数为________mm.(2)正确操作测出单摆完成n次全振动的时间为t,用毫米刻度尺测得摆线长为L,螺旋测微器测得摆球直径为d.用上述测得量写出重力加速度的表达式:g=________________________________________________________________________.(3)某同学测得的g值比当地的重力加速度偏小,可能原因是________.A.计算时将L当成摆长B.测摆线长时摆线拉得过紧C.开始计时时,秒表按下过晚D.实验中误将30次全振动计为29次素养培优·创新实验1.力学创新型实验的特点(1)以基本的力学模型为载体,依托运动学规律和牛顿运动定律设计实验.(2)将实验的基本方法——控制变量法、处理数据的基本方法——图像法、逐差法融入到实验的综合分析之中.2.创新实验题的解法(1)根据题目情境,提取相应的力学模型,明确实验的理论依据和实验目的,设计实验方案.(2)进行实验,记录数据,应用原理公式或图像法处理实验数据,结合物体实际受力情况和理论受力情况对结果进行误差分析.情境 1 [2022·山东卷]在天宫课堂中、我国航天员演示了利用牛顿第二定律测量物体质量的实验.受此启发,某同学利用气垫导轨、力传感器、无线加速度传感器、轻弹簧和待测物体等器材设计了测量物体质量的实验,如图甲所示.主要步骤如下:①将力传感器固定在气垫导轨左端支架上,加速度传感器固定在滑块上;②接通气源,放上滑块,调平气垫导轨;③将弹簧左端连接力传感器,右端连接滑块.弹簧处于原长时滑块左端位于O点,A点到O点的距离为5.00 cm,拉动滑块使其左端处于A点,由静止释放并开始计时;④计算机采集获取数据,得到滑块所受弹力F、加速度a随时间t变化的图像,部分图像如图乙所示.回答以下问题(结果均保留两位有效数字):(1)弹簧的劲度系数为________ N/m.(2)该同学从图乙中提取某些时刻F与a的数据,画出a-F图像如图丙中Ⅰ所示,由此可得滑块与加速度传感器的总质量为________kg.(3)该同学在滑块上增加待测物体,重复上述实验步骤,在图丙中画出新的a-F图像Ⅱ,则待测物体的质量为________kg.[解题心得]情境 2 [2022·邯郸二模]如图所示的实验装置可以测量物块与长木板间的动摩擦因数.把长木板一端放在水平面上,另一端支撑起来形成一个斜面.物块沿斜面加速下滑的过程中先后经过光电门A和光电门B.如果测得物块上挡光片宽度为d,物块经过光电门A、B 时挡光片的挡光时间分别为Δt1和Δt2,已知当地重力加速度为g.(1)要测出物块与长木板间的动摩擦因数,需要测量出斜面的倾角θ以及光电门A、B之间的距离L.(2)计算物块沿斜面下滑的加速度a的运动学公式是a=________________.(3)物块与斜面间的动摩擦因数μ=________________.[解题心得]情境 3 [2022·河南焦作高一联考]某实验小组利用如图甲所示装置测定小车在斜面上下滑时的加速度,实验开始时,小车静止在A点,光电门位于O点,AO间距离为l0.已知小车上挡光片的宽度为d,且d≪l0.(1)释放小车,小车由静止开始下滑,下滑过程中通过位于O点处的光电门,由数字计时器记录挡光片通过光电门的时间Δt.可由表达式v=________得到小车通过光电门的瞬时速度.(2)将光电门向下移动一小段距离x后,重新由A点释放小车,记录挡光片通过光电门时数字计时器显示的时间Δt和此时光电门与O点间距离x.(3)重复步骤(2),得到若干组Δt和x的数值.(4)在1-x坐标系中描点连线,得到如图乙所示直线,其斜率大小为k,纵轴截距为b,(Δt)2则小车加速度的表达式为a=________,初始时AO间距离l0=________.(用d、k、b表示)[解题心得]情境 4 [2022·全国冲刺卷]为准确测量某弹簧的劲度系数,某探究小组设计了如下实验,实验装置如图甲所示,其原理图如图乙所示.角度传感器与可转动的“T”形螺杆相连,“T”形螺杆上套有螺母,螺母上固定有一个力传感器,弹簧的上端挂在力传感器下端挂钩上,另一端与铁架台底座的固定点相连.当“T”形螺杆转动时,角度传感器可测出螺杆转动的角度,力传感器会随着“T”形螺杆旋转而上下平移,弹簧长度也随之发生变化.实验过程中,弹簧始终在弹性限度内.(1)已知“T”形螺杆向某一方向旋转10周(10×360°)时,力传感器上移40.0 mm,则在角度传感器由0增大到270°的过程中,力传感器向上移动的距离为________ mm.(保留一位小数)(2)该探究小组操作步骤如下:①旋转螺杆使初状态弹簧长度大于原长;②记录初状态力传感器示数F0、以及角度传感器示数θ0;③旋转“T”形螺杆使弹簧长度增加,待稳定后,记录力传感器的示数F n,角度传感器的示数θn;④多次旋转“T”形螺杆,重复步骤③的操作;⑤以力传感器的示数F为纵坐标、角度传感器的示数θ为横坐标,由实验数据描绘出F - θ图像,则该图像可能为________.(3)若图像的斜率为2.5×10-4N/°,则该弹簧的劲度系数k=________ N/m.(结果保留三位有效数字)[解题心得]专题十六力学实验高频考点·能力突破考点一例1 解析:根据游标卡尺读数规则可知工件的长度为21 mm+0.02 mm×36=21.72 mm;根据螺旋测微器读数规则可知工件的直径为4 mm+0.01 mm×30.0=4.300 mm.答案:21.72 4.300预测1 解析:读数时要注意分度值是1 mm,要估读到分度值的下一位.答案:1.50 (1.49~1.51均可)预测2 解析:(1)由图乙所示弹簧测力计可知,其分度值为0.1 N,弹簧测力计a的读数是3.50 N;(2)若弹簧测力计a、b间夹角小于90°,保持弹簧测力计a与弹簧OC的夹角不变,增大弹簧测力计b与弹簧OC的夹角,如图所示,则可知弹簧测力计a的示数变小,b的示数变大.答案:(1)3.50 (3.48~3.52) (2)变小变大预测3 解析:(1)因需测量的是玻璃杯的内高即深度,所以要用游标卡尺的深度尺测量,根据图甲可知,游标卡尺主尺上的整毫米数为100 mm,游标尺的精确度为0.1 mm,且第3条刻度线(不计0刻度线)与主尺上的刻度线对齐,则玻璃杯的内高为100 mm+0.1 mm×3=100.3 mm=10.03 cm.(2)螺旋测微器的读数规则:测量值=固定刻度读数(注意半毫米刻度线是否露出)+精确度(0.01 mm)×可动刻度读数(一定要估读),由图乙可知玻璃厚度为2.5 mm +0.01 mm×26.0=2.760 mm.(3)因1.731 mm=1.5 mm+0.01 mm×23.1,由螺旋测微器读数规则知a=20,b=0.(4)由图丁所示可得金属杆的长度L=60.10 cm.由图戊知,此游标尺为50分度,游标尺上第10条刻度线(不计0刻度线)与主尺上的刻度线对齐,则该金属杆直径d =4 mm+0.02×10 mm=4.20 mm.答案:(1)深度尺10.03 (2)2.760 (3)20 0 (4)60.10 4.20考点二例2 解析:(1)为了使小车所受的合外力等于拉力,实验前应该平衡摩擦力,故A 正确;因为有拉力传感器,小车受到的拉力的大小可以直接读出,故无需让砝码桶和砝码的质量远小于小车和车内砝码的质量,B 错误;为了使纸带上能尽可能多打点,使其得到充分的利用,故释放小车前应将小车靠近打点计时器,纸带伸直是为了尽量减小纸带与限位孔间的摩擦,故C 正确;凡是使用打点计时器的实验,都应该先接通电源,让打点计时器稳定运行后再释放纸带(小车),故D 错误;在探究加速度与质量的关系时,应保持拉力不变,即需要保持拉力传感器的示数不变,故E 错误.(2)由题意知T =0.1 s ,采用逐差法求加速度,可得a =BD −OB (2T )2=2.4 m/s 2;(3)由甲同学的a - F 图像可知,拉力传感器的示数F =0时,小车已经有了加速度,可能原因是平衡摩擦力过度,木板的倾角过大.答案:(1)AC (2)2.4 (3)平衡摩擦力过度,木板的倾角过大预测4 解析:(1)验证小车和重物组成的系统机械能守恒,需要测量小车和重物的质量,A 错误;探究小车速度随时间变化的规律,仅需要一条纸带即可得出实验结论,B 正确;探究小车加速度与力、质量的关系,还需知道二者的质量,C 错误;探究不同力做功与小车速度变化的关系,需要知道二者的质量,D 错误.(2)根据Δx =aT 2,T 均相等,即只要满足Δx 均相等即可满足运动为匀变速运动,根据图像可知Δx 均为0.1 cm ,则该运动为匀变速运动.小车的速度为v =(1.0+1.1)×10−22×0.02 m/s =0.53 m/s.(3)游标卡尺读数为1 cm +0.02×0 mm=1 cm =1.000 cm要验证动量守恒定律,即验证碰撞前的动量和碰撞后的动量相等,即m 1v 1=m 2v 2+m 1v 3故有m 1d 1Δt 1=m 2d 2Δt 2+m 1d1Δt 3 答案:(1)B (2)匀变速 0.52~0.54 (3)1.000 cm ~1.010 cm 均可m 1d 1Δt 1=m 2d 2Δt 2+m 1d1Δt 3 考点三 例3 解析:(1)①由刻度尺的读数规则可知,打下计数点B 时小车的位移大小为x 2=6.20 cm ;连接图3中的点,由斜率可知加速度a =1.9 m/s 2;②利用图1装置进行“探究加速度与力、质量的关系”的实验时,为减小实验误差,应使连接小车的细绳与长木板平行,D 错误;实验时应将钩码更换成砝码盘和砝码,应保证小车的质量远大于砝码以及砝码盘的总质量,因此不能换成质量更小的小车,A错误,C正确;实验时应将长木板的右端适当垫高以平衡摩擦力,B正确.(2)①“探究求合力的方法”时不用保证两弹簧秤的读数相同,A错误;在已记录结点位置的情况下,确定一个拉力的方向需要再选择与结点相距较远的一点,B错误;实验时,弹簧秤外壳与木板之间的摩擦不影响实验的结果,C错误;为了减小实验误差,实验时,应保证橡皮条、细绳和弹簧秤贴近并平行于木板,D正确.②如果只有一个弹簧秤,应先后两次将弹簧秤挂在不同的细绳套上,然后将结点拉到同一位置O,并保证两次两分力的方向不变;再将弹簧秤挂在一个细绳套上,将结点拉到位置O,因此为了完成实验至少需要3次把橡皮条的结点拉到O.答案:(1)①6.20±0.05 1.9±0.2②BC(2)①D②3例 4 解析:(2)在一动一静的弹性碰撞中,质量小的滑块碰撞质量大的滑块才能反弹,故应选质量为0.304 kg的滑块作为A.(6)滑块A、B碰后的速度v1=s1t1、v2=s2t2,因s1=s2,故有v1v2=t2t1,则k2=0.210.67≈0.31.(7)v1v2的平均值k̅=2×0.31+3×0.335≈0.32.(8)设滑块A碰前的速度为v0,若为弹性碰撞,则有:{v1v0=−v1v1+v2v2①12v1v02=12v1v12+12v2v22②联立①②得:v1=m2−m1m1+m2v0,v2=2m1v0m1+m2则v1v2=m2−m12m1=0.510−0.3042×0.304≈0.34.答案:(2)0.304 (6)0.31 (7)0.32(8)m2−m12m10.34预测5 解析:(1)描点作出m - x图像如图所示(2)由m - x 图像可知,橡皮圈不拉伸时P 点距离O 点的距离约为5.20 cm (5.10 cm ~5.40 cm),则橡皮圈的总周长约为10.40 cm (10.20 cm ~10.80 cm).由m - x 图像可知,橡皮圈的劲度系数,则有k =ΔmgΔx =120×10−3×10(7.40−5.20)×10−2N/m =54.5 N/m.(3)若实验中刻度尺的0刻度略高于橡皮筋上端结点O ,则由实验数据得到的劲度系数将不受影响,因为计算劲度系数时考虑的是橡皮筋的伸长量而不是长度.若实验中刻度尺没有完全竖直,而读数时视线保持水平,会使读数偏大,则由实验数据得到的劲度系数将偏小.答案:(1)见解析 (2)10.40 54.5 (3)不受影响 偏小预测6 解析:(1)b 、c 步骤中将小圆环拉到同一位置O 的目的是保证两次操作力的作用效果相同;(2)在白纸上画出各力的大小及方向,并用表示F 1、F 2的线段为邻边作平行四边形,比较其对角线和表示F 的线段是否在实验误差允许范围内相等.答案:(1)保证两次操作力的作用效果相同 (2)见解析预测7 解析:(1)①为防止碰后小球A 反弹,应使A 的质量大于B 的质量,A 错误;为保证小球做平抛运动,轨道末端必须水平,故B 正确;为保证小球A 到轨道末端时的速度相等,A 球每次必须从轨道的同一位置由静止释放,故C 正确.故选BC.②小球做平抛运动的过程,有h =12gt 2,x =vt ,整理得t = √2h g ,x =v √2hg ,发现平抛运动的下落高度一定,运动时间相同,水平射程与速度大小成正比.故选B.(2)因为可用小球做平抛运动的水平射程来代替小球抛出时的速度,根据动量守恒有m A v 0=m A v 1+m B v 2 m A OE =m A OD +m B OF若碰撞过程为弹性碰撞,则机械能守恒,有12m A v 02=12v v v 12+12vvv 22即m A OE 2=m A OD 2+m B OF 2(3)因为碰撞前,球A 的速度不变,则球A 单独落地时的x 2一直不变. 根据m A x 2=m A x 1+m B x 3。

2023届高考物理二轮专题复习课件:光学

2023届高考物理二轮专题复习课件:光学
等于光束a的强度D. 光束c的强度小于O点处折射光束OP的强度
真题再现
4.(2020浙江.13)如图所示,圆心为O、半径为R的半圆形玻璃砖置于水
平桌面上,光线从P点垂直界面入射后,恰好在玻璃砖圆形表面发生全反
射;当入射角θ=60°时,光线从玻璃砖圆形表面出射后恰好与入射光
平行。已知真空中的光速为c,则(
)A.玻璃砖的折射率为1.5B.OP之间
的距离为
为30°
2
3
C.光在玻璃砖内的传播速度为 D.光从玻璃到空气的临界角
2
3
真题再现
5.(2019浙江.14)波长为λ1和λ2的两束可见光入射到双缝,在光屏上
观察到干涉条纹,其中波长为λ1的光的条纹间距大于波长为λ2的条纹间
距.则(下列表述中,脚标“1”和“2”分别代表波长为λ1和λ2的光所
D.光斑 P 移动距离 x 与水面下降距离 h 间关系满足 x=12h
根据题意画出光路图,由图可看出 OO′=h,AB=
sin α
3
x,由 n=sin β,可知 sin β=5,则 β=37°,由几何
关系可知 O′B=htan α,O′A =htan β,则 AB=
7
7
O′B-O′A=12h,即 x=12h,D 正确;
点,经折射后在水槽底部形成一光斑P.已知入射角α=53°,水的折射率
=
4
,真空中光速c=3.0×108
3
m/s,打开出水口放水,则光斑在底面移
动,下列说法正确的是( D )
A.激光在水中传播的速度v=4.0×108 m/s
B.仅增大入射角α,激光能在水面发生全反射
C.光斑P移动的速度大小保持不变
7
两种频率的细激光束的

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第2讲动量’量守恒定律课件

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第2讲动量’量守恒定律课件

(D )
【解析】 设 t 时间内有体积为 V 的水打在钢板上,则这些水的质
量 m=ρV=ρSvt=14πd2ρvt,以这部分水为研究对象,它受到钢板的作用 力为 F,以水运动的方向为正方向,由动量定理得 Ft=0-mv,解得 F =-14πd2ρv2,水流速度 v=QS=π4dQ2,得 F=-4πρdQ22,根据牛顿第三定律, 钢板受到水的冲力 F′=4πρdQ22,故选 D.
1.(2022·辽宁押题卷)气垫鞋指的是鞋底上部和鞋底下部之间设置 有可形成气垫的储气腔的鞋子,通过气垫的缓冲减小地面对脚的冲击 力.某同学的体重为G,穿着平底布鞋时双脚竖直着地过程中与地面的 作用时间为t0.
受到地面的平均冲击力大小为2.4G.若脚着地前的速度保持不变,
该同学穿上某型号的气垫鞋时,双脚竖直着地过程中与地面的作用时间
(2)碰撞模型 ①可熟记一些特例:例如“一动一静”模型中,两物体发生弹性正 碰后的速度满足:v1′=mm11-+mm22v1,v2′=m12+m1m2v1. ②熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞 后交换速度;当 m1≫m2,且 v2=0 时,碰后质量大的速率不变,质量小 的速率为 2v1;当 m1≪m2,且 v2=0 时,碰后质量小的球原速率反弹.
3 . (2022·北 京 房 山 区 二 模 )2022 年 2 月 北 京 举 办 了 第 24 届 冬 季 奥 运 会,苏翊鸣夺得男子单板滑雪大跳台项目金牌,成为中国首个单板滑雪 奥运冠军.图甲是一观众用手机连拍功能拍摄苏翊鸣从起跳到落地的全 过程的合成图.图乙为首钢滑雪大跳台的赛道的示意图,分为助滑区、 起跳台、着陆坡和终点四个部分,运动员从一百多米的助滑跑道滑下, 腾空高度平均可达7 m,落地前的速度与着陆坡之间有一定的夹角.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考物理二轮复习专题(一)各种性质的力和物体的平衡考点透视1.力是物体间的相互作用,力是矢量,力的合成和分解。

例题1.(06广东模拟)如图1-2所示是山区村民用斧头劈柴的剖面图,图中BC 边为斧头背,AB 、AC 边是斧头的刃面。

要使斧头容易劈开木柴,则( )A .BC 边短一些,AB 边也短一些B .BC 边长一些,AB 边短一些C .BC 边短一些,AB 边长一些D .BC 边长一些,AB 边也长一些解析:设斧头所受的重力与向下的压力的合力为F ,按照力的作用效果将力F 分解为F 1和F 2如图1-3所示。

由几何关系可知:BC AB F F =1 ,所以F BCAB F =1。

显然BC 边越短,AB 边越长,越容易劈开木柴。

答案:C 。

点拨:将一个已知力进行分解,从理论上讲可以有无数个解,但实际求解时常用两种方法:正交分解和将力按照效果进行分解。

2.形变和弹力、胡克定律例题2.(05全国卷Ⅲ)如图1-4所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B 。

它们的质量分别为m A 、m B ,弹簧的劲度系数为k , C 为一固定挡板。

系统处于静止状态。

现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求从开始到物块B 刚要离开C 时物块A 的位移d 。

(重力加速度为g)。

解析:用x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知1sin kx g m A =θ 用x 2表示B 刚要离开C 时弹簧的伸长量,则:2sin kx g m B =θ 由题意得: d =x 1+ x 2 解得:d =kg m m B A θsin )(+ 点拨:两个用弹簧相连的物体,在相对运动过程中,发生的相对位移大小等于弹簧形变量的变化。

因此求出初末两个状态时弹簧的形变量是解决这类问题的关键。

3.静摩擦 最大静摩擦 滑动摩擦 滑动摩擦定律例题3.(06全国卷Ⅱ)如图1-5所示,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的。

已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m ,滑轮的质量、滑轮轴上的摩擦都不计,若用一水平向右的力F 拉P 使它做匀速运动,则F 的大小为( )A .4μmgB .3μmgC .2μmgD .μmg解析:设绳中张力为T ,对物块Q 和P 分别受力分析如图1-6所示。

因为它都做匀速运动,所以所受合外力均为零。

对Q 有:T =f 1=μmg对P 有:f 2=2μmg F = f 2+T + f 1解得:F =4μmg答案:A点拨:当两物体间相对滑动时产生的摩擦为滑动摩擦,其方向与两者间的相对运动方向相反,大小与该接触面的正压力成正比。

4. 滑动摩擦定律和多物体参与平衡问题例题4.(08全国卷II )如图1-7所示, 一固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑, A 与B 的接触面光滑. 已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍, 斜面倾角为α. B 与斜面之间的动摩擦因数是A. αtan 32B. αcot 32 C. αtan D. αcot 解析:对AB 这一系统受力分析,如图1-8所示,若设B 与斜面之间动摩擦因数为μ,它们的质量为m ,对该系统受力分析,由摩擦定律与平衡条件得:ααμαμsin 2cos 2cos mg mg mg =+由此可得:αμtan 32=答案:B点拨:把小物块A 和B 看做整体,进行受力分析,然后抓住整体受力特点,根据滑动摩擦定律写出AB 整体受到的摩擦力大小,列平衡方程,是突破多物体参与的平衡问题的关键,这类题能很好考查考生基础知识的掌握与基本能力,复习时应引起注意。

5.共点力作用下物体的平衡例题5.(07广东)如图1-7所示,在倾角为θ的固定光滑斜面上,质量为m 的物体受外力F 1和F 2的作用,F 1方向水平向右,F 2方向竖直向上。

若物体静止在斜面上,则下列关系正确的是( )A .F 1sin θ+F 2cos θ=mg sin θ,F 2≤mgB .F 1cos θ+F 2sin θ=mg sin θ,F 2≤mgC .F 1sin θ-F 2cos θ=mg sin θ,F 2≤mgD .F 1cos θ-F 2sin θ=mg sin θ,F 2≤mg解析:物体受力分析如图1-8所示,以斜面方向和垂直于斜面方向建立直角坐标系,将这些力正交分解。

由物体平衡条件可知:F 1cos θ+F 2sin θ=mg sin θ,而物体要静止在斜面上,必须满足F 2≤mg答案:B点拨:当物体受力个数较多时,可根据具体情况合理地建立坐标系,将物体所受的所有外力进行正交分解,然后对两个方向分别列式求解。

这是解与力学相关问题的基本方法。

应训练掌握。

1. 重力的概念,弹力、摩擦力的方向判定及大小计算。

2. 力的合成与分解的灵活应用。

3. 受力分析和利用共点力的平衡条件解决实际问题的能力。

4. 带电粒体在电磁场中的平衡条件及棒在磁场中的平衡。

5. 整体法与隔离法在受力分析中的灵活应用。

6. 信息提炼,条件转换及过程关联。

例题1. (07北京模拟)木块A 、B 分别重50 N 和60 N ,它们与水平地面之间的动摩擦因数均为0.25;夹在A 、B 之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m ,系统置于水平地面上静止不动。

现用F =1 N 的水平拉力作用在木块B上.如图1-9所示.力F 作用后( )A .木块A 所受摩擦力大小是12.5 NB .木块A 所受摩擦力大小是11.5 NC .木块B 所受摩擦力大小是9 ND .木块B 所受摩擦力大小是7 N本题简介:本题考查了胡克定律,静摩擦,物体平衡条件。

难度:较易解析:未加F 时,木块A 在水平面内受弹簧的弹力F 1及静摩擦力F A 作用,且F 1=F A =kx =8N ,木块B 在水平面内受弹簧弹力F 2和静摩擦力F B 作用,且F 2=F B =kx =8N ,在木块B 上施加F =1N 向右拉力后,由于F 2+F <μG B ,故木块B 所受摩擦力仍为静摩擦力,其大小F /B =F 2+F =9N ,木块A 的受力情况不变。

答案:C反思:摩擦力是高考中的一个热点,同时也是学习中的一个难点。

求解摩擦力时,首先要判断该处是滑动摩擦还是静摩擦,而静摩擦力的大小由物体所受外力和运动状态决定的。

所以在解题时要特别注意的。

例题2.(08江苏)一质量为M 的探空气球在匀速下降,若气球所受浮力F 始终保持不变,气球在运动过程中所受阻力仅与速率有关,重力加速度为g .现欲使该气球以同样速率匀速上升,则需从气球篮中减少的质量为A .2(M F g -) B. M 2F g - C. 2M 2F g - D.0解析:依题意可知,气球在下降过程中处于平衡状态,由平衡条件得:f F Mg += ,在气球上升过程中,速率与下降过程中相等,所以阻力仍为f ,则平衡条件得:f F g M -='减少的质量:M M M '-=∆,由以上各式联合可得:)(2gF M M -=∆ 答案:A反思:本题是匀速直线运动的变力作用下的平衡问题,从题中找出物理情景从一种向另一种转换时的联系,向另一个过程迁移,列平衡方程就能使问题得以突破。

例1.如图1-12所示,质量为m 的工件置于水平放置的钢板C 上,二者间的动摩擦因数为μ,由于光滑导槽A 、B 的控制,工件只能沿水平导槽运动,现在使钢板以速度v 1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度v 2沿导槽运动,则F 的大小为( )A.等于μmgB.大于μmgC.小于μmgD.不能确定解析:物体相对钢板具有向左的速度分量v 1和侧向的速度分量v 2,故相对钢板的合速度v 的方向如图1-13所示,滑动摩擦力的方向与v 的方向相反。

根据平衡条件可得: F =f cosθ=μmg 22212V V V +从上式可以看出:钢板的速度V 1越大,拉力F 越小。

答案:C反思:滑动摩擦力的方向总是与相对运动方向相反。

解决此类问题的关键是找出相对运动方向,从而判断出所受的滑动摩擦力的方向,方能正确求解。

例题2.(08海南)如图所示,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为( )A .(M +m )gB .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ解析:对楔形物块与小物块这一系统受力分析,受到重力,支持力,拉力F ,系统各物体均平衡,则整个系统也处于平衡状态。

由对力F 正交分解后,由平衡条件得:g m M F F N )(sin +=+θ,则F N =(M +m )g -F sin θ;支持力与压力是作用力与反作用力,所以答案为D 。

答案:D反思:整体法是将两个或者两个以上的物体作为一个整体进行分析的方法,而隔离法是将某个物体单独隔离出来进行分析的方法,整体法、隔离法是分析物体平衡问题的常用方法,通常两种方法结合使用。

例题4.如图1-17所示,重G 的光滑小球静止在固定斜面和竖直挡板之间。

若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2各如何变化?解析:由于挡板是缓慢转动的,可以认为每个时刻小球都处于静止状态,因此所受合力为零。

应用三角形定则,G 、F 1、F 2三个矢量应组成封闭三角形,其中G 的大小、方向始终保持不变;F 1的方向不变;F 2的起点在G 的终点处,而终点必须在F1所在的直线上,由作图1-18可知,挡板逆时针转动90°过程,F 2矢量也逆时针转动90°,因此F 1逐渐变小,F 2先变小后变大。

(当F 2⊥F 1,即挡板与斜面垂直时,F 2最小)反思:这类平衡问题是一个物体受到三个力(或可等效为三个力)而平衡,这三个力的特点:其中一个力的大小和方向是确定的,另一个力方向始终不改变,第三个力的大小和方向都可改变。

运用图解法处理问题,显得直观、简捷,思路明了,有助于提高思维能力,简化解题过程。

例题5.(2007年江苏)如图19所示,带电量分别为4q 和-q 的小球A 、B 固定在水平放置的光滑绝缘细杆上,相距为d ,若杆上套一带电小环C ,带电体A 、B 和C 均可视为点电荷。

(1)求小环C 的平衡位置;(2)若小环C 带电量为q ,将小环拉离平衡位置一小位移x (|x|<<d )后静止释放,试判断小环C 能否回到平衡位置。

相关文档
最新文档