普通物理学波动课后习题答案
大学物理(第四版)课后习题及答案 波动
第十四章动摇之阳早格格创做14-1 一横波再沿绳子传播时得动摇圆程为[]x m t s m y )()5.2(cos )20.0(11---=ππ.(1)供波得振幅、波速、频次及波少;(2)供绳上量面振荡时得最大速度;(3)分别绘出t=1s 战t=2s 时得波形,并指出波峰战波谷.绘出x=处量面得振荡直线并计划其与波形图得分歧.14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分解(1)已知动摇圆程(又称波函数)供动摇的特性量(波速u 、频次ν、振幅A 及彼少 等),常常采与比较法.将已知的动摇圆程按动摇圆程的普遍形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书籍写,而后通过比较决定各特性量(式中前“-”、“+”的采用分别对付应波沿x 轴正背战背背传播).比较法思路浑晰、供解烦琐,是一种常常使用的解题要领.(2)计划动摇问题,要明白振荡物理量与动摇物理量之间的内正在通联与辨别.比圆区别量面的振荡速度与波速的分歧,振荡速度是量面的疏通速度,即dt dy v =;而波速是波线上量面疏通状态的传播速度(也称相位的传播速度、波形的传播速度或者能量的传播速度),其大小由介量的本量决断.介量稳定,彼速脆持恒定.(3)将分歧时刻的t 值代人已知动摇圆程,即不妨得到分歧时刻的波形圆程)(x y y =,进而做出波形图.而将决定的x 值代进动摇圆程,即不妨得到该位子处量面的疏通圆程)(t y y =,进而做出振荡图.解(1)将已知动摇圆程表示为 与普遍表白式()[]0cos ϕω+-=u x t A y 比较,可得 则 m v u Hz v 0.2,25.12====λπω(2)绳上量面的振荡速度则1max 57.1-⋅=s m v(3) t=1s 战 t =2s 时的波形圆程分别为波形图如图14-1(a )所示.x =处量面的疏通圆程为振荡图线如图14-1(b )所示.波形图与振荡图虽正在图形上相似,但是却有着真量的辨别前者表示某决定时刻波线上所有量面的位移情况,而后者则表示某决定位子的时间变更的情况.14-2 波源做简谐疏通,其疏通圆程为t s m y )240cos()100.4(13--⨯=π,它所产死得波形以30m/s 的速度沿背去线传播.(1)供波的周期及波少;(2)写出波的圆程.14-2 t s m y )240cos()100.4(13--⨯=π分解 已知彼源疏通圆程供动摇物理量及动摇圆程,可先将疏通圆程与其普遍形式()0cos ϕω+=t A y 举止比较,供出振幅天角频次ω及初相0ϕ,而那三个物理量与动摇圆程的普遍形式()[]0cos ϕω+-=u x t A y 中相映的三个物理量是相共的.再利用题中已知的波速U 及公式T /22ππνω==战uT =λ即可供解.解(1)由已知的疏通圆程可知,量面振荡的角频次1240-=s πω.根据分解中所述,波的周期便是振荡的周期,故有 波少为(2)将已知的波源疏通圆程与简谐疏通圆程的普遍形式比较后可得故以波源为本面,沿X 轴正背传播的波的动摇圆程为 14-3 以知以动摇圆程为])2()10sin[()05.0(11x m t s m y ---=π.(1)供波少、频次、波速战周期;(2)道明x=0时圆程的意思,并做图表示.14-3])2()10sin[()05.0(11x m t s m y ---=π分解采与比较法.将题给的动摇圆程改写成动摇圆程的余弦函数形式,比较可得角频次.、波速U ,进而供出波少、频次等.当x 决定时动摇圆程即为量面的疏通圆程)(t y y =. 解(1)将题给的动摇圆程改写为与()[]0cos ϕω+-=u x t A y 比较后可得波速 角频次110-=s πω,故有 (2)由分解知x=0时,圆程表示位于坐标本面的量面的疏通圆程(图13—4).14-4 波源做简谐振荡,周期为0.02s ,若该振荡以100m/s 的速度传播,设t=0时,波源处的量面经仄稳位子背正目标疏通,供:(1)距离波源战二处量面的疏通圆程战初相;(2)距离波源战二处量面的相位好.14-4分解(1)根据题意先设法写出动摇圆程,而后代人决定面处的坐标,即得到量面的疏通圆程.并可供得振荡的初相.(2)波的传播也不妨瞅成是相位的传播.由波少A 的物理含意,可知波线上任二面间的相位好为λπϕ/2x ∆=∆.解(1)由题给条件 T =0.02 s ,u =100 m ·s -l ,可得 当t =0时,波源量面经仄稳位子背正目标疏通,果而由转动矢量法可得该量面的初相为)或2/3(2/0ππϕ-=.若以波源为坐标本面,则动摇圆程为距波源为 x 1=15.0m 战 x 2它们的初相分别为πϕπϕ5.55.152010-=-=和(若波源初相与2/30πϕ=,则初相πλπϕϕϕ=-=-=∆/)(21221x x ,.)(2)距波源 16.0 m 战 17.0 m 二面间的相位好×10-2s ,以它经仄稳位子背正目标疏通时为时间起面,若此振荡以u=400m/s 的速度沿直线传播.供:(1)距离波源处量面P 的疏通圆程战初相;(2)距离波源战处二面的相位好.14-5解分解共上题.正在确知角频次1200/2-==s T ππω、波速1400-⋅=s m u 战初相)或2/(2/30ππϕ-=的条件下,动摇圆程 位于 x P =8.0 m 处,量面 P 的疏通圆程为该量面振荡的初相2/50πϕ-=P .而距波源9.0 m 战 10.0 m 二面的相位好为如果波源初相与2/0πϕ-=,则动摇圆程为量面P 振荡的初相也形成2/90πϕ-=P ,但是波线上任二面间的相位好本去不改变. 14-6 有一仄里简谐波正在介量中传播,波速u=100m/s ,波线上左侧距波源O (坐标本面)为处的一面P 的疏通圆程为]2/)2cos[()30.0(1ππ+=-t s m y p .供(1)波背x 轴正目标传播时的动摇圆程;(2)波背x 轴背目标传播时的动摇圆程. 14-6]2/)2cos[()30.0(1ππ+=-t s m y p分解正在已知波线上某面疏通圆程的条件下,修坐动摇圆程常常采与底下二种要领:(1)先写出以波源O 为本面的动摇圆程的普遍形式,而后利用已知面P 的疏通圆程去决定该动摇圆程中各量,进而修坐所供动摇圆程.(2)修坐以面P 为本面的动摇圆程,由它去决定波源面O 的疏通圆程,进而可得出以波源面O 为本面的动摇圆程.解1(1)设以波源为本面O ,沿X 轴正背传播的动摇圆程为将 u =100 m ·s -‘代人,且与x 二75 m 得面 P 的疏通圆程为与题意中面 P 的疏通圆程比较可得 A =0.30m 、12-=s πω、πϕ20=.则所供动摇圆程为(2)当沿X 轴背背传播时,动摇圆程为将 x =75 m 、1100-=ms u 代人后,与题给面 P 的疏通圆程比较得A = 0.30m 、12-=s πω、πϕ-=0,则所供动摇圆程为解2(1)如图14一6(a )所示,与面P 为坐标本面O ’,沿O ’x 轴背左的圆背为正目标.根据分解,当波沿该正目标传播时,由面P 的疏通圆程,可得出以O ’(即面P )为本面的动摇圆程为将 x=-75 m 代进上式,可得面 O 的疏通圆程为由此可写出以面O 为坐标本面的动摇圆程为(2)当波沿河X 轴背目标传播时.如图14-6(b )所示,仍先写出以O ’(即面P )为本面的动摇圆程将 x=-75 m 代人上式,可得面 O 的疏通圆程为则以面O 为本面的动摇圆程为计划对付于仄里简谐波去道,如果已知波线上一面的疏通圆程,供其余一面的疏通圆程,也可用下述要领去处理:波的传播是振荡状态的传播,波线上各面(包罗本面)皆是沉复波源量面的振荡状态,不过初相位分歧而已.正在已知某面初相仄0的前提下,根据二面间的相位好λπϕϕϕ/2'00x ∆=-=∆,即可决定已知面的初相中小14-7 图14-7为仄里简谐波正在t=0时的波形图,设此简谐波的频次为250Hz ,且此时图中量面P 的疏通目标进与.供:(1)该波的动摇圆程;(2)正在距本面O 为处量面的疏通圆程与t=0时该面的振荡速度.14-7'λ、振幅A 战波速λν=u ;2.根据面P 的疏通趋势去推断波的传播目标,进而可决定本面处量面的疏通趋背,并利用转动闭量法决定其初相0ϕ.(2)正在动摇圆程决定后,即可得到波线上距本面O 为X 处的疏通圆程y =y (t ),及该量面的振荡速度v =dy /d t.解(1)从图 15- 8中得知,波的振幅 A = 0.10 m ,波少m 0.20=λ,则波速13100.5-⋅⨯==s m u λν.根据t =0时面P 进与疏通,可知彼沿Ox 轴背背传播,并判决此时位于本面处的量面将沿Oy 轴背目标疏通.利用转动矢量法可得其初相3/0πϕ=.故动摇圆程为(2)距本面 O 为x=7.5 m 处量面的疏通圆程为t=0时该面的振荡速度为 14-8 仄里简谐波以波速u=/s 沿Ox 轴背目标传播,正在t=2s 时的波形图如图14-8(a )所示.供本面的疏通圆程. 14-8分解上题已经指出,从波形图中可知振幅A 、波少λ战频次ν.由于图14-8(a )是t =2s 时刻的波形直线,果此决定 t = 0时本面处量面的初相便成为本题供解的易面.供t =0时的初相有多种要领.底下介绍波形仄移法、波的传播不妨局里天形貌为波形的传播.由于波是沿 Ox 轴背背传播的,所以可将 t =2 s 时的波形沿Ox 轴正背仄移m s s m uT x 0.12)50.0(1=⨯⋅==∆-,即得到t=0时的波形图14-8(b ),再根据此时面O 的状态,用转动闭量法决定其初相位.解由图 15- 9(a )得知彼少m 0.2=λ,振幅 A = 0.5 m.角频次15.0/2-==s u πλπω. 按分解中所述,从图15—9(b )可知t=0时,本面处的量面位于仄稳位子.并由转动矢量图14-8(C )得到2/0πϕ=,则所供疏通圆程为14-9 一仄里简谐波,波少为12m ,沿Ox 轴背目标传播,图14-9(a )所示为x=处量面的振荡直线,供此波的动摇圆程.14-9分解该题可利用振荡直线去获与动摇的特性量,进而修坐动摇圆程.供解的闭键是怎么样根据图14-9(a )写出它所对付应的疏通圆程.较烦琐的要领是转动矢量法(拜睹题13-10).解 由图14-9(b )可知量面振荡的振幅A =0.40 m ,t =0时位于 x =的量面正在A /2处并背Oy 轴正背移动.据此做出相映的转动矢量图14-9(b ),从图中可知30πϕ-='.又由图 14-9(a )可知,t =5 s 时,量面第一次回到仄稳位子,由图14-9(b )可瞅出65πω=t ,果而得角频次16-=s πω. 采与题14-6中的要领,将波速10.12-⋅===s m T u πλωλ代人动摇圆程的普遍形式])(cos[0ϕω++=u x t A y 中,并与上述x =处的疏通圆程做比较,可得20πϕ-=,则动摇圆程为14-10 图14-10中(I )是t=0时的波形图,(II )是t=0.1s 时的波形图,已知T>0.1s ,写出动摇圆程的表白式. 14-10分解 已知动摇圆程的形式为从如图15—11所示的t =0时的波形直线Ⅰ,可知彼的振幅A 战波少λ,利用转动矢量法可决定本面处量面的初相0ϕ.果此,决定波的周期便成为相识题的闭键.从题给条件去瞅,周期T 只可从二个分歧时刻的波形直线之间的通联去得到.为此,不妨从底下二个分歧的角度去分解.(l )由直线(Ⅰ)可知,正在 tzo 时,本面处的量面处正在仄稳位子且背 Oy 轴背背疏通,而直线(Ⅱ)则标明,通过0.1s 后,该量面已疏通到 Oy 轴上的一A 处.果此,可列圆程s T kT 1.04=+,正在普遍情形下,k= 0, 1,2,…那便是道,量面正在 0.1 s 内,不妨经历 k 个周期振荡后再回到A 处,故有)25.0()1.0(+=k s T .(2)从波形的移动去分解.果波沿Ox 轴正目标传播,波形直线(Ⅱ)可视为直线(Ⅰ)背左脚移了T t t u x ∆=∆=∆λ.由图可知,4λλ+=∆k x ,故有t k ∆=+λλλ4,共样也得)25.0)1.0(+=k s T .应当注意,k 的与值由题给条件 T >0.1s 所决断.解 从图中可知波少m 0.2=λ,振幅A =0.10 m.由波形直线(Ⅰ)得知正在t=0时,本面处量面位于仄稳位子且背 Oy 轴背背疏通,利用转动矢量法可得2/0πϕ=.根据上头的分解,周期为由题意知 T >0.1s ,故上式创造的条件为,可得 T =0.4s.那样,动摇圆程可写成14-11 仄里简谐波的动摇圆程为])2()4cos[()08.0(11x m t sm y ---=ππ二处的相位;(2)离波源处及二处的相位.14-11()[]x m t s m y 112)4(cos )08.0(---=ππ 解(1)将t =2.1s 战x=0代人题给动摇圆程,可得波源处的相位将t =2.1s 战x =0.10 m 代人题给动摇圆程,得 0.10 m 处的相位为从动摇圆程可知波少.那样, m 与 m 二面间的相位好14-12 为了脆持波源的振荡稳定,需要消耗4.0W 的功率.若波源收出的是球里波(设介量不吸支波的能量).供距离波源战处的能流稀度.14-12分解波的传播伴伴着能量的传播.由于波源正在单位时间内提供的能量恒定,且介量不吸支能量,敌对付于球里波而止,单位时间内通过任性半径的球里的能量(即仄稳能流)相共,皆等于波源消耗的功率户.而正在共一个球里上各处的能流稀度相共,果此,可供出分歧位子的能流稀度 S P I =.解由分解可知,半径户处的能疏稀度为当 r 1=5.0 m 、r 2=10.0 m 时,分别有×103m ×10-4m ,频次ν×103Hz.若介量的稀度为ρ×102kg/m 3×10-4m 2的总能量.14-1313100.1-⋅⨯=s m u解(1)由能流稀度I 的表白式得2)正在时间隔断s t 60=∆内笔直通过里积 S 的能量为14-14 如图14-14所示,二振荡目标相共的仄里简谐波波源分别位于A 、B 二面.设它们的相位相共,且频次均为ν=30Hz ,波速u=/s ,供正在面P 处二列波的相位好. 14-14 v=30Hz分解正在匀称介量中,二列波相逢时的相位好ϕ∆,普遍由二部分组成,即它们的初出进B A ϕϕ-战由它们的波程好而引起的相位好λπr ∆2.本题果B =ϕϕA ,故它们的相位好只与决于波程好.解正在图14-14的APB ∆中,由余弦定理可得二列波正在面P 处的波程好为BP AP r -=∆,则相位好为14-15 二波正在共一细绳上传播,它们的圆程分别为])4[()cos()06.0(111t s x m m y ---=ππ战])4[()cos()06.0(112t s x m m y --+=ππ.(1)道明那细绳是做驻波式振荡,并供节面战波背的位子;(2)波背处的振幅有多大?正在x=处,振幅多大?14-15分解只需道明那二列波会成后具备驻波圆程 的形式即可.由驻波圆程可决定波背、波节的位子战任性位子处的 振幅.解(l )将已知二动摇圆程分别改写为可睹它们的振幅 A 二0.06 m ,周期 T 二0.5 s (频次.二2 Hi ),波少八二2 m.正在波线上任与一面P ,它距本面为P.则该面的合疏通圆程为k 式与驻波圆程具备相共形式,果此,那便是驻波的疏通圆程由得波节位子的坐标为由得波背位子的坐标为门)驻波振幅,正在波背处A ’二ZA 二0.12 m ;正在x 二 0.12 m 处,振幅为14-16 一弦上的驻波圆程式为t s x m m y )550cos()6.1cos()100.3(112---⨯=ππ×10-3s 时位于x=处量面的振荡速度.14-16分解(1)采与比较法.将本题所给的驻波圆程,与驻波圆程的普遍形式相比较即可供得振幅、波速等.(2)由波节位子的表白式可得相邻波节的距离.(3)量面的振荡速度可按速度定义V一如Nz供得.解(1)将已知驻波圆程 y=(3. 0 X 10-2 m) cos(. 6. ml)-coos(550.s一小与驻波圆程的普遍形式 y= ZAcos (2.x/八).(2.yi)做比较,可得二列波的振幅 A= 1. 5 X 10-‘ m,波少八二 1. 25 m,频次 v二 275 Hi,则波速 u 一如 2343.8 in·SI(2)相邻波节间的距离为(3)正在 t二 3. 0 X 10-3 s时,位于 x= 0. 625 m 处量面的振荡速度为14-17 一仄里简谐波的频次为500Hz,正在气氛中(ρ=/m3)以u=340m×10-6m.试供波正在耳中的仄稳能量稀度战声强.14-17解波正在耳中的仄稳能量稀度声强便是声波的能疏稀度,即那个声强略大于繁闲街讲上的噪声,使人耳已感触不符合.普遍仄常道话的声强约为 1. 0 X 10-6 W·m-2安排*14-18 里积为2的窗户启背街讲,街中噪声正在窗户的声强级为80dB.问有几声功率传进窗内?14-18分解最先要明白声强、声强级、声功率的物理意思,并相识它们之间的相互闭系.声强是声波的能流稀度I,而声强级L是形貌介量中分歧声波强强的物理量.它们之间的闭系为 L一体I/IO),其中 IO二 1. 0 X 10-’2 W·0-‘为确定声强.L的单位是贝我(B),但是常常使用的单位是分贝(dB),且IB=10 dB.声功率是单位时间内声波通过某里积传播的能量,由于窗户上各处的I相共,故有P=IS.解根据分解,由L=ig(I/ IO)可得声强为则传进窗户的声功率为14-19 若正在共一介量中传播的、频次分别为1200Hz战400Hz的二声波有相共的振幅.供:(1)它们的强度之比;(2)二声波的声强级好.14-19解(1)果声强I=puA‘.‘/2,则二声波声强之比(2)果声强级L一回对付几),则二声波声强级好为14-20 一警车以25m/s的速度正在停止的气氛中止驶,假设车上警笛的频次为800Hz.供:(1)停止站正在路边的人听到警车驶近战拜别时的警笛声波频次;(2)如果警车逃赶一辆速度为15m/s的客车,则客车上的人听到的警笛声波的频次是几?(设气氛中的声速u=330m/s)14-20分解由于声源与瞅察者之间的相对付疏通而爆收声多普勒效力,由多普勒频次公式可解得截止.正在处理那类问题时,不但是要分浑瞅察者相对付介量(气氛)是停止仍旧疏通,共时也要分浑声源的疏通状态.解(1)根据多普勒频次公式,当声源(警车)以速度 vs =25 m·s-‘疏通时,停止于路边的瞅察者所交支到的频次为警车驶近瞅察者时,式中Vs前与“-”号,故有警车驶离瞅察者时,式中Vs前与“+”号,故有2)声源(警车)与客车上的瞅察者做共背疏通时,瞅察者支到的频次为14-21 如图14-21所示.一振荡频次为ν=510Hz的振源正在S面以速度v背墙壁交近,瞅察者正在面P处测得拍音频次ν′=3Hz,供振源移动得速度.(声速为330m/s)14-21分解位于面P的瞅察者测得的拍音是振源S直交传递战经墙壁反射后传播的二列波相逢叠加而产死的.由于振源疏通,交支频次.l、12均与振源速度.有闭.根据多普勒效力频次公式战拍频的定义,可解得振源的速度.解根据多普勒效力,位于面P的人直交交支到声源的频次. l战经墙反射后支到的频次分别为由拍额的定义有将数据代进上式并整治,可解得14-22 暂时遍及型晶体管支音机的中波敏捷度(指仄稳电场强度E×10-3×103km近处某电台的广播,该台的收射是各背共性的(以球里形式收射),而且电磁波正在传播时不耗费,问该台的收射功率起码有多大?14-22×1018W/m2,估计其对付应的电场强度战磁场强度的振幅. 14-23。
12.波动 大学物理习题答案
12-9 同一介质中的两个波源位于 A、B 两点,其振幅相等,频率都是 100Hz,B 的相位比 A 超前π。若 A、 B 两点相距为 30m,波在介质中的传播速度为 400m/s;问在 AB 连线上 A 的左侧和 B 的右侧能出现因 干涉而静止的点吗?试求出 AB 连线上因干涉而静止的各点位置。 解:
4
y P A cos(2 t P ) 7.07 cos(200 t
(3) 2 1 2
) cm 4
r2 r1 , A 0 , y P 0
12-8 如图 12-8 所示,两个相距为 D 的相干波源 S1、S2,它们振动的相位相同,因而探测器在 S1、S2 的垂 直平分线上距波源 L 处的 O 点得相长干涉(即互相加强) ,若探测器往上移动,到距离 O 点为 h 的 P 处首次得到相消干涉。设 L 比 D 及 h 都大得多,求波长 。 (提示:r1+r2≈2L) 解:两相干波到达 P 点时的相位差 P S1 r1 h r2 O S2 L 图 12-8 D/2
即
图 12-3
12-4 一 平 面 简 谐 波 在 媒 质 中 以 速 度 u=30 cm/s 自 左 向 右 传 播 。 已 知 波 线 上 某 点 A 的 运 动 方 程
y 3 cos(4t ) (SI),D 点在 A 点的右方 9m 处,取 x 轴方向水平向右。 (1)以 A 为坐标原点,试
B A 2
30 15 16
所以 B 的右侧没有因干涉而静止的点。 (3)AB 之间距离 A 为 x 处
B A 2
30 2 x 15 x x
x (2k 1) , x 2k 1 , x 1,3,5, 29 处为静止点。
大学物理(第四版)课后习题及答案 波动
第十四章波动14-1 一横波再沿绳子传播时得波动方程为。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s时得波形,并指出波峰和波谷。
画出x=1.0m处质点得振动曲线并讨论其与波形图得不同。
14-1分析(1)已知波动方程(又称波函数)求波动的特征量(波速、频率、振幅A及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t值代人已知波动方程,便可以得到不同时刻的波形方程,从而作出波形图。
而将确定的x值代入波动方程,便可以得到该位置处质点的运动方程,从而作出振动图。
解(1)将已知波动方程表示为与一般表达式比较,可得则(2)绳上质点的振动速度则(3) t=1s和 t=2s时的波形方程分别为波形图如图14-1(a)所示。
x=1.0m处质点的运动方程为振动图线如图14-1(b)所示。
波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况。
14-2 波源作简谐运动,其运动方程为,它所形成得波形以30m/s的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波的方程。
14-2分析 已知彼源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅地角频率及初相,而这三个物理量与波动方程的一般形式中相应的三个物理量是相同的。
大学物理(第四版)课后习题及答案 波动(2020年7月整理).pdf
第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11−−−=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11−−−=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(−−⋅−=s m x t s m y π 与一般表达式()[]0cos ϕω+−=u x t A y 比较,可得0,5.2,20.001=⋅==−ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0−−−⋅−⋅−==s m x t s s m dt dy v ππ 则1max 57.1−⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(−−=ππ()[]x m m y 125cos )20.0(−−=ππ波形图如图14-1(a )所示。
物理参考答案06-波动
2 2k
S1
S2 C
8.某时刻驻波波形曲线如图所示,则a、b两点的相位 差是
π
a、b两点之间只有一个波 节,反相位
1.一平面简谐波沿Ox轴的负方向传播,波长为,P yP (m) u 处质点的振动规律如图所示. (1) 求P处质点的振动方程; 0 1 t (s) (2) 求此波的波动表达式; -A d (3) 若图中d=/2 ,求坐标原点O处 P x O 质点的振动方程.
uT 6 0.1 0.6m
x 2 5
x 0.25m
x 2
t T 2
3. 一平面简谐纵波沿着线圈弹簧传播,设波沿着X轴 正向传播,弹簧中某圈的最大位移为 3 .0 cm ,振动 频率为 25 ,弹簧中相邻两疏部中心的距离 为 24cm 。当 t 0 时,在 x 0 处质元的位移为 零并向X轴正向运动。试写出该波的表达式为 。 解:已知 A 0.03m ,
一、选择题
大作业题解
1.若一平面间谐波的波方程为 y=Acos(BtCx),式中 A,B,C为正值恒量,则 (A)波速为C; (B)周期为 1/B; (C)波长为2 /C; (D)角频率为2/B。
波动学
x y A cos t u
2x y A cos t
(A)
由x=0点判断,波的传播方向—沿着正方向(向右)。
代入P点的坐标x0=l,则波函数为 xl l x )] A cos [t ] y A cos[ (t u u u O点的振方程应为 y A cos (t l ) O u C点的振动方程为 y A cos (t 2l )
解(1) P点振动的振幅为A,周期为4s,初相位为。 P点的振动方程为: y p A cos(
普通物理学第五版第16章波动答案
n
=
u
l
=
3×108 4×10-7
=7.5×1014 Hz
l =760nm
n
=
u
l
=
3×108 7.6×10-7
=395×1014 Hz
精品课件
结束 目录
16-3 一横波沿绳子传播时的波动表式为
y = 0.05 cos(10πt 4πx )
x, y 的单位为 m, t 的单位为s。
设波沿着x 轴正向传播,弹簧中某圈的最大
位移为3.0cm,振动频率为2.5Hz,弹簧中
相邻两疏部中心的距离为24cm。当 t =0时, 在x =0处质元的位移为零并向x 轴正向运动。
试写出该波的波动表式。
精品课件
结束 目录
解:
x =0
t =0 y=0
j=
π
2
y0= 0.03 cos(2π×2.5 t π2 )
= 4.62×10-7 J 精品课件
结束 目录
16-13 一平面简谐声波的频率为500Hz,
在空气中以速度u =340m/s传播, 到达人耳 时,振幅A =l0-4 cm,试求人耳接收到声波 的平均能量密度和声强 ( 空气的密度ρ=1.29
kg/m3)。
精品课件
结束 目录
解:
w = 12ρAω2 2
(1) A =0.05m n =5Hz l =0.5m
u = ln =0.5×5=2.5m/s
(2) um = Aω=0.05×10π=0.5πm/s am = Aω2 = 0.05×(10π)2 =0.5π2 m/s2
精品课件
结束 目录
(3) x =0.2m t =1s
大学物理学振动与波动习题答案
大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ= ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x= 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x= 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x = -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v< 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x= -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ= π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f= 0,根据运动方程,可得cos(2)03tTππ-=图6.2所以232f t Tπππ-=±. 显然f 点的速度大于零,所以取负值,解得 t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=. 由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m).4.4 如图所示,在倔强系数为k的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为图4.3图4.4A===初位相为arctanvxϕω-==4.5重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k=k1k2/(k1+ k2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为I c = mR2.根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR2 = 2mR2.当环偏离平衡位置时,重力的力矩为M = -mgR sinθ,方向与角度θ增加的方向相反.根据转动定理得Iβ = M,即22dsin0dI mgRtθθ+=,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程22ddmgRt Iθθ+=.摆动的圆频率为ω=周期为2πTω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg(R - R cosθ),绕O点的转动动能为212kE I=ω,总机械能为21(cos)2E I mg R R=+-ωθ.环在转动时机械能守恒,即E为常量,将上式对时间求导,利用ω= dθ/d t,β=dω/d t,得0 = Iωβ + mgR(sinθ)ω,由于ω ≠ 0,当θ很小有sinθ≈θ,可得振动的微分方程22ddmgRt Iθθ+=,从而可求角频率和周期.[注意]角速度和圆频率使用同一字母(b)图4.5ω,不要将两者混淆.4.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。
大学物理第十四章波动光学课后习题答案及复习内容
第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
武汉理工大学大学物理波动习题答案
反射波在界面处的振动方程为 y反MN A cos( t
2
)
y 2 波密 u 波疏 u 反射方向上任取 P 点 P x 反射波方程 o 3 x 3 / 4 4 y反 A cos[ ( t ) ] u 2 N x 3 / 4 x A cos[ ( t ) ] A cos[ ( t )] u u 2 u x x y反 A cos[ ( t )] ③ y入 A cos [( t ) ] u u 2 合成 y 2 A cos( x)cos( t ) 2 x 0, x k 干涉极大即波腹 2
3.D
o
y
1 2
3
4
x
1
t=T / 4 时的波形
2
y
o
3
先将波形曲线后移T / 4 周期 再用旋转矢量法作判断
二、填空题 3. T / 2 x = 0 处质元由正向最大位置运 动到反向最大位置,故历经半周期。
1.
y o
x0
x x0 y( x , t ) A cos[ (t ) ] u x x0 y( x , t ) A cos[ (t ) ] u
A 0.02m u 2.50m/s u 1.25Hz 2m 2
②绳上的质点振动的最大速度:
vmax A 2.50 0.20 0.5 m/s
2.解: ①坐标原点o 处,当t = 0 时, y = 0 且向轴的正
y(m)
A
A/
2
u
t =0
2
驻波方程 y 2 A cos( 叠加后
2 2 2 A cos( x )cos( t ) 2 2
大学物理练习册习题及答案波动学基础
习题及参考答案第五章 波动学基础参考答案思考题5-1把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长; (B )振动频率越低,波长越长; (C )振动频率越高,波速越大; (D )振动频率越低,波速越大。
5-2在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任二质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 5-3一平面简谐波沿ox 正方向传播,波动方程为010cos 2242t x y ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦. (SI)该波在t =0.5s 时刻的波形图是( )5-4图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦 函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(B )0点的初位相为φ0=-π/2(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5一平面简谐波沿x 轴负方向传播。
已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x ωφ⎡⎤=+++⎣⎦(B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦(C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D)(){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 5-6一平面简谐波,波速u =5m·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) (B )()2210cos y t ππ-=⨯+ (SI) (C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI) (D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) 5-7一平面简谐波沿x 轴正方向传播,t =0的波形曲线如图所示,则P 处质点的振动在t =0时刻的旋转矢量图是( )5-8当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。
普通物理学教程力学课后答案高等教育出版社第十章-波动和声
普通物理学教程力学课后答案高等教育出版社第十章-波动和声第十章 波动和声习题解答10.2.1 频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。
0ºC 时,空气中的声速为331.5m/s,求这两种频率声波的波长。
解:mv V v V v V 58.16/,/,205.33111≈===∴=λλλ mv V 3221058.1620/5.331/-⨯≈==λ10.2.2 一平面简谐声波的振幅A=0.001m ,频率为1483Hz ,在20ºC 的水中传播,写出其波方程。
解:查表可知,波在20ºC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则:)22966cos(001.0)(2cos x t t v A y V xπππ-=-=10.2.3 已知平面简谐波的振幅A=0.1cm,波长1m,周期为10-2s,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少?解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为)100(2cos 10)(2cos )(cos 3x t A t A y xT t V x -=-=-=-ππωλπππ2)10100(2)9100(2=---=∆Φt t10.2.4 写出振幅为A,频率v =f ,波速为V=C,沿o-x 轴正向传播的平面简谐波方程.波源在原点o,且当t=0时,波源的振动状态是位移为零,速度沿o-x 轴正方向。
解:设波源振动方程为)cos(φω+=t A y . ∵t=0时,2,0sin ,0cos πφφωφ-=∴>-====A u A y dt dy∴波方程])(2cos[])(2cos[22ππππ--=--=C x Vxt f A t v A y10.2.5 已知波源在原点(x=0)的平面简谐波方程为),cos(cx bt A y -=A,b,c 均为常量.试求:⑴振幅、频率、波速和波长;⑵写出在传播方向上距波源l 处一点的振动方程式,此质点振动的初相位如何?解:⑴将)cos(cx bt A y -=与标准形式)cos(kx t A y -=ω比较,ω=b,k=c,∴振幅为A,频率v =ω/2π=b/2π,波速V=ω/k=b/c,波长λ=V/v =2π/c.⑵令x=l , 则)cos(cl bt A y -=,此质点振动初相为 – c l .10.2.6 一平面简谐波逆x 轴传播,波方程为),3(2cos ++=V xt v A y π试利用改变计时起点的方法将波方程化为最简形式。
波动学基本
ππ
π
y1
=
A cos(200π
t
−16 ×
2
−
2
)
=
A cos( 200π
t
−
) 2
同理,
y2
=
A cos( 200π
t
−
20 ×
π 2
−
π 2
)
=
A cos(200π
t
−
π) 2
4
自治区精品课程—大学物理学
黄新民、张晋鲁主编《普通物理学》习题解答
初相位分别为:t=0
时, φ1 0
=
−π 2
,φ20
2π
f
(2)
∵平面简谐波的波动方程为: y
=
Acos ω(t −
x )
c
∴绳子上各质点的振动速度为: ν = ∂y = − Aω sin ω(t − x)
∂t
c
绳子上各质点的振动加速度为: a = ∂ 2 y = − Aω 2 cosω(t − x )
∂t 2
c
∴绳子上各质点振动时的最大速度为 vmax = Aω =0.5π=1.57(m/s)
当取波源为原点并且该波沿+X 方向传播时,波动方程为
y
=
0.1cos(4π
t
π −
x)
5
(2) 沿波传播方向距离波源为λ/2 处的振动方程为:
y = 0.1cos(4π t − π ⋅ λ ) = −0.1cos(4π t) 52
(3) 距离波源分别为 λ , λ , 3λ 和λ的各点的振动方程为: 42 4
B
2π
CC
∵ c = λf ,∴ λ = CT = B ⋅ 2π = 2π . CB C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 机械波一. 选择题 [C] 1.(基础训练1)图14-10为一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是(A) ]31)2(cos[01.0π+-π=t y P (SI). (B) ]31)2(cos[01.0π++π=t y P (SI).(C) ]31)2(2cos[01.0π+-π=t y P (SI).(D) ]31)2(2cos[01.0π--π=t y P (SI).由t=2s 波形,及波向X 轴负向传播,波动方程}])2[(cos{0ϕω+-+-=ux x t A y ,ϕ为P 点初相。
以0x x =代入。
[D] 2.(基础训练2)一平面简谐波,沿x 轴负方向传播.角频率为ω ,波速为u .设 t = T /4 时刻的波形如图14-11所示,则该波的表达式为:(A) )(cos xu t A y -=ω.(B) ]21)/(cos[π+-=u x t A y ω.(C) )]/(cos[u x t A y +=ω. (D) ])/(cos[π++=u x t A y ω. 同1。
}])4[(cos{ϕω++-=uxT t A y 。
ϕ为0=x 处初相。
[B] 3.(基础训练5)在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. 驻波特点[D] 4.(基础训练7) 如图14-14所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.y (m)x (m)0.0050.01u =200 m/sPO100图14-10xuA y -AO图14-11S 1S 2r 1r 2P图14-14S 1 S 2P干涉极大条件 21212()2r r k πϕϕϕπλ-∆=--=[D] 5.(自测提高5)当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的? (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大. 波的能量特点。
[D] 6.(自测提高6)如图14-25所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为 )212cos(1π+π=t A y ,则S 2的振动方程为(A) )212cos(2π-π=t A y . (B) )2cos(2π-π=t A y . (C) )212cos(2π+π=t A y . (D) )1.02cos(22π-π=t A y212122()2(2.2 2.0)(21)2r r k πϕϕϕλππϕλλπλ∆=---=---=+二. 填空题7.(基础训练13)设入射波的表达式为 )(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为自由端,则形成的驻波表达式为______________22cos cos 2xy A t ππνλ=______________________.反射波表达式为2cos 2π()xy A t νλ=-驻波方程12y y y =+8.(基础训练14)一广播电台的平均辐射功率为20 kW .假定辐射的能量均匀分布在以电台为球心的球面上.那么,距离电台为10 km 处电磁波的平均辐射强度为_________1.59×10-5 W ·m -2 ________________.t E ∆∆=功率。
tS E∆∆∆=波强度 9.(基础训练16)在真空中沿着z 轴负方向传播的平面电磁波,O点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为__)3/2cos(796.0π+π-=t H y νA/m ___________.在图14-18上表示出电场强度,磁场强度和传播速度之间的相互关系.zyxcxE yH O电磁波特性。
H E 和同相。
H E 00με=。
H E⨯为电磁波传播方向。
10.(基础训练17)一列强度为I 的平面简谐波通过一面积为S 的平面,波速u与该平面的法线0n能流及波的强度定义 11.(基础训练18)一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为______637.5 Hz _________和_____935Hz___________(设空气中声速为340 m/s ).RR S Su v u v νν+=- 12.(自测提高13)两列波在一根很长的弦线上传播,其表达式为y 1 = 6.0×10-2cos π(x - 40t ) /2 (SI) , y 2 = 6.0×10-2cos π(x + 40t ) /2 (SI)则合成波的表达式为__________0.12coscos 202xy t ππ=__(SI )________________;在x = 0至x = 10.0 m 内波节的位置是___1,3,5,7,9;x =____________;波腹的位置是______2,4,6,8;x =__________.12y y y =+得合成波表达式,cos02xπ=得波节位置,cos12xπ=得波腹位置三. 计算题13.(基础训练20)一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图14-19所示. (1) 求解x = 25 m 处质元的振动曲线.(2) 求解t = 3 s 时的波形曲线.解:(1) 原点O 处质元的振动方程为)2121cos(1022π-π⨯=-t y , (m)波的表达式为)21)5/(21cos(1022π--π⨯=-x t y , (m)x = 25 m 处质元的振动方程为)321cos(1022π-π⨯=-t y , (m)振动曲线见图 (a)(2) t = 3 s 时的波形曲线方程)10/cos(1022x y π-π⨯=-, (m)t (s)42Oy (cm)2图14-19波形曲线见图 (b)x (m)O2×10-25y (m)101520u25 (b)14.(基础训练21)如图14-20所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式; (2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (m)由图可判定波长λ = 200 m ,故波动表达式为 ]41)200250(2cos[π++π=x t A y (m) (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y (m) 或 13cos(500)4y A t =-ππ (m/s)振动速度表达式是5v 500sin(500)4A t =-+πππ (m/s) 或 3v 500sin(500)4A t =--πππ (m/s)15.(基础训练23)如图14-21,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032(SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1)以A 点为坐标原点,波的表达式为2310cos4()20xy t π-=⨯+(SI ) (2)以距A 点5 m 处的B 点为坐标原点,波的表达式为25310cos4()20x y t π--=⨯+2310cos[4()]20x t ππ-=⨯+- (SI ) t (s)O -2×10-21y (m)234(a)图14-20x (m)100-AP O 2/2A y (m)ABxu 图14-2116.(基础训练25)由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波.这个驻波共有三个波腹,其振幅为0.30 cm .波在弦上的速度为 320 m/s .(1) 求此弦线的长度. (2) 若以弦线中点为坐标原点,试写出弦线上驻波的表达式. 解:(1) λ213⨯=L λν = u ∴ 20.1m4003202323=⨯==νu L m (2) 弦的中点是波腹,故)800cos()8.0/2cos(100.33φ+ππ⨯=-t x y (SI)式中的φ 可由初始条件来选择.17.(自测提高22)相干波源S 1和S 1,相距11 m ,S 1的相位比S 2超前π21.这两个相干波在S 1 、S 2连线和延长线上传播时可看成两等幅的平面余弦波,它们的频率都等于100 Hz , 波速都等于400 m/s .试求在S 1、S 2的连线上及延长线上,因干涉而静止不动的各点位置解:取S 1、S 2连线及延长线为x 轴,向右为正,以S 1为坐标原点.令l S S =21.(1) 先考虑x < 0的各点干涉情况.取P 点如图.从S 1、S 2分别传播来的两波在P 点的相位差为 |)]|(2[||2201021x l x +π--π-=-λφλφφφl λφφπ+-=22010l u νφφπ+-=22010= 6 π ∴ x < 0各点干涉加强.(2) 再考虑x > l 各点的干涉情况.取Q 点如图.则从S 1、S 2分别传播的两波在Q 点的相位差为)](2[2201021l x x -π--π-=-λφλφφφl λφφπ--=22010l uνφφπ--=22010= 5 π ∴ x > l 各点为干涉静止点.(3) 最后考虑0≤x ≤11 m 范围内各点的干涉情况.取P ′点如图.从S 1、S 2分别传播来的两波在P ′点的相位差为 )](2[2201021x l x -π--π-=-λφλφφφl x λλφφπ+π--=242010l x u νλνφφπ2π42010+--=2112π+π-π=x 由干涉静止的条件可得π+=π+π-π)12(2112k x ( k = 0,±1,±2,…) ∴ x = 5-2k ( -3≤k ≤2 )即 x = 1,3,5,7,9,11 m 为干涉静止点.综上分析.干涉静止点的坐标是x = 1,3,5,7,9,11 m 及x >11 m 各点。