2018-2019新人教版七年级下册数学第三次月考试卷答题卡及答案
2024-2025学年七年级数学上学期第三次月考卷(湘教版2024)【测试范围:第3章】(全解全析)
2024-2025学年七年级上期数学第三次月考(湘教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:湘教版(2024)第3章一次方程(组)第1章占比15%,第2章占比15%。
第3章占比70%。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.―2023的倒数是()A.2023B.―2023C.―12023D.12023【解析】,的倒数是2.下列各式中,是一元一次方程的是()A.2+3=3+2B.8y―9=9―yC.x2+2x+1=4D.x―y=0【答案】B【解析】A、2+3=3+2不是方程,不是一元一次方程,本选项不符合题意;B、8y―9=9―y是一元一次方程,本选项符合题意;C、x2+2x+1=4未知数的最高次不是1,不是一元一次方程,本选项不符合题意;D、x―y=0有两个未知数,不是一元一次方程,本选项不符合题意;故选B.3.将(a―5)―(d―b+c)去括号等于()A.a―5―d―b+c B.a―5―d+b+cC.a―5―d+b―c D.a―5+d+b―c【答案】C【解析】(a―5)―(d―b+c)=a―5―d+b―c;故选C.4.如图,这是一个计算机的运算程序,若一开始输入的x值为1,则输出的结果y是()2A.1B.―1C.―3D.―5可得,5.王老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,则所捂的多项式为()A.x2―x―2B.―2x2―2x―2C.x2+4x―4D.―x2―2x+4【答案】C【解析】由图可得,所捂的多项式为:(x2+3x―1)―(―x+3)=x2+3x―1+x―3=x2+4x―4,故选C.6.在解方程x―12―2x+33=1时,去分母正确的是()A.3(x―1)―2(2+3x)=1B.3(x―1)+2(2x+3)=1C.3(x―1)+2(2+3x)=6D.3(x―1)―2(2x+3)=6【答案】D【解析】去分母,得:3(x―1)―2(2x+3)=6,故选D.7.《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x人,y辆车,则可列方程组为()A.3(y―2)=x2y+9=x B.3(y―2)=x2y―9=x C.3y―x=22y―x=9D.3y―x=22y―x=―9【答案】A【解析】根据题意得:3(y―2)=x2y+9=x,故选A.8.若关于x,y的方程组x=5mx+ny=2与y=2nx+my=―9有相同的解,则m+n的值为()A.―1B.1C.―2D.2,可得9.若a―2b+3=0,则代数式8b―4a的值是()A.8B.10C.12D.24【答案】C【解析】∵a―2b+3=0,∴2b―a=3,∴.故选C.10.下列说法中,错误的个数是()①若|1a|=―1a,则a<0;②若|a|>|b|,则有(a+b)(a―b)是负数:③A、B、C三点在数轴上对应的数分别是―2、6、x,若相邻两点的距离相等,则x=2;④若代数式2x+|9―3x|+|1―x|+2016的值与x无关,则该代数式值为2024;⑤若a+b+c=0,abc>0,则b+c|a|+a+c|b|+a+b|c|的值为A.1个B.2个C.3个D.4个第二部分(非选择题 共90分)二、填空题:本题共8小题,每小题3分,共24分。
人教版七年级下学期第三次月考数学试题
人教版七年级下学期第三次月考数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()A.270°B.180°C.240°D.300°2 . 某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天3 . 在平面直角坐标系中,点A的坐标变为,则点A经历了怎样的图形变化()A.先向左平移2个单位长度,再向下平移4个单位长度B.先向左平移2个单位长度,再向上平移4个单位长度C.先向右平移2个单位长度,再向上平移4个单位长度D.先向右平移2个单位长度,再向下平移4个单位长度4 . 不等式3x<﹣6的解集是()A.x>﹣2B.x<﹣2C.x≥﹣2D.x≤﹣25 . 下列调查中适合采用全面调查(普查)方式的是()A.了解“中国诗词大会”节目的收视率B.调查我市某初中某班学生每周课外阅读情况C.了解我省初中生的视力情况D.调查我国目前“垃圾分类”推广情况6 . 七年级一班有x人,分y个学习小组,若每组7人,则余下3人;若每组8人,则不足5人,求全班人数及分组数.正确的方程组为()A.B.C.D.7 . 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.bc<ac B.|a-b|=a-bC.-a<-b<c D.-a-c>-b-c8 . 下列说法中正确的是()A.若,则B.若,则D.若,则C.若,则9 . 若等腰三角形的两边长分别为6和8,则周长为()A.20或22B.20C.22D.无法确定10 . 如图,F是AB上一点,E是AC上一点,BE、CF相交于点D,∠A=70°,∠ACF=30°,∠ABE=20°,则∠BFC+∠BEC 的度数为()A.172°B.190°C.65°D.60°二、填空题11 . 如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,则点A4的坐标是____,那么A4n+1的坐标为____.12 . 一个正边形恰好被个正边形围住(无重叠、无间隙,如当,时如图所示),若,则______.13 . 若和都是关于x、y的二元一次方程ax﹣y=b的解,则ab=_____.14 . 已知点是第一象限的点,则的取值范围是___.15 . ______.三、解答题16 . 学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:型号身高x/cm人数频率小号145≤x<155200.2中号155≤x<165a0.45大号165≤x<17530b特大号175≤x<18550.05(1)这次共抽取__名学生;(2)a=__,b=__.17 . (1)问题解决:如图1,△ABC中,BO、CO分别是∠ABC和∠ACB的平分线,O为BO、CO交点,若∠A=62°,求∠BOC的度数;(写出求解过程)(2)拓展与探究①如图1,△ABC中,BO、CO分别是∠ABC和∠ACB的平分线,O为BO、CO交点,则∠BOC与∠A的关系是;(请直接写出你的结论)②如图2,BO、CO分别是∠ABC和∠ACB的两个外角∠CBD和∠BCE的平分线,O为BO、CO交点,则∠BOC与∠A 的关系是;(请直接写出你的结论)③如图3,BO、CO分别是△AB C的一个内角∠ABC和一个外角∠ACE的平分线,O为BO、CO交点,则∠BOC与∠A 的关系是.(请直接写出你的结论)18 . 解不等式组:19 . 解方程组(1)(2)20 . 计算:|2﹣|+2sin45°﹣()0.21 . 如图,在△ABC中,点P是△ABC内一点,试证明:∠BPC=∠A+∠ABP+∠ACP.22 . 四边形ABCD各顶点的位置如图,则四边形ABCD的面积是多少?23 . 六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、三、解答题1、2、3、4、5、6、7、8、。
人教版七年级第二学期 第三次月考数学试卷含解析
人教版七年级第二学期 第三次月考数学试卷含解析一、选择题1.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( ) A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x yx y+=⎧⎨-=⎩D .6374y x y x =+⎧⎨+=⎩2.若关于x 、y 的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为( ) A .a <−2B .a >−2C .a <2D .a >23.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( )A .15B .﹣15C .16D .﹣164.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:55.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z z y =⎧⎪⎨+=⎪⎩6.若|321|0x y --=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .2x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩7.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩8.小明出门时身上带了100元,下表记录了他今天所有支出,其中饮料与饼干支出的金额被涂黑.若每瓶饮料5元,每包饼干8元,则小明不可能...剩下多少元?( )A.4 B.15 C.22 D.449.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种10.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.13D.﹣13二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.12.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.13.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.14.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.15.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.16.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题. 17.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.18.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.19.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .20.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________三、解答题21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 22.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.23.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --+-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.24.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.26.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设学生数为x 人,分成y 组,根据组数和总人数的数量关系建立方程组求解即可. 【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-, 如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+,故有:6374y x y x =-⎧⎨=+⎩.故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.A解析:A 【分析】先解根据关于x ,y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩①②①+②得4x+4y=2-3a ,234ax y -+=;然后将其代入x +y >2,再来解关于a 的不等式即可. 【详解】 解:3234x y a x y a +=+⎧⎨+=-⎩①②①+②得 4x+4y=2-3a234ax y -+=∴由x+y>2,得 2324a-> 即a<-2 故选A 【点睛】 本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质: (1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.3.B解析:B 【分析】把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求a ,b ,再代入可求(a+b )(a-b )的值. 【详解】解:∵21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,∴2227a b b a =,=+⎧⎨+⎩解得14a b -⎧⎨⎩=,=∴(a+b )(a-b )=(-1+4)×(-1-4)=-15.故选B . 【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.B解析:B 【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可. 【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z , ∴x :y :z=x :2x :3x=1:2:3, 故选B . 【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.5.D解析:D 【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答. 【详解】A 、B 、C 都不是二元一次方程组,D 符合二元一次方程组的定义, 故选:D . 【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.6.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.A解析:A 【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择. 详解:∵y ﹣x =1,∴y =1+x . 代入方程x +3y =7,得:x +3(1+x )=7,即4x =4,∴x =1,∴y =1+x =1+1=2.∴解为12x y =⎧⎨=⎩.故选A .点睛:本题要注意方程组的解的定义.8.C解析:C 【分析】设买了x 瓶饮料,y 盒饼干,求出买三餐所剩的钱数,对四个选项分别讨论,得到买饮料、饼干的总钱数,列出关于,x y 二元一次方程,若这个方程有自然数解,则可能,反之,不可能. 【详解】解:设买了x 瓶饮料,y 盒饼干,,x y 为自然数, 买三餐还剩100-10-15-18=57元A. 若剩4元,则 58574x y +=-,有整数解9,1x y ==;B. 若剩15元,则 585715x y +=-,有整数解2,4x y ==;C. 若剩22元,则 585722x y +=-,无整数解;D. 若剩44元,则 585744x y +=-,有整数解1,1x y ==; 故选:C.【点睛】本题考查了二元一次方程的应用,解题关键是读懂题意,列出二元一次方程,把问题转化为二元一次方程的整数解的问题.9.A解析:A【解析】【分析】设购买甲种笔记本x个,则乙种笔记本y个,利用购甲、乙两种笔记本共用70元得到x=14-3y,利用143yy-=14y–3为整数可判断y=1,2,7,14,然后求出对应x的值从而得到购笔记本的方案.【详解】设购买甲种笔记本x个,购买乙种笔记本y个,根据题意得5x+15y=70,则x=14–3y,因为143yy-为整数,而143yy-=14y–3,所以y=1,2,7,14,当y=1时,x=11;当y=2时,x=4;y=7和y=14舍去,所以购笔记本的方案有2种.故选A.【点睛】本题考查了二元一次方程的解,分析题意,找到关键描述语,找到合适的等量关系,特别是确定甲种笔记本数量和乙种笔记本数量关系,然后利用整除性确定方案.10.D解析:D【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求.【详解】解:根据题中的新定义得:22018 42019x yy x-=⎧⎨+=-⎩①②,①+②得:3x+3y=﹣1,则x+y=﹣13.故选:D.【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题11..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,∴x =15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.13.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27, 解得:3(98)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .14.19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az ,整理得:4z=3y+6x ①,当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz,整理得:z=3x ②,由①②可得:y=2x , ∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x ,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 15.【解析】【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:76843【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:643322532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:76843【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.16.16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:3b+2a-(x-a)=1解析:16【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:(2)×3-(1)得x=16,∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 17.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.18.5【解析】设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,则:0.5(x+a)+(2x-a)=0.5(y-a),解得:y=5x即快艇静水速度是快船的【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.19.3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750.点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.20.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .三、解答题21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元, 35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3,解得:m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.23.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可; (2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,∴点D的坐标是14 1,3⎛⎫-⎪⎝⎭;(3)证明:过点E作//EF CD,交y轴于点F,如图所示,则ECD CEF∠=∠,2BCE ECD∠=∠,33BCD ECD CEF∴∠=∠=∠,过点O作//OG AB,交PE于点G,如图所示,则OGP BPE∠=∠,PE平分OPB∠,OPE BPE∴∠=∠,OGP OPE∴∠=∠,由平移得//CD AB,//OG FE∴,FEP OGP∴∠=∠,FEP OPE∴∠=∠,CEP CEF FEP∠=∠+∠,CEP CEF OPE∴∠=∠+∠,CEF CEP OPE∴∠=∠-∠,3()BCD CEP OPE∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.24.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.25.(1)n -m ;(2)①M 是AN 的中点,n =2m +3;②A 是MN 中点,n =-m -6;③N 是AM 的中点,1322=-n m ;(3)0 4m n =⎧⎨=⎩或6 2m n =-⎧⎨=-⎩或95 15m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M 是A 、N 的中点,n =2m +3;②当A 点在M 、N 点中点时,n =﹣6﹣m ;③N 是M 、A 的中点时,n 32m -+=; (3)由已知可得|m +3|=|n ﹣1|,n ﹣m 43=|m +3|,分情况求解即可. 【详解】(1)MN =n ﹣m .故答案为:n ﹣m ;(2)分三种情况讨论:①M 是A 、N 的中点,∴n +(-3)=2m ,∴n =2m +3;②A 是M 、N 点中点时,m +n =-3×2,∴n =﹣6﹣m ;③N 是M 、A 的中点时,-3+m =2n ,∴n32m -+=;(3)∵AM =BN ,∴|m +3|=|n ﹣1|.∵MN 43=BM , ∴n ﹣m 43=|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩或3133412m n n m m +=-+⎧⎨-=--⎩, ∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩或35m n =⎧⎨=-⎩. ∵n >m ,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.26.(1)方程的正整数解是13x y =⎧⎨=⎩或21x y =⎧⎨=⎩.(只要写出其中的一组即可);(2)满足条件x 的值有4个:x=3或x=4或x=5或x=8;(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.【解析】(1)1231{{(x x y y ====或任写一组即可)---------------------------.(2) C(3)解:设购买单价为3元的笔记本x 个,购买单价5元的钢笔y 个,由题意得: 3x+5y=35此方程的正整数解为∴有两种购买方案:方案一:购买单价为3元的笔记本5个,购买单价为5元的钢笔4支.方案二:购买单价为3元的笔记本10个,购买单价为5元的钢笔1支(1)只要使等式成立即可(2)x-2必须是6的约数(3)设购买单价为3元的笔记本x 个,购买单价5元的钢笔y 个,根据题意列二元一次方程,去正整数解求值。
2018年第二学期七年级第三次月考数学试题(人教版)原创可编辑含答案
2018年第三次月考数学试题(人教版)(90分钟,120分)一、选择题:本大题共16个小题,1-10题每小题3分,11-16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(﹣6)2的平方根是()A.﹣6 B.36 C.±6 D.±2.已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣13.若a>b,则下列不等式变形正确的是()B.A.a+5<b+5 B.C.﹣4a>﹣4b D.3a﹣2<3b﹣24.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.不等式2x+5≤1的解集在数轴上表示正确的是()A.B.C.D.6.如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°7. 不等式组的非负整数解的个数是()A.4 B.5 C.6 D.78.如图,已知AB,CD相交于O,OE⊥CD于O,∠AOC=25°,则∠BOE的度数是( ) A.25°B.65°C.115°D.130°9.已知是方程组的解,则a,b间的关系是()A.a+b=3 B.a﹣b=﹣1 C.a+b=0 D.a﹣b=﹣310.某校组织学生进行了禁毒知识竞赛,竞赛结束后,菁菁和彬彬两个人的对话如下:根据以上信息,设单选题有x道,多选题有y道,则可列方程组为()A.B.C. D.11.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x元,则列式()A.30+30×15%≤85%x B.30+30×15%≥85%xC.30﹣30×15%≤85%x D.30﹣30×15%≥85%x12.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(﹣2,﹣2),则点C的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)13.若关于x、y的方程组的解满足x+y>0,则m m的最大整数值是()A.-1 B.0 C.1 D.214.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A.5本B.6本C.7本D.8本15.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是()A.425cm2B.525cm2C.600cm2D.800cm216.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2018的坐标为( ) A.(0,4)B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(本题共有3个小题,17-18每小题3分,19小题4分,满分10分)17.当x<a<0时,x2ax(填>,<,=)18.如图,∠1=∠2,∠3=80°,则∠4=______.19. 以方程组的解为坐标的点(y,x)在第象限.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.(本小题9分)解方程组:.21.(本小题9分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.22.(本小题9分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.23.(本小题9分).如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.24.(本小题9分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.25.(本小题11分)已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.26.(本小题12分)我市会展中心举行消夏灯会节,计划在现场安装小彩灯和大彩灯,已知安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.(1)会展中心计划在当天共安装200个小彩灯和50个大彩灯,共需多少元?(2)若承办方安装小彩灯和大彩灯的数量共300个,费用不超过4350元,则最多安装大彩灯多少个?2018年第三次月考数学试题(人教版)参考答案一、选择题:二、填空题17. >18. 80°19. 四三、解答题20.解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.21.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.22.解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..23.解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.24.解:(1)图略;(2)由图可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).25.解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.26.解:(1)设安装1个小彩灯需要x元,安装1个大彩灯需要y元,根据题意得:,解得:,∴200x+50y=200×10+50×25=3250.答:安装200个小彩灯和50个大彩灯,共需3250元.(2)设安装大彩灯z个,则安装小彩灯(300﹣z)个,根据题意得:25z+10(300﹣z)≤4350,解得:z≤90.答:最多安装大彩灯90个.。
2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷
2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题1、下列运算正确的是()A. x2+x3=x5B. x4•x2=x6C. (x2)3=x8D. x6÷x2=x32、生物学家发现:生物具有遗传多样性,遗传密码大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个数用科学记数法可以表示为()A. 0.2×10-6B. 2×10-7C. 0.2×10-7D. 2×10-83、下列各式由左到右的变形,是因式分解且分解正确的是()A. ab+ac+d=a(b+c)+dB. (a+1)(a-1)=a2-1C. x2-5x+6=(x-1)(x-6)D. a2-1=(a+1)(a-1)4、下列各式能用平方差公式计算的是()A. (-a+b)(a-b)B. (a+b)(a-2b)C. (-x+1)(x+1)D. (-m-n)(m+n)5、如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A. 160°B. 140°C. 60°D. 50°6、若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形7、下列角度中,不能成为多边形内角和的是()A. 600B. 720C. 900D. 10808、规定:一个数的平方等于-1,记作i2=-1,于是可知i3=i2×i=(-1)×i,i4=(i2)2=(-1)2=1……,按照这样的规律,i2019等于()A. 1B. -1C. iD. -i二、填空题1、计算:(x+2)(x-3)=______.2、已知a=4cm,b=8cm,如果c与a、b能组成一个等腰三角形,那么c=______cm.3、如图,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是______.4、计算:=______.5、多项式4x2+1上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是______.6、已知3m+4n-3=0,则8m×16n=______.7、已知x+y=5,xy=5,则x2+y2=______.8、如果一个多边形的每个外角都是36°,那么这个多边形是______边形.9、如图,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是______.10、如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积______.三、计算题1、计算:(1);(2)(-2a2)2•a-25a5.______四、解答题1、因式分解:(1)x2-16y2;(2)2x2y-8xy+8y.______2、先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=.______3、如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是______.______4、如图,BC⊥AE于点C,CD∥AB,∠B=55°,求∠1的度数.______5、如图①是一个长2m,宽2n的长方形,沿图中虚线用剪刀将其均分四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中阴影部分的面积;(2)观察图②,请你写出代数式(m+n)2、(m-n)2、mn之间的等量关系式;(3)根据(2)中的结论,若x+y=-6,xy=2.75.求x-y的值.______6、如图,已知∠ABC+∠ECB=180°,∠P=∠Q,(1)AB与ED平行吗?为什么?(2)∠1与∠2是否相等?说说你的理由.______7、观察以下一系列等式:①21+21=2+2=22;②22+22=4+4=23;③23+23=8+8=24;④;…(1)请按这个顺序仿照前面的等式写出第④个等式:______;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:______,并说明这个规律的正确性;(3)请利用上述规律计算:210-29-28-27- (2)______8、四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE=______°;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.______2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷参考答案一、选择题第1题参考答案: B解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:B.根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,可得答案.本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: B解:0.0000002这个数用科学记数法可以表示为2×10-7,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<1 0,n为整数,表示时关键要正确确定a的值以及n的值.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: D解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、等式两边不相等,不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.根据因式分解的定义逐个判断即可.本题考查了因式分解的定义,能熟记定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: C解:∵(-a+b)(a-b)=-(a-b)(a-b),故选项A不符合题意;(a+b)(a-2b)不能用平方差公式计算,故选项B不符合题意;(-x+1)(x+1)=-(x-1)(x+1)=-(x2-12),故选项C符合题意;(-m-n)(m+n)=-(m+n)(m+n),故选项D不符合题意,故选:C.根据各个选项中的式子可以变形,然后看哪个式子符合平方差公式,即可解答本题.本题考查平方差公式,解答本题的关键是明确平方差公式的形式.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: B解:如图,∵∠1=40°,∴∠2=180°-40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.先根据邻补角的定义计算出∠2=180°-∠1=140°,然后根据平行线的性质得∠B=∠2=140°.本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: A解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.设三角形的三角的度数是x°,2x°,3x°,得出方程x+2x+3x=180,求出方程的解即可.本题考查了三角形内角和定理的应用,解题的关键是学会设未知数列方程解决问题,属于基础题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: A解:∵多边形内角和公式为(n-2)×180,∴多边形内角和一定是180的倍数.故选:A.利用多边形的内角和公式即可作出判断.本题主要考查了多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: D解:∵i=i,i2=-1,i3=-i,i4=1,i5=i……∴从上计算可知,i的指数循环周期是4,①当指数除以4余数为0时,其结果是1;②当指数除以4余数为1时,其结果是i;③当指数除以4余数为2时,其结果是-1;④当指数除以4余数为3时,其结果是-i;∵2019÷4=504 (3)∴i2019=-i.故选:D.根据新定义:一个数的平方等于-1,记作i2=-1,于是可知i3=i2×i=(-1)×i,i4=(i2)2 =(-1)2=1…找出重复出现规律,指数是除以4看余数的情况定结果.本题考查实数的运算新定义的理解,推理,综合,归纳等数学能力,同时此题也考察了学生从特殊找到一般规律,再到特殊计算能力.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: x2-x-6解:原式=x2-3x+2x-6=x2-x-6.故答案为:x2-x-6.多项式乘以多项式就是用一个多项式中的每一项乘以另一个多项式中的每一项,然后相加即可.本题考查了多项式乘以多项式的知识,解题的关键是熟知多项式乘法的法则,属于基础题,必须掌握.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 8解:∵c与a、b能组成一个等腰三角形,∴c=a=4cm或c=b=8cm.又∵4+4=8,∴4,4,8不能组成三角形,∴c=8cm.故答案为:8.由等腰三角形的判定可得出c=4cm或c=8cm,再利用三角形的三边关系可确定c的值,此题得解.本题考查了等腰三角形的判定以及三角形的三边关系,利用等腰三角形的性质及三角形的三边关系,确定c值是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 25解:根据图形易知:阴影部分的面积=正方形的面积=25,故答案为:25.观察可以发现:阴影部分的面积正好是正方形的面积.此题考查了正方形的性质,关键是根据两部分阴影的面积和正好是正方形的面积解答.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: -8解:===-8将原式变形为,再逆用积的乘方变形、计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: -4x,4x,-1,-4x2解:多项式4x2+1上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是-4x,4x,-1,-4x2,故答案为:-4x,4x,-1,-4x2利用完全平方公式的结构特征判断即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 8解:由3m+4n-3=0,可得:3m+4n=3,所以8m×16n=23m+4n=23=8,故答案为:8根据幂的乘方逆运算解答即可.此题考查幂的乘方,关键是根据幂的乘方逆运算解答.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 35解:∵x+y=-5,∴(x+y)2=25,即x2+2xy+y2=25,又∵xy=-5,∴x2+y2=25-2×(-5)=35.故答案是:35.把x+y=5利用完全平方公式两边平方,然后代入数据计算即可.本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,完全平方公式:(a±b)2=a2±2ab+b2.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: 10解:∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:10.根据正多边形的性质,边数等于360°除以每一个外角的度数.本题主要考查了利用外角求正多边形的边数的方法,熟练掌握多边形外角和公式是解决问题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: 70°解:过点C作CF∥BD,则CF∥BD∥AE.∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°-20°=70°.∵CF∥AE,∴∠CAE=∠FCA=70°.故答案为:70°.过点C作CF∥BD,根据两直线平行,内错角相等即可求解.本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: 7解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,然后相加即可得解.本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.三、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)=4+4-1=7;(2)(-2a2)2•a-25a5.=4a4•a-25a5=4a5-25a5=-21a5.(1)先算平方、负整数指数幂和零指数幂,再计算加减法即可求解;(2)先算积的乘方和单项式乘单项式,再合并同类项即可求解.考查了平方、负整数指数幂和零指数幂,、积的乘方和单项式乘单项式,合并同类项,关键是熟练掌握计算法则正确进行计算.四、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)x2-16y2=(x+4y)(x-4y);(2)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2.(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式2y,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:原式=a2-4b2-a2+4ab-4b2+8b2=4ab,当a=-2,b=时,原式=-4.原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 8解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7-×2×6-×(2+5)×1=8,故答案为:8.(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1 =∠B=35°.本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 解:(1)图②中的阴影部分的面积为(m-n)2或(m+n)2-4mn;(2)(m+n)2-4mn=(m-n)2;(3)∵x+y=-6,xy=2.75.∴(x-y)2=(x+y)2-4xy=36-4×2.75=25,则(x-y)=±5.(1)表示出阴影部分的边长,即可得出其面积也可以用大正方形的面积减去四块小长方形的面积;(2)由(1)即可得出三个代数式(m+n)2、(m-n)2、mn之间的等量关系.(3)根据(2)所得出的关系式,可求出(x-y)2,继而可得出x-y的值.此题考查了完全平方公式的几何背景,注意仔细观察图形,表示出各图形的面积是关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 解:(1)AB∥ED,理由是:∵∠ABC+∠ECB=180°,∴根据同旁内角互补,两直线平行可得AB∥ED;(2)∠1=∠2,理由是:∵AB∥CD,∴∠ABC=∠BCD,∵∠P=∠Q,∴∠PBC=∠QCB,∴∠ABC-∠PBC=∠BCD-∠QCB,即∠1=∠2.(1)根据同旁内角互补,两直线平行即可得出结论;(2)由AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 24+24=16+16=25 2n+2n=2n+1解:(1)由题意可得,24+24=16+16=25,故答案为:24+24=16+16=25;(2)2n+2n=2n+1理由:∵2n+2n=2n×(1+1)=2n×2=2n+1,∴2n+2n=2n+1,故答案为:2n+2n=2n+1;(3)210-29-28-27-…-2=(29+29)-29-28-27-…-2=29-28-27……-2=(28-28)-28-27-…-2=28-27-…-2=27-26-25-24-23-22-2=26-25-24-23-22-2=25-24-23-22-2=24-23-22-2=23-22-2=22-2=2.(1)根据题目中的例子,可以发现各个式子的特点,从而可以写出第④个等式;(2)根据题目中的例子,可以发现各个式子的特点,从而可以写出第n个等式,并加以说明成立的理由:(3)根据前面发现的规律可以解答本题.本题考查数字的变化类,有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,写出相应的式子.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: 解:(1)①125;②∠B+∠C+2∠DOE=360°,理由:∵∠DOE=∠OAD+∠ADO,∵AE、DO分别平分∠BAD、∠CDA,∴2∠DOE=∠BAD+∠ADC,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠B+∠C+2∠DOE=360°;(2)∠B+∠C=2∠DOE,理由:∵∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAD=2∠EAD,∠ADC=2∠ADO,∴∠BAD+∠ADC=2(∠EAD+∠ADO),∴360°-∠B-∠C=2(180°-∠DOE),∴∠B+∠C=2∠DOE.【分析】此题考查了多边形内角与外角,平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°.(1)①根据平行线的性质和角平分线的定义可求∠BAE,∠CDO,再根据三角形外角的性质可求∠AEC,再根据四边形内角和等于360°可求∠DOE的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE和∠BAD、∠ADC的关系,再根据四边形内角和等于360°可求∠B、∠C、∠DOE之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,根据角平分线的定义得到∠BAD=2∠EAD,∠ADC=2∠ADO,于是得到结论.【解答】解:(1)①∵AD∥BC,∠B=40°,∠C=70°,∴∠BAD=140°,∠ADC=110°,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAE=70°,∠ODC=55°,∴∠AEC=110°,∴∠DOE=360°-110°-70°-55°=125°;故答案为:125;②见答案;(2)见答案.。
人教版2018--2019学年度第二学期七年级第三次月考数学试卷
∴∠_____=∠____(等量代换);
∴AD平分∠BAC( ).
参考答案
1.C
【解析】解:∵(±11)2=(﹣11)2,∴(﹣11)2的平方根是±11.故选C.
2.C
【解析】试题解析: 与 是直线 被直线 所截形成的同位角,又 所以
故选C.
3.D
【解析】
试题分析:因为点P(x,y)关于原点对称的点是(-x,-y),所以点(-1,2)关于原点对称的点是(1,-2)在第四象限,故选:D.
价格(万元/台)
处理污水量(吨/天)
经调查:购买一台 设备比购买一台 设备多 万元,购买 台 设备比购买 台 设备少 万元.
(1)求 ;
(2)现治污公司购买的设备每天共能处理污水 吨,求治污公司购买设备的资金.
24.(本题7分)已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
17.(本题4分)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=_____度.
18.(本题4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
7.(本题3分)下列各式中是二元一次方程的是( )
A. B. C. D.
8.(本题3分)如图,已知AB、CD、EF相交于点O,已知∠AOE=24°,则∠BOE为()
A.24°B.124°C.156°D.不能确定
9.(本题3分)- 的立方根是()
人教版数学七年级下册第三次月考试卷及答案
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。
人教版七年级第二学期 第三次月考检测数学试卷含答案
人教版七年级第二学期 第三次月考检测数学试卷含答案一、选择题1.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .252.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .43.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是( ).A .35a b =⎧⎨=⎩B .35a b =⎧⎨=-⎩C .41a b =⎧⎨=-⎩D .41a b =⎧⎨=⎩ 4.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-B .1a =C .23a =D .32a =5.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是( )A .425cm 2B .525cm 2C .600cm 2D .800cm 2 6.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种7.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( )A .﹣1B .1C .﹣5D .58.若二元一次方程3x ﹣y =﹣7,x+3y =1,y =kx+9有公共解,则k 的取值为( ) A .3B .﹣3C .﹣4D .49.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩10.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.13D.﹣13二、填空题11.已知21xy=⎧⎨=⎩,是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的平方根为______.12.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.13.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.14.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 15.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.16.关于x,y的方程组223321x y mx y m+=+⎧⎨-=-⎩的解满足不等式组5030x yx y->⎧⎨-<⎩,则m的取值范围_____.17.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.18.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km.19.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.22.平面直角坐标系中,点A坐标为(a,0),点B坐标为(b,2),点C坐标为(c,m),其中a、b、c满足方程组211 322 a b ca b c+-=⎧⎨--=-⎩.(1)若a=2,则三角形AOB的面积为;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值. 25.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.26.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A 型电脑的进货量不少于14台,B 型电的进货量不少于A 型电脑的2倍,那么该商店有几种进货方案?该商场购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可. 【详解】解:2728x y x y +=⎧⎨+=⎩①② ①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5. 故选A. 【点睛】本题考查了用加减法解二元一次方程组.2.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.3.C解析:C 【分析】 首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案. 【详解】 ∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩ 将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩故选:C . 【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.4.B解析:B 【分析】 直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】 解:根据题意,∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.5.B解析:B 【解析】 【分析】设每块墙砖的长为xcm ,宽为ycm ,根据“三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得. 【详解】解:设每块墙砖的长为xcm ,宽为ycm ,根据题意得:1032240x yx y +⎧⎨+⎩==,解得:3515x y ⎧⎨⎩==,则每块墙砖的截面面积是35×15=525cm 2, 故选:B .【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.6.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.7.A解析:A 【分析】 把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D解析:D 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y =kx+9中,即可求得k 的值. 【详解】解:解方程组3731x y x y -=-⎧⎨+=⎩得:21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =. 故选:D . 【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.9.D解析:D 【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组. 【详解】解:设有x 人,买鸡的钱数为y ,根据题意,得:8374x yx y -=⎧⎨+=⎩. 【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.10.D解析:D 【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求. 【详解】解:根据题中的新定义得:2201842019x y y x -=⎧⎨+=-⎩①②,①+②得:3x+3y =﹣1, 则x+y =﹣13. 故选:D . 【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题 11.±3 【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.12.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .13.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.14.五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z =9时,y =30-3z =3,x =11-y -z =11-3-9=-1<0,舍去;当z =10时,y =30-3z =0,x =11-y -z =11-10-0=1,符合题意.综上所述:共有0111x y z =⎧⎪=⎨⎪=⎩,282x y z =⎧⎪=⎨⎪=⎩,453x y z =⎧⎪=⎨⎪=⎩,624x y z =⎧⎪=⎨⎪=⎩,1010x y z =⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.15.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
七年级下第三次月考数学试卷(有答案)
七年级下第三次月考数学试卷(有答案) 七年级下第三次月考数学试卷(附答案)一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a-b<0 B.a-b>0 C.1-a<1-b D.-1+a<-1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m²,-m)在第四象限内。
A.1 B.2 C.3 D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个 B.3个 C.4个 D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<-1 B.a<1 C.a>-1 D.a>15.立方根等于它本身的有()A.-1,0,1 B.-1,1 C.0,-1,1 D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空。
若旅行团的人数为偶数,求旅行团共有多少人()A.27 B.28 C.29 D.307.点到直线的距离是指这点到这条直线的()A.垂线段 B.垂线 C.垂线的长度 D.垂线段的长度8.XXX用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么XXX最多能买笔的数目为()A.14 B.13 C.12 D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款数(元) | 6 | 8 |人数 | x | y |表格中捐款6元和8元的人数不小心被墨水污染已看不清楚。
若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组6x+8y=320x+y=42A.B.C.D.10.点M(a,a-1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、认真填一填(每题3分,共24分)11.√2的平方根为2/√2=√2.12.关于x的不等式2x-a≤-3的解集如图所示,则a的值是3.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于80°。
七年级下册数学第三次月考
培元中学2014年上期七年级数学期中考试试卷时间:90分钟 总分:120分一、选择题:(本大题共10小题,每小题3分,共30分.)1、已知下列方程:① x x 22=- ; ②10.3x =;③ 152-=x x④34x 2=-x ;⑤6x =;⑥02y x =+.其中一元一次方程的个数是( )个.A .5B .4C .3D .2 2、已知24,412,+=+==a P a N a M ,当4>a 时,M 、N 、P 的大小关系是( ) A .M N P >> B .P N M >> C .M P N >> D .N P M >> 3、不等式组:⎩⎨⎧≥+<-.01,042x x 的解集在数轴上表示正确的( ) A .B .C .D .4、如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A .90°B .135°C .150°D .270°5、若b a >,则2ac 2bc .A.≥B.≤C.>D.<6、给出下面四个说法:①三角形三个内角的和为360︒;②三角形一个外角大于它的任何一个内角;③三角形一个外角等于它任意两个内角的和;④三角形的外角和等于360︒. 其中正确说法的个数为 ( )A .0B .1C .2D .37、一个正多边形的每一个内角都等于120︒,那么这个正多边形是 ( )A .正方形B .正五边形C .正六边形D .正八边形8、某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,则他购买的瓷砖形状不能是 ( )A .正三角形B .长方形C .正八边形D .正六边形9、小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( )A.3×4+2x ﹤24B.3×4+2x ≤24C.3x+2×4≤24D.3x+2×4≥2410、已知关于x 的方程1)(42++=+k x k x 的解是负数,则k 的取值范围是( )A 、21->kB 、21-<kC 、31->kD 、31-<k 二、填空题:(本大题共10个小题,每小题3分,共30分,将答案填在题中横线上).11、如果⎩⎨⎧==25y x 是方程2x-3y=2k 的一个解,那么k 的值是_______________; 12、关于x 的不等式组⎩⎨⎧+>->13m x m x 的解集是1->x ,则m 的值为__________;13、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm , 则它的底边长为____________________;14、小明用正方形和正三角形的图纸贴满了整个墙面,若一个顶点周围有m 个正方形和n 个正三角形,则m 、n 满足的关系式是_______________;15、七边形的内角和为_________,外角和为_________;16、已知方程4x+5y-20=0,用含x 的代数式表示y,得_______________;17、已知0)3(2x 32=-++-x m y 中,0y >,那么m 的取值范围是 ;18、若不等式组⎩⎨⎧->-≥+.221;0x x a x 有解,则a 的取值范围是 ; 19、如图,分别以四边形ABCD 的四个顶点为圆心,以1cm为半径作圆,这些圆互不相交,则阴影部分的面积为阴影S = ;20、下列说法正确的是①通过作图我们知道直角三角形只有一条高;②任何三角形的中线都在三角形的内部;③直角三角形的内角和是180o ,那么钝角三角形的内角和必定大于180o ;④一个多边形所有的外角都相等,这个多边形一定是正多边形;⑤等边三角形是特殊的等腰三角形;⑥三角形的角平分线把三角形分成了面积相等的小两个三角形. 答题卡 一、选择题:10*3=30 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题:10*3=30 11___________ . 12___________. 13____________. 14____________. 15____________. 16____________. 17____________. 18____________. 19____________. 20____________ 三.解方程(或方程组),写出必要的步骤:(每小题4分,共8分) 21. 25321326x x +--= 22. 356415x y x y -=+=-⎧⎨⎩ 四、解答题。
2018-2019新人教版七年级下册数学第三次月考试卷答题卡及答案教学提纲
2018- 2019 新人教版七年级下册数学第三次月考试卷答题卡及答案B.两条直线相交,任意两个角都是对顶角2x 3y 6的解,则k 的值是2018-2019新人教版七年级下册数学第三次月考检测卷一. 选择题(我不过是你生命中的一个选择,而你却是我这辈子唯一的答案。
) 分)1若点P在X 轴的下方,y 轴的左方,到每条坐标轴的距离都是 的坐标为()A 3,3B C.两角的两边互为反向延长线的两个角是对顶角 (每小题3分,共303,则点D.两角的两边分别在同一直线上 7 若 x mn 2y mn2 2007 是关于 x,y,这两个角互为对顶角的二元一次方程,则m,n 的值分别是3,33, 3 D 、 3,A.m = 1,n=0B. m = 0,n=1C. m = 2,n=1D.m = 2, n=32.下列各式中,正确的是()C. 3 27 =-3D.「4)2=-48.如右图,下列能判定AB // CD 的条件有( BCD 180 ;5x 3v3x 5 3.不等式组 的解集为x va A a v 4X V 4,则a 满足的条件是()B、 4.用代入法解方程组a 7x 4 2y 2y C a 4 D a(1)有以下步骤:3 12 (2)①:由⑴,得y7x 2 ④: ⑶A.1 9.7x 32••• x 可取一切有理数,原方程组有无数个解 () C 、③ D 、④②:由⑶代入⑴,得7X 2③:整理得3=3 以上解法,造成错误的 A 、① B 、② 5.地理老师介绍到:长江比黄河长 836千米,黄河长度的6倍比长江长度 的5倍多1284千米,小东根据地理教师的介绍,设长江长为 x 千米,黄河 长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河 的长度,那么小东列的方程组可能是(x y 836 B 5x 6y 1284 y 836 5x 1284 步疋 A. x 6y 6.以下说法正确的是(x y 836 C6x 5y 1284 X 6y ) y 836D 、 5x 1284 A.有公共顶点,并且相等的两个角是对顶角 )5.D.4BC.3 4 ; (4) B.2某人从一鱼摊上买了三条鱼,平均每条 了两条鱼,平均每条b 元,后来他又以每条a 元,又从另一个鱼摊上买 b元的价格把鱼全部卖给了2乙,结果发现赔了钱,原因是( )A. a > b B . a v b C. a = b D.与 ab 大小无关x > 210. 如果不等式 无解,则b 的取值范围是()y v bA. b >-2B. b v -2 C . b >-2 D . b < -2二.填空题 11. 已知a 、(确认过眼神,你是不是会做题的人b 为两个连续的整数,且a v . 11 v b ,3 n 2 2 0,则m 2n 的值是 _____)(每题4分,共32分)贝 U a b ___12、 若 m 13. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所 截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条 直线的两条直线互相垂直。
2018-2019学年七年级下期末考试数学试卷及答案
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
黑龙江省哈尔滨市宾县第四中学2023-2024学年七年级下学期第三次月考数学试题(含答案)
2023-2024学年度上学期七年级第三次月考试题数学试卷考生须知:1、本试卷满分为120分,考试时间为120分钟。
2、答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3、请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。
4、选择题必须使用2B 铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
5、保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共27分)(涂卡)一、选择题(每题3分,共27分)1.下列各式中是二元一次方程的为( )A .B.C .D .2.在下列图案中,能用平移得到的是()A .B .C .D .3.将点先向左平移3个单位,再向上平移2个单位得到的点的坐标是( )A .B .C .D .4.如图.已知是直线上一点,,,则的度数是( )A .B .C .D .5.下列计算正确的是()A BCD6.如图,四边形中,,点为延长线上一点,连接、,平分,且,则下列判断错误的是( )2π5x +=13y x+=23x y -=162x xy -=()2,3A -()5,1-()1,5()5,5-()1,1O AB 35AOE ∠=︒OF OE ⊥BOF ∠45︒55︒60︒65︒3=5=-2=±2=-ABCD AB CD ∥E AB DB AC AC DAB ∠180ADC CBE ︒∠+∠=A .B .C .D .7.已知,是二元一次方程的解,则的值为( )A .1B .C .3D .8.已知点,且、为二元一次方程组的解,则点在( )A .第一象限B .第二象限C .第三象限D .第四象限9.有下列命题:①负数没有立方根;②平方根与立方根相等的数只有0;③两直线平行,同旁内角相等;④实数与数轴上的点一一对应.其中正确的有( )A .1个B .2个C .3个D .4个第Ⅱ卷 非选择题(共93分)二、填空题(每题3分,共27分)10的和为______.11.已知,用含的式子表示,得______.12.若点在轴上,则点的坐标为______.13.若方程是关于、的二元一次方程,则的值为______.14.如图,,直线分别交、于、,平分,若,则的度数为______.15.琳琳同学在手工课上制作了一些相同形状的卡片,当她把两个卡片拼在一起时,量得卡片总长为,当她把五张卡片拼在一起时,量得卡片总长为,若把20张卡片按图中方法拼在一起,卡片的总长为______.16.某科研小队在一处遗迹中发现了古人的残破书籍,书籍上记录了一个方程组,翻译后为,方程组的解为,其中与处已经看不清了,请你用所学的知识帮科研人员确定的值为______.AD BC ∥ACD ACB∠=∠DAC DCA∠=∠DBA CBE∠=∠3x =-5y =210x my ++=m 1-3-(),A m n m n 15m n m n +=⎧⎨-=⎩A 321x y -=y x x =()2,3M a a +-x M ()23220m n m xy ---+=x y n m AB CD ∥EF AB CD E F EG BEF ∠166∠=︒2∠12cm 27cm cm 3212x y x y +=⊗⎧⎨-=⎩5x y =⎧⎨=⊕⎩⊗⊕⊗17.已知在平面直角坐标系中,,点在轴上,且的面积为8,满足条件的点的坐标为______.18.如图,已知四边形中,为上一点,连接、,与的延长线交于点,,,则的度数为______.三、解答题(19、20、21、22、23各6分,24、25各8分,26、27各10分)19.计算(1(220.解方程组(1)(2)21.在平面直角坐标系中,三个顶点的坐标分别为,,(1)将先向右平移4个单位,再向上平移1个单位得到,请画出;(2)将平移到的位置,点的对应点为,且,请画出;(3)连接、、,请直接写出四边形的面积.22.如图,已知直线、相交于点,平分,,求的度数.()1,2A -()3,2B C y ABC △C ABCD AD BC ∥F DC AF BF BF AD E 23C BAD AEB FAE ∠=∠=∠=∠ABF EFC ∠=∠AFB ∠(23--1328y x x y =-⎧⎨+=⎩()1232211x y x y +⎧-=⎪⎨⎪-=-⎩ABC △()2,3A -()3,0B -()1,1C -ABC △111A B C △111A B C △ABC △222A B C △C 2C ()20,3C -222A B C △1B C 2CA 12B C 122B C C AB CD O OC AOE ∠4AOE BOE ∠=∠AOD ∠23.请阅读下列材料:我们规定一种运算,例如.按照这种运算的规定,请解答下列问题:(1)计算(2)若,求的值.24.已知中,,于,过点作交于点,交于。
人教版七年级下册数学第三次月考试题试卷
人教版七年级下册数学第三次月考试卷一.选择题(下列各小题的四个选项中,又且只有一个是符合题意的,将你认为符合题意的答案填入后面的括号中,每小题3分,共30分)1.下列各式中是二元一次方程的是()A.3x﹣2y=9 B.2x+y=6z C.+2=3y D.x﹣3=4y22.如果a<b,c<0,那么下列不等式成立的是()A.ac<bc B.﹣a+c<﹣b+c C.a+c<b+c D.3.二元一次方程组的解是()A.B.C.D.4.方程x+y=6的非负整数解有()A.4个B.5个C.6个D.7个5.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组()A.B.C.D.6.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.7.已知方程组的解为,则2a﹣3b的值为()A.4 B.6 C.﹣6 D.﹣48.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≤3 C.a≥3 D.a<310.不等式组的整数解个数为()A.1个B.2个C.3个D.4个二.填空题(每小题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________(答案不唯一).12.已知方程组的解满足方程x+2y=k,则k=_________.13.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_________.14.用加减消元法解方程组,由①×2﹣②得_________.15.关于x的不等式组的解集是x>﹣1,则m=_________.16.已知关于x的不等式组只有四个整数解,则实数a的取值范围是_________.17.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打_________折出售此商品.18.不等式组的解集是_________.19.已知x的与5的差不小于3,用不等式表示这一关系式为_________.20.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是_________g.三.解答题(共60分)21.(10分)解方程组:(1)(2)22.(8分)求不等式组:的整数解.23.(10分)已知不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解是方程2x﹣ax=4的解,求a的值.24.(10分)有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?25.(10分)已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a、b计算,求原方程组的解.26.(12分)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.参考答案与试题解析一.选择题二、填空题11、等,(答案不唯一). 12、k=﹣3. 13、5. 14、2x=﹣3.15、m=﹣3. 16、﹣3<a≤﹣2. 17、7折. 18、﹣6<x≤1.19、x ﹣5≥3.20、20.三、解答题21、(1)方程组的解为. (2)方程组的解为.22、解:由x ﹣3(x ﹣2)≤8得x ≥﹣1由5﹣x >2x 得x <2∴﹣1≤x <2 ∴不等式组的整数解是x=﹣1,0,1.23、解:由5(x ﹣2)+8<6(x ﹣1)+7得x >﹣3,所以最小整数解为x=﹣2,将x=﹣2代入2x ﹣ax=4中,解得a=4.24、解:设大货车每辆装x 吨,小货车每辆装y 吨根据题意列出方程组为:解这个方程组得 所以3x+5y=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.25、解:把代入(2),得﹣12﹣b=﹣2,解得b=﹣10; 把代入(1),得a+20=15,解得a=﹣5.1 2 3 4 5 6 7 8 9 10A CB D AC B C B D所以原方程组为,解之得.26、解:(1)设甲商品进了a件,则乙种商品进了(80﹣a)件,依题意得:10a+(80﹣a)×30=1600,解得:a=40,即甲种商品进了40件,乙种商品进了80﹣40=40件.(2)设购买甲种商品为x件,则购买乙种商品为(80﹣x)件,依题意可得:,解得:38≤x≤40.即有三种方案,方案一:甲38件,乙42件方案二:甲39件,乙41件方案三:甲40件,乙40件.。
2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷及答案 含解析
2018-2019学年江苏省南京市鼓楼区七年级下学期期中数学试卷一、选择题1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a92.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y23.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为.8.命题“同位角相等,两直线平行”的逆命题是:.9.(+2a)2=4a2+4a+1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.12.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.13.计算:=.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的(按运算顺序填序号).16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴(同位角相等,两直线平行)∠2=∠CBD()∠1=∠2(已知)∠1=∠CBD()∴()∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC()24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:+,得3x+4y=10,④+,得5x+y=11,⑤与联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=cm(用含a、b的代数式表示)OA=cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)参考答案一、选择题(共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的序号填涂在答题卡的相应位置上)1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a9【分析】根据幂的乘方的运算方法,求出(a2)3的结果是多少即可.解:(a2)3=a6.故选:A.2.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y2【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.解:A、x2+4,不能利用平方差进行分解,故此选项错误;B、x2﹣xy=x(x﹣y),不能利用平方差进行分解,故此选项错误;C、x2﹣9=(x+3)(x﹣3),能利用平方差进行分解,故此选项正确;D、﹣x2﹣y2,不能利用平方差进行分解,故此选项错误;故选:C.3.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 【分析】根据平行线的判定方法即可解决问题.解:∵∠1=∠2,∴AB∥CD(内错角相等两直线平行),故选:B.4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等【分析】根据对顶角、偶次幂、平行线的性质以及互余进行判断即可.解:A、相等的角不一定是对顶角,是假命题;B、若x2=y2,则x=y或x=﹣y,是假命题;C、同角的余角相等,是真命题;D、两直线平行,同旁内角互补,是假命题;故选:C.5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°【分析】根据方位角的概念,画图正确表示出方位角,即可求解.解:由题意可知∠ABC=30°+15°=45°故选:C.6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.【分析】解二元一次方程组求出x、y,得到x+y=﹣1,根据幂的乘方法则、同底数幂的乘法法则计算即可.解:,解得,,∴x+y=﹣1,则22x•4y=22x•22y=22(x+y)=2﹣2=,故选:D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为 1.4×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 014=1.4×10﹣8,故答案为1.4×10﹣8.8.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【分析】把一个命题的题设和结论互换就得到它的逆命题.解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.9.(1+2a)2=4a2+4a+1.【分析】根据因式分解的完全平方公式:a2+2ab+b2=(a+b)2可知1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,再由整式乘法与因式分解的关系,问题得解.解:∵1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,∴(1+2a)2=1+4a+4a2,故答案为:1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=﹣2.【分析】根据平方差公式计算即可.解:因为a+b=2,a﹣b=﹣1,则a2﹣b2=(a+b)(a﹣b)=2×(﹣1)=﹣2,故答案为:﹣2.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为20cm2.【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2012.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.【分析】设白鸡有x只,黑鸡有y只,根据“黑鸡+白鸡=200只、白鸡=3黑鸡”列出方程组.解:设白鸡有x只,黑鸡有y只,依题意得:.故答案是:.13.计算:=.【分析】根据积的乘方的运算方法,求出算式的值是多少即可.解:=[×]××1=1×=故答案为:.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=26°.【分析】利用平行线的性质,角平分线的定义求出∠AGH即可解决问题.解:∵HN平分∠CHG,∴∠CHG=2∠CHN=64°,∵AB∥CD,∴∠AGH+∠CHG=180°,∴∠AGH=116°,∵MG⊥GH,∴∠MGH=90°,∴∠AGM=116°﹣90°=26°,故答案为26°.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).【分析】在(a4•a5)2=(a4)2•(a5)2=a8•a10=a18的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,第三步用到了同底数幂的乘法,据此判断即可.解:在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).故答案为:③②①.16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为或.【分析】(1)经过第一次操作可知剩下的长方形一边长为a,另一边长为2﹣a;(2)若第二次操作后,剩下的长方形恰好是正方形,则所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,(3)根据第2次剩下的长方形分两种情况讨论,若第三次操作后,剩下的长方形恰好是正方形,由此可得出关于a的一元一次方程,解之即可得出结论.解:第1次操作,剪下的正方形边长为a,剩下的长方形的长宽分别为a、2﹣a,由1<a<2,得a>2﹣a第2次操作,剪下的正方形边长为2﹣a,所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,①当2a﹣2<2﹣a,即a<时,则第3次操作时,剪下的正方形边长为2a﹣2,剩下的长方形的两边分别为2a﹣2、(2﹣a)﹣(2a﹣2)=4﹣3a,则2a﹣2=4﹣3a,解得a=;②2a﹣2>2﹣a,即a>时则第3次操作时,剪下的正方形边长为2﹣a,剩下的长方形的两边分别为2﹣a、(2a ﹣2)﹣(2﹣a)=3a﹣4,则2﹣a=3a﹣4,解得a=;故答案为或.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)【分析】(1)先计算乘除,再合并即可得;(2)根据多项式乘多项式的运算法则计算可得;(3)先利用平方差公式计算,再利用完全平方公式计算可得.解:(1)原式=﹣3a3+a3=﹣2a3;(2)原式=2x2+6xy﹣xy﹣3y2=2x2+5xy﹣3y2;(3)原式=(a﹣b)2﹣1=a2﹣2ab+b2﹣1.18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=【分析】根据平方差公式、单项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2=x2﹣9﹣2x2﹣6x+x2﹣2x+1=﹣8x﹣8,当x=﹣时,原式=﹣8×(﹣)﹣8=4﹣8=﹣4.19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y【分析】(1)利用提公因式法因式分解;(2)先提公因式,再利用完全平方公式进行因式分解.解:(1)2a(m+n)﹣b(m+n)=(m+n)(2a﹣b);(2)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=1或3【分析】(1)利用加减消元法解出方程组;(2)根据把x、y的值代入二元一次方程,得到a、b的关系,根据题意求出a、b,计算即可.解:(1)①+②,得4x=4,解得,x=1,把x=1代入①,得,y=2,所以原方程组的解为;(2)由题意得,a+2b=5,则,,∴a b=1或3,故答案为:1或3.21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'PA﹣∠PAB=180°故答案为:C22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?【分析】结论:AB∥CD,只要证明∠BAF=∠ACG即可.解:结论:AB∥CD.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG.23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)【分析】根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【解答】证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)故答案为:BD∥EF;两直线平行,同位角相等;等量代换;GF∥BC;内错角相等,两直线平行;平行于同一直线的两直线平行.24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=﹣2.【分析】(1)根据每一步得到的方程反推其计算的由来,得到二元一次方程组后用代入消元或加减消元法解出x和y,再代回原方程组求z.(2)把(m+n)看作整体,解关于(m+n)、p、q的三元一次方程组.解:(1)方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组解得:把代入①得:2+1+z=2,解得:z=﹣1,∴原方程组的解是故答案为:①,②,②,③,⑤,④.(2)②﹣①×2得:p﹣3q=8④,③﹣①×3得:﹣5p﹣2q=﹣6⑤,由④与⑤组成方程组解得:,代入①得:m+n=4∴m+n﹣2p+q=﹣2故答案为:﹣2.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=(a+b)cm(用含a、b的代数式表示)OA=(2a+b)cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).【分析】(1)根据题意可以用代数式表示出O2C和OA,本题得以解决;(2)根据(1)中的结果和图形,可以用代数式表示出阴影部分的面积.解:(1)∵半径O1A=acm,半径O2C比半径O1A大bcm,∴O2C=(a+b)cm,∴OA==(2a+b)cm,故答案为:(a+b),(2a+b);(2)π•(2a+b)2﹣π•a2﹣π•(a+b)2=π•(2a2+2ab)=3×(2a2+2ab)=(6a2+6ab)cm2,即阴影部分的面积是(6a2+6ab)cm2.26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(a+b)(c+d)=ac+ad+bc+bd(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(a+b)2=a2+2ab+b2(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有15项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)【分析】(1)①根据长方形的面积可得结论;②图中大正方形的面积可以用正方形的面积公式来求,也可把正方形分成四个小图形分别求出面积再相加,从而得出(a+b)2=a2+2ab+b2;(2)直接作图即可得出(a+b+c)2=a2+b2+c2+2ab+2bc+2ac成立;(3)①分别计算两个数的平方,三个数的平方,…,得出规律即可求出答案;②画图4可得结论;③先将x+y+z=2m两边同时平方得:xz+xy+yz=2m2﹣n,继续平方后化简可得结论.解:(1)①如图1,得(a+b)(c+d)=ac+ad+bc+bd,②如图2,由②得:(a+b)2=a2+2ab+b2,故答案为:①(a+b)(c+d)=ac+ad+bc+bd,②(a+b)2=a2+2ab+b2;(2)已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)①(a1+a2)2=a12+a22…2项+2a1a2….1项所以一共有2+1=3项;(a1+a2+a3)2=a12+a22+a32…3项+2a1a2+2a1a3…2项+2a2a3…1项所以一共有3+2+1=6项;(a1+a2+a3+a4)2=a12+a22+a32+a42…4项+2a1a2+2a1a3+2a1a4…3项+2a2a3+2a2a4…2项+2a3a4…1项所以一共有4+3+2+1=10项;(a1+a2+a3+a4+a5)2=a12+a22+a32+a42+a52…5项+2a1a2+2a1a3+2a1a4+2a1a5…4项+2a2a3+2a2a4+2a2a5…3项+2a3a4+2a3a5…2项+2a4a5…1项所以一共有5+4+3+2+1=15项;故答案为:15;②如图4,由图形得:px+my+nz<t2;③∵x+y+z=2m,∴x2+y2+z2+2xz+2xy+2yz=4m2,∵x2+y2+z2=2n,∴2xz+2xy+2yz=4m2﹣2n,∵xz+xy+yz=2m2﹣n,∴(xz+xy+yz)2=x2y2+y2z2+x2z2+2x2yz+2y2xz+2z2xy=(2m2﹣n)2,∴x2y2+y2z2+x2z2=4m4﹣4m2n+n2﹣2xyz(x+y+z)=4m4﹣4m2n+n2﹣2p•2m=4m4﹣4m2n+n2﹣4pm.。
七年级数学第三次月考+全解全析(上海专用,范围:沪教版实数+相交线平行线+三角形)
2023-2024学年七年级数学第三次月考模拟卷全解全析(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共6个小题,每小题2分,共12分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.()A.4B.2C.4±D.2±【答案】B【考点】算术平方根【分析】利用算术平方根的意义解答即可.【解答】解:4,4的算术平方根为2,∴2,故选:B.【点评】本题主要考查了算术平方根的意义,熟练掌握算术平方根的意义是解题的关键.2.下列各式计算正确的是()A.3=−D2=B4±C5=【答案】D【考点】算术平方根;立方根【分析】根据二次根式的性质计算即可.【解答】解:=±,3∴不符合题意.A=,4∴不符合题意.B0)a …,C ∴不符合题意.328=, ∴2=.D ∴符合题意. 故选:D .【点评】本题考查了二次根式的性质,其中理解平方根与算术平方根的区别与联系是解题的关键. 3.如图,//BE CD ,BD 平分CBE ∠,110CBE ∠=︒,125E ∠=︒,则ADC ∠度数是( )A .35︒B .45︒C .25︒D .30︒【答案】A【考点】角的计算;平行线的性质【分析】由BD 平分CBE ∠,110CBE ∠=︒,得到55DBE ∠=︒,由平行线的性质得到55BDC DBE ∠=∠=︒即可求解. 【解答】解:BD 平分CBE ∠,110CBE ∠=︒,∴111105522DBE CBE ∠=∠=⨯︒=︒, 由题知,90F ∠=︒,125E ∠=︒,360360901255590BDF F E DBE ∴∠=︒−∠−∠−∠=︒−︒−︒−︒=︒, //BE CD ,55BDC DBE ∴∠=∠=︒,180180559035ADC BDC BDF ∴∠=︒−∠−∠=︒−︒−︒=︒,故选:A .【点评】本题考查了角度的计算,角平分线的性质,平行线的性质,掌握平行线的性质是解题的关键.4.某兴趣小组利用几何图形画出螳螂的简笔画,如图,已知130BAC ∠=︒,//AB DE ,70D ∠=︒,则(ACD ∠=)A .10︒B .20︒C .30︒D .60︒【答案】B【考点】平行线的性质【分析】过点C 作//CF AB ,先证明//CF DE ,然后根据平行线的性质求出130ACF ∠=︒,110DCF ∠=︒,最后利用角的和差关系求解即可. 【解答】解:过点C 作//CF AB ,//AB DE ,//CF AB //CF DE ∴,ACF BAC ∴∠=∠,180D DCF ∠+∠=︒,又130BAC ∠=︒,70D ∠=︒,130ACF ∴∠=︒,110DCF ∠=︒, 20ACD ACF DCF ∴∠=∠−∠=︒.故选:B .【点评】本题考查了平行线的性质,平行公理的推论,添加合适的辅助线是解题的关键.5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块【考点】KE :全等三角形的应用【分析】根据全等三角形的判断方法解答.【解答】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故选:D .【点评】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键.6.在同一平面内,已知////a b c ,若直线a 、b 之间的距离为5cm ,直线b 、c 之间的距离为3cm ,则直线a 、c 间的距离为( )A .2cm 或8cmB .2cmC .8cmD .不确定【答案】A【考点】平行线之间的距离【分析】分两种情况,当直线c 在直线a 、b 之间时,当直线c 在直线a 、b 外部时,即可解决问题.【解答】解:当直线c 在直线a 、b 之间时,如图(1), 直线a 、c 间的距离为532()cm −=; 当直线c 在直线a 、b 外部时,如图(2), 直线a 、c 间的距离为538()cm +=, ∴直线a 、c 间的距离是2或8cm .故选:A .【点评】本题考查平行线的距离,关键是要分两种情况讨论.第Ⅱ卷二、填空题(本大题共12个小题,每小题3分,共36分)7.已知实数0a b …… . 【答案】b a −. 【考点】实数的运算【分析】直接利用a ,b 的符号得出0a b −<,再利用二次根式的性质化简即可. 【解答】解:0a b ……,0a b ∴−<,∴||a b b a −=−.故答案为:b a −.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.8 112.(填“>”,“ =”或“<” )【考点】2A :实数大小比较【分析】直接利用估算无理数的大小的方法得出23<<,进而比较得出答案. 【解答】解:253<<, ∴13>,∴112>. 故答案为:>.【点评】此题主要考查了实数运算,正确估算无理数的大小是解题关键.9.如图,直线AB ,CD 交于点O ,:1:2AOC COE ∠∠=,若28BOD ∠=︒,则COE ∠等于 度.【答案】56.【考点】对顶角、邻补角【分析】由对顶角相等可得28AOC BOD ∠=∠=︒,再由:1:2AOC COE ∠∠=,进而可得结论. 【解答】解:AOC BOD ∠=∠,28BOD ∠=︒,28AOC ∴∠=︒, :1:2AOC COE ∠∠=, 256COE AOC ∴∠=∠=︒.故答案为:56.【点评】此题主要考查了对顶角的定义和对顶角得性质,得出28AOC ∠=︒是解题关键.10.一个等腰三角形一腰上的高与另一腰的夹角为45︒,三角形顶角度数 . 【考点】KH :等腰三角形的性质【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45︒.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为135︒. 【解答】解:①如图,等腰三角形为锐角三角形,BD AC ⊥,45ABD ∠=︒, 45A ∴∠=︒,即顶角的度数为45︒.②如图,等腰三角形为钝角三角形,BD AC ⊥,45DBA ∠=︒, 45BAD ∴∠=︒, 135BAC ∴∠=︒.故答案为45︒或135︒.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.11.在社会实践手工课上,小茗同学设计了如图这样一个零件,如果52A ∠=︒,25B ∠=︒,30C ∠=︒,35D ∠=︒,72E ∠=︒,那么F ∠= ︒.【答案】70.【考点】三角形的外角性质【分析】连接AD ,连接AE 并延长到点M ,连接AF 并延长到点N ,利用三角形的外角性质,可得出BEM BAE B ∠=∠+∠,DEM DAE ADE ∠=∠+∠,DFN DAF ADF ∠=∠+∠,CFN CAF C ∠=∠+∠,将其相加后可得出BED CFD B EDF C ∠+∠=∠+∠+∠+∠,再代入各角的度数,即可求出结论. 【解答】解:连接AD ,连接AE 并延长到点M ,连接AF 并延长到点N ,如图所示.BEM ∠是ABE ∆的外角, BEM BAE B ∴∠=∠+∠.同理可得出:DEM DAE ADE ∠=∠+∠,DFN DAF ADF ∠=∠+∠,CFN CAF C ∠=∠+∠,BEM DEM DFN CFN BAE B DAE ADE DAF ADF CAF C ∴∠+∠+∠+∠=∠+∠+∠+∠+∠+∠+∠+∠,即BED CFD A B EDF C ∠+∠=∠+∠+∠+∠,7252253530CFD ∴︒+∠=︒+︒+︒+︒, 70CFD ∴∠=︒.故答案为:70.【点评】本题考查了三角形的外角性质,牢记“三角形的一个外角等于和它不相邻的两个内角的和”是解题的关键.12.如图,已知直线AB ,CD 被EF 所截,EG 是AEF ∠的角平分线,若12∠=∠,24120∠+∠=︒,则3∠= .【答案】40︒.【考点】平行线的判定与性质【分析】由12∠=∠,判定//AB CD ,得到34∠=∠,2AEF ∠=∠,再由角平分线的定义得到224∠=∠,可求出440∠=︒,即可得解. 【解答】解:12∠=∠,//AB CD ∴,34∴∠=∠,2AEF ∠=∠, EG 是AEF ∠的角平分线,224AEF ∴∠=∠=∠,24120∠+∠=︒, 440∴∠=︒, 340∴∠=︒,故答案为:40︒.【点评】此题考查了平行线的判定与性质,熟记“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.13.在ABC ∆是5AB =,3AC =,BC 边的中线AD 的取值范围是 . 【考点】三角形三边关系;全等三角形的判定与性质【分析】延长AD 到E ,使AD DE =,连接BE ,根据SAS 证ADC EDB ∆≅∆,推出3AC BE ==,在ABE ∆中,根据三角形的三边关系定理得出5353AE +>>−,即可得出答案. 【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD 是ABC ∆中线,BD DC ∴=,在ADC ∆和EDB ∆中AD DE ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆,3AC BE ∴==,在ABE ∆中,根据三角形的三边关系定理得:5353AE +>>−,228AD ∴<<,14AD <<,故答案为:14AD <<.【点评】本题考查了全等三角形的性质和判定,三角形的三边关系定理,关键是通过作辅助线把已知条件和未知条件放在一个三角形中.14.如图,AOD BOC ∆≅∆,30A ∠=︒,50C ∠=︒,145AOC ∠=︒,则COD ∠= .【答案】45︒.【考点】全等三角形的性质50D C ∠=∠=︒,进而利用三角形内角和定理得出AOD ∠,进而解答即可.【解答】解:AOD BOC ∆≅∆,30A ∠=︒,50C ∠=︒,50D C ∴∠=∠=︒, 30A ∠=︒,1801803050100AOD A D ∴∠=︒−∠−∠=︒−︒−︒=︒, 145AOC ∠=︒,14510045COD AOC AOD ∴∠=∠−∠=︒−︒=︒,故答案为:45︒.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.15.如图,在ABC ∆中,25B ∠=︒,点D 是BC 边上一点,连接AD ,且AD BD =,90CAD ∠=︒,CF 平分ACB ∠,分别交AD ,AB 于点E ,F ,则AEC ∠的度数为 .【答案】70︒.【考点】等腰三角形的性质【分析】根据三角形外角的性质,得AEC EDC DCE ∠=∠+∠.欲求AEC ∠,需求EDC ∠、DCE ∠.根据等腰三角形的性质,由AD BD =,得25B BAD ∠=∠=︒,那么50ADC B BAD ∠=∠+∠=︒,故18040ACD CAD ADC ∠=︒−∠−∠=︒.根据角平分线的定义,由CF 平分ACB ∠,得1202DCE ACD ∠=∠=︒,从而解决此题. 【解答】解:AD BD =,25B BAD ∴∠=∠=︒. 50ADC B BAD ∴∠=∠+∠=︒.18040ACD CAD ADC ∴∠=︒−∠−∠=︒.又CF 平分ACB ∠, 1202DCE ACD ∴∠=∠=︒. 502070AEC EDC DCE ∴∠=∠+∠=︒+︒=︒.故答案为:70︒.【点评】本题主要考查等腰三角形的性质、三角形外角的性质、三角形内角和定理、角平分线的定义,熟练掌握等腰三角形的性质、三角形外角的性质、三角形内角和定理、角平分线的定义是解决本题的关键. 16.如图,BO 、CO 分别是ABC ∠和ACB ∠的平分线,BO 与CO 相交于O ,过点O 作BC 的平行线交AB 于D ,交AC 于点E ,已知10AB =,6AC =,则ADE ∆的周长是 .【考点】JA :平行线的性质;KJ :等腰三角形的判定与性质【分析】两直线平行,内错角相等,以及根据角平分线性质,可得OBD ∆、EOC ∆均为等腰三角形,由此把ADE ∆的周长转化为AC AB +. 【解答】解://DE BCDOB OBC ∴∠=∠,又BO 是ABC ∠的角平分线,DBO OBC ∴∠=∠, DBO DOB ∴∠=∠, BD OD ∴=,同理:OE EC =,ADE ∴∆的周长16AD OD OE AE AD BD AE EC AB AC =+++=+++=+=. 故答案为:16.【点评】本题考查了平行线的性质和等腰三角形的判定及性质,正确证明OBD ∆、EOC ∆均为等腰三角形是关键.17.如图,ACE ∠是ABC ∆的外角,BD 平分ABC ∠,CD 平分ACE ∠,且BD 、CD 交于点D .若70A ∠=︒,则D ∠的度数为 .【答案】35︒.【考点】三角形内角和定理;三角形的外角性质【分析】根据角平分线的定义,由BD 平分ABC ∠,CD 平分ACE ∠,得2ABC DBC ∠=∠,2ACE DCE ∠=∠.根据三角形外角的性质,得)2DBC D =∠,从而推断除1352D A ∠=∠=︒. 【解答】解:BD 平分ABC ∠,CD 平分ACE ∠,2ABC DBC ∴∠=∠,2ACE DCE ∠=∠.222()2A ACE ABC DCE DBC DCE DBC D ∴∠=∠−∠=∠−∠=∠−∠=∠.70A ∠=︒,∴1352D A ∠=∠=︒. 故答案为:35︒.【点评】本题主要考查角平分线的定义以及三角形外角的性质,熟练掌握角平分线的定义以及三角形外角的性质是解决本题的关键.18.定义:等腰三角形的底边与其一腰的长度的比值k 称为这个等腰三角形的“优美比”,若等腰ABC ∆的周长为15cm ,7AB cm =,则它的“优美比” k = .【考点】等腰三角形的性质【分析】分两种情况:AB 为腰或AB 为底边,再根据三角形周长可求得底边或腰的长度,即可得到它的优美比k .【解答】解:当AB 腰时,则底边15271cm =−⨯=; 此时,优美比17k =; 当AB 为底边时,则腰为(157)24cm −÷=; 此时,优美比74k =; 故答案为17或74. 【点评】本题主要考查等腰三角形的性质,分类讨论是解题的关键.三、解答题(本大题共8小题,第19、20题每题5分,第21至24题每题6分,第 25题8分,第26题10分,共52分.解答应写出文字说明,证明过程或演算步骤)190112024()2|2−++.3.【考点】实数的运算;负整数指数幂;零指数幂【分析】首先计算零指数幂、负整数指数幂、开平方和绝对值,然后从左向右依次计算,求出算式的值即可.0112024()|2|2−++12(2=++122=++3=.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.计算:1323418()16()227−÷−. 【答案】16−. 【考点】分数指数幂;负整数指数幂【分析】原式利用负整数指数幂,分数指数幂,乘方的意义计算即可. 【解答】解:1323418()16()227−÷− 1334234222()3⨯⨯=÷− 2483=÷− 1223=− 16=−. 【点评】本题考查了实数的运算,掌握运算法则是解题的关键.21.已知2y =,求x y的平方根.【答案】 【考点】分数指数幂;平方根【分析】直接利用四次根式和二次根式有意义的条件得出x 的值,进而得出y 的值,即可得出答案.【解答】解:2y ,10x ∴−…,10x −…, 解得,1x =,2y ∴=, ∴12x y =,∴x y 的平方根是 【点评】此题主要考查了二次根式有意义的条件和平方根的定义,正确得出x 和y 的值是解题关键.22.完成下面的证明过程.如图,点D ,G 分别在三角形ABC 的边AB ,AC 上,AE BC ⊥于点E ,DF BC ⊥于点F ,连结EG .若12180∠+∠=︒,试说明CEG B ∠=∠的理由.解:AE BC ⊥,DF BC ⊥//AE ∴ DF .2180(EAB ∴∠+∠=︒ ).12180∠+∠=︒1EAB ∴∠=∠//GE ∴ ( ).(CEG B ∴∠=∠ ).【答案】DF ;两直线平行,同旁内角互补;AB ;内错角相等,两直线平行;两直线平行,同位角相等.【考点】平行线的判定与性质【分析】根据平行线的判定与性质求解即可.【解答】解:AE BC ⊥,DF BC ⊥//AE DF ∴.2180EAB ∴∠+∠=︒(两直线平行,同旁内角互补).12180∠+∠=︒, 1EAB ∴∠=∠,//GE AB ∴(内错角相等,两直线平行).CEG B ∴∠=∠(两直线平行,同位角相等).故答案为:DF ;两直线平行,同旁内角互补;AB ;内错角相等,两直线平行;两直线平行,同位角相等.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.23.如图,在ABC ∆中,AD 是BC 边上的高线,BE 是一条角平分线,它们相交于点F .已知70AEF ∠=︒,50AFE ∠=︒,求C ∠和ABC ∠的度数.【答案】30C ∠=︒,80ABC ∠=︒.【考点】三角形内角和定理【分析】先根据三角形内角和为180度求出60DAC ∠=︒,结合90ADC ∠=︒,可求出C ∠,再根据AEF C EBC ∠=∠+∠求出EBC ∠,最后根据角平分线的定义可求ABC ∠的度数.【解答】解:70AEF ∠=︒,50AFE ∠=︒,18060FAE AFE AEF ∴∠=︒−∠−∠=︒,即60DAC ∠=︒, AD 是BC 边上的高线,90ADC ∴∠=︒,9030C DAC ∴∠=︒−∠=︒,AEF C EBC ∠=∠+∠,703040EBC AEF C ∴∠=∠−∠=︒−︒=︒, BE 是平分ABC ∠,280ABC EBC ∴∠=∠=︒.【点评】本题考查三角形内角和定理,三角形外角的定义和性质,三角形角平分线和高线的定义,三角形内角和是180︒.24.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =、BE CF =,(1)求证:AD 平分BAC ∠;(2)已知20AC =,4BE =,求AB 的长.【考点】全等三角形的判定与性质【分析】(1)求出90E DFC ∠=∠=︒,根据全等三角形的判定定理得出Rt BED Rt CFD ∆≅∆,推出DE DF =,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE AF =,BE CF =,即可求出答案.【解答】(1)证明:DE AB ⊥,DF AC ⊥,90E DFC ∴∠=∠=︒, ∴在Rt BED ∆和Rt CFD ∆中,BD CD BE CF =⎧⎨=⎩, Rt BED Rt CFD(HL)∴∆≅∆,DE DF ∴=,DE AB ⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:90AED AFD ∠=∠=︒,AD AD =,DE DF =,Rt ADE Rt ADF(HL)∴∆≅∆AE AF ∴=,20AC =,4CF BE ==,20416AE AF ∴==−=,16412AB AE BE ∴=−=−=.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的对应边相等,对应角相等.25.(1)如图(1),已知:在ABC ∆中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE BD CE =+.(2)如图(2),将(1)中的条件改为:在ABC ∆中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.【考点】KD :全等三角形的判定与性质【分析】(1)由条件可证明ABD CAE ∆≅∆,可得DA CE =,AE BD =,可得DE BD CE =+;(2)由条件可知180BAD CAE α∠+∠=︒−,且180DBA BAD α∠+∠=︒−,可得DBA CAE ∠=∠,结合条件可证明ABD CAE ∆≅∆,同(1)可得出结论.【解答】(1)证明:BD DE ⊥,CE DE ⊥,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE BAD ABD ∴∠+∠=∠+∠=︒,ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,BDA CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD CAE AAS ∴∆≅∆,BD AE ∴=,CE DA =,DE AE DA BD CE ∴=+=+;(2)解:成立,证明如下:BDA AEC BAC a ∠=∠=∠=,180BAD CAE α∴∠+∠=︒−,且180DBA BAD α∠+∠=︒−,DBA CAE ∴∠=∠,在ABD ∆和CAE ∆中,BDA CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD CAE AAS ∴∆≅∆,BD AE ∴=,CE DA =,DE AE DA BD CE ∴=+=+.【点评】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD AE =、CE AD =是解题的关键.26.如图①,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形,请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD ,CE 分别是BAC ∠,BCA ∠的平分线,AD ,CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系.(不需证明)(2)如图③,在ABC ∆中,60B ∠=︒,请问,你在(1)中所得结论是否仍然成立?请说明理由.【答案】见解答.(1)EF FD =;(2)仍然成立,理由见解答.【考点】全等三角形的判定与性质;含30度角的直角三角形;轴对称的性质;角平分线的性质【分析】(1)在AC 上截取AG AE =,连接FG ,根据角平分线的 性质可得1∠ 与2∠的大小关系,进而利用SAS 证明AEF AGF ∆≅∆,再根据全等三角形的性质得到AFE ∠ 与AFG ∠,FE 与FG 的数量关系;由已知条件,利用角平分线和三角形的外角的性质,推出AFE ∠,CFD ∠,AFG ∠的关系,进而求得CFG ∠ 与CFD ∠的数量关系,利用ASA 不难证明CFG ∆与CFD ∆全等,从而可得FG 与FD 的数量关系,联系上步结论即可解答;(2)由F 点向AB 、BC 作垂线,分别交AB ,BC 于G ,H 点,则90FGE FHD ∠=∠=︒,根据角平分线的性质不 难得到F 是ABC ∆的内心,进而得到FG FH =,由外角性质可得GEF HDF ∠=∠,据此判断EFG ∆和DFH ∆的关系.【解答】解:在OP 上任找一点E ,过E 分别做CE OA ⊥于C ,ED OB ⊥于D ,可得OEC OED ∆≅∆,如图①,(1)EF FD =.理由如下:如图②,在AC 上截取AG AE =,连接FG .AD 是BAC ∠的平分线,12∴∠=∠,在AEF ∆与AGF ∆中,12AG AE AF AF =⎧⎪∠=∠⎨⎪=⎩, ()AEF AGF SAS ∴∆≅∆.AFE AFG ∴∠=∠,FE FG =.由60B ∠=︒,AD ,CE 分别是BAC ∠,BCA ∠的平分线,2223180B ∠+∠+∠=︒,2360∴∠+∠=︒,即GFC DFC ∠=∠,在CFG ∆与CFD ∆中,34GFC DFC FC FC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()CFG CFD ASA ∴∆≅∆,FG FD ∴=,FE FD ∴=.(2)EF FD =仍然成立.如图③,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H .90FGE FHD ∴∠=∠=︒,60B ∠=︒ 且AD ,CE 分别是BAC ∠,BCA ∠的平分线,2360∴∠+∠=︒,F 是ABC ∆的内心,3601GEF BAC ∴∠=∠+∠=︒+∠, F 是ABC ∆的内心,即F 在ABC ∠的角平分线上,FG FH ∴=(角平分线上的点到角的两边相等).又1HDF B ∠=∠+∠(外角的性质),GEF HDF ∴∠=∠.在EGF ∆与DHF ∆中,GEF HDF FGE FHD FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()EGF DHF AAS ∴∆≅∆,FE FD ∴=.【点评】本题主要考查全等三角形的性质和判定,根据角平分线和角平分线上的点到角两边的距离相等即可作出一 对以OP 为对称轴的全等三角形.。
人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷
人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷选择题(每题只有一个正确选项,每小题3分,满分36分)1.下列四个有理数中,最小的是()A.﹣(﹣4)B.|﹣2|C.0D.﹣32.70000000用科学记数法表示为()A.7×107B.70×107C.0.70×108D.7×1083.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃4.某中学开学后购买了一批篮球,随机检测了4个,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最不接近标准的球是()A.B.C.D.5.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则9a=4bC.若3a=2b,则3a﹣5=2b﹣5D.若3a=2b,则6.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()A.2B.1C.0D.﹣17.下列去括号正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣4y)=﹣2x+4yC.+(﹣m+2)=﹣m+2D.x﹣(y﹣1)=x﹣y﹣18.点M在数轴上距原点6个单位长度,将M向右移动2个单位长度至N点,点N表示的数是()A.8B.﹣4C.﹣8或4D.8或﹣49.当x=1时,代数式ax5+bx3+cx+1值为2024,则当x=﹣1时,代数式ax5+bx3+cx+1值为()A.﹣2022B.﹣2021C.2024D.﹣202410.苯是一种石油化工基本原料,其产量和生产的技术水平是一个国家石油化工发展水平的标志之一,如图,小明用9根相同的木棒搭建的第1个图形就是类似于苯的结构简式,他继续用相同的木棒搭建与苯有关联的各个图形,按此规律,用含n的式子表示搭建第n (n为正整数)个图形所需木棒的根数()A.10n+1B.8n+1C.6n+1D.4n+1二、填空题(6小题,每题3分,共18分)11.比较大小:﹣﹣.12.若2a m b与是同类项,则m+n=.13.已知(m﹣1)x|m|﹣1=0,是关于x的一元一次方程,那么m=.14.若代数式x2﹣3kxy+y2﹣9xy+9不含xy项,则k的值为.15.若代数式4x﹣5与3x﹣9的值互为相反数,则x的值为.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出五张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.第II卷人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:(1)(﹣20)+(+3)﹣(+7)﹣(﹣5);(2).18.解方程.(1)x+7=3﹣3x;(2).19.先化简,再求值:3(m2﹣2mn﹣n2)﹣(3m2﹣2mn﹣3n2),其中,n=﹣4.20.已知关于x的方程(m+2)x|m|﹣1+8n=0是一元一次方程.(1)求m的值;(2)若该方程的解与关于x的方程的解相同,求n的值.21.若A=x2﹣3x+6,B=5x2﹣x﹣6.(1)请计算:A﹣2B;(2)求当x=﹣2时,A﹣2B的值.22.已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.23.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B 零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?24.我们规定,若关于x的一元一次方程ax=b(a≠0)的解为x=a﹣b,则称该方程为“有趣方程”.例如,2x=的解为x=,而2﹣,则该方程2x=就是“有趣方程”.请根据上述规定解答下列问题:(1)若关于x的一元一次方程﹣2x=c是“有趣方程”,则c=.(2)若关于x的一元一次方程3x=a﹣ab(a≠0)是“有趣方程”,且它的解为x=a,求a、b的值.(3)若关于x的一元一次方程x=3m﹣mn和关于y的一元一次方程﹣3y=mn﹣2n都是“有趣方程”,求代数式2(mn﹣3n)+(27m﹣6mn)﹣3的值.25.已知:关于x,y的多项式﹣24xy3﹣xy+2nxy3+nx2y2+3mx2y2﹣y不含四次项.数轴上A、B两点对应的数分别是m、n.(1)点A表示的数为;点B表示的数为;(2)如图1,线段CD在线段AB上,且CD=4,点M为线段AD的中点,若AM=BD,求点C表示的数;(3)如图2,在(2)的条件下,线段CD沿着数轴以每秒2个单位长度的速度向右运动,同时点Q从B点出发,以每秒4个单位长度的速度向左运动,是否存在时间t,使AM﹣DC=BC,若存在,求出C点表示的数;若不存在,说明理由.。
人教版七年级下册数学第三次月考试题含答案
人教版七年级下册数学第三次月考试卷一、单选题1 )A .4±B .4C .2±D .22.如图,直线,AB CD 被直线EF 所截,155∠=,下列条件中能判定//AB CD 的是( )A .235∠=B .245∠=C .255∠=D .2125∠= 3.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD ,使其拐角∠ABC =150°,∠BCD =30°,则( )A .AB//BCB .BC//CDC .AB//DCD .AB 与CD 相交 4.平面直角坐标系内有一点A (a ,b ),若ab =0,则点A 的位置在( ) A .原点 B .x 轴上 C .y 轴上 D .坐标轴上5.在平面直角坐标系中,点P 的坐标为(-2,a 2+1),则点P 所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.不等式6﹣4x≥3x ﹣8的非负整数解为( )A .2个B .3个C .4个D .5个7﹣b+1|=0,则(b ﹣a)2015=( )A .﹣1B .1C .52015D .﹣520158.下列四个数:-3π,-1,其中最小的数是( )A .-πB .-3C .-1D 9.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A .351824750x y x y +=⎧⎨+=⎩B .352418750x y x y +=⎧⎨+=⎩C .352418750x y x y -=⎧⎨-=⎩D .351824750x y x y -=⎧⎨-=⎩10.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角二、填空题11.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为__________. 12.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠l=58°,则∠2= ___________ .13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.14.已知x ,y 都是实数,且25y =,则3x y +的算术平方根是______.15.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是________.三、解答题16.求下列各式中x 的值:(1)()381270x +-=(2)()27128x -=17.解方程组:34(2)521x x y x y --=⎧⎨-=⎩18.已知关于x 、y 的方程组11225mx ny mx ny ⎧-=⎪⎨⎪+=⎩ 的解为23x y =⎧⎨=⎩ ,求m 、n的值.19.解不等式组513(1)131722x x x x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.20.已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求P 的坐标.21.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.22.已知实数8a,小数部分是m,实数9b,小数部分是n.(1)直接写出a,m,b,n的值;(2)求式子121213m n+的值的平方根.23.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.参考答案1.D然后根据算术平方根的含义和求法,少即可.【详解】解:,,故选:D.【点睛】此题主要考查了算术平方根的性质和应用,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2.C【详解】试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选C.3.C【分析】根据同旁内角互补,两直线平行即可解答.【详解】解:∵∠ABC=150°,∠BCD=30°∴AB//DC.【点睛】本题主要考查了平行线的判定,掌握“同旁内角互补,两直线平行”成为解答本题的关键.4.D【分析】根据有理数的乘法,可得a,b的值,根据坐标的特点,可得答案.【详解】解:由ab=0,得a=0或b=0,∴点A的位置在坐标轴上,故选:D.【点睛】本题考查了点的坐标,掌握坐标轴上点的坐标特点是解题关键.5.B【详解】∵a2为非负数,∴a2+1为正数,∴点P的符号为(-,+)∴点P在第二象限.6.B【详解】移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.7.A【详解】210a b-+=,∴50 210a ba b++=⎧⎨-+=⎩,解得:23ab=-⎧⎨=-⎩,则()20152015321b a-=-+=-(),故选A.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每一个非负数都为0是8.A【分析】正数大于一切负数;零大于任何负数;零小于一切正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.【详解】解:31π-<-<<-∴最小的数是π-故选A .【点睛】本题主要考查的是实数的大小比较,属于基础题型.理解数的大小比较方法是解题的关键.9.B【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【详解】解:设买了x 张甲种票,y 张乙种票,根据题意可得:352418750x y x y +=⎧⎨+=⎩, 故选:B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等式是解题关键.10.D【详解】试题分析:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D .考点:规律型:点的坐标;规律型.11.(3,7)或(3,-3)先确定出点B的横坐标,再分点B在点A的上方与下方两种情况求出点B的纵坐标,从而得解.【详解】∵AB∥y轴,点A的坐标为(3,2),∴点B的横坐标为3,∵AB=5,∴点B在点A的上方时,点B的纵坐标为2+5=7,点B在点A的下方时,点B的纵坐标为2-5=-3,∴点B的坐标为(3,7)或(3,-3).故答案为:(3,7)或(3,-3).【点睛】本题考查了坐标与图形的性质,根据平行线间的距离相等求出点B的横坐标,求纵坐标时要注意分点B在点A的上方与下方两种情况求解.12.32°【分析】根据“在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线”推知AM⊥a;然后由平角是180°、∠1=58°来求∠2的度数即可.【详解】∵直线a∥b,AM⊥b,∴AM⊥a;∴∠2=180°-90°-∠1;∵∠1=58°,∴∠2=32°.故答案是:32°.13.4【详解】试题分析:根据同类项定义由单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,可以得到关于m、n的二元一次方程4=m﹣n,2m+n=2,解得:m=2,n=﹣2,因此可求得m﹣7n=16,即m﹣7n 的算术平方根==4,故答案为 4. 考点:1、算术平方根;2、同类项;3、解二元一次方程组14.9【分析】直接利用二次根式有意义的条件得出x ,y 的值,进而得出答案.【详解】y x 25=-,x 606x 0-≥-≥,x 6∴=,则y 25=,故x 3y 81+=的算术平方根是:9.故答案为9.【点睛】此题主要考查了二次根式有意义的条件,正确得出x ,y 的值是解题关键.15.1a ≥【分析】先分别解两个不等式,然后根据不等式组无解得出a 的取值范围即可.【详解】解:0122x a x x ->⎧⎨->-⎩①②, 由①可得x a >,由②可得1x <,因为关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,所以1a ≥. 故答案为:1a ≥.【点睛】本题考查由不等式解集的情况求参数.能根据“大大小小,无处找”确定a 的取值范围是解决此题的关键.在解决此类问题时需特别注意参数取临界点时的情况(比如在本题中注意a=1时是否符合题意).16.(1)x=12;(2)x=3或x=-1.【分析】(1)方程整理后,利用立方根定义开立方即可求出解;(2)方程整理后,利用平方根定义开平方即可求出解.【详解】解:(1)方程整理得:(x+1)3=278, 开立方得:x+1=32, 解得:x=12;(2)方程整理得:(x-1)2=4,开方得:x-1=±2, 解得:x=3或x=-1.【点睛】此题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键. 17.31x y =⎧⎨=⎩ 【分析】根据二元一次方程组的解法,先将方程①化简,再用加减消元法解方程组即可.【详解】34(2)521x x y x y --=⎧⎨-=⎩①②由①,得:85x y -+=③②+③得:66y =,解得1y =把1y =代入②,得211x -⨯=,解得3x =所以原方程组的解是31x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.18.m=1,n=1.【详解】试题分析:把x 与y 的值代入方程组得出关于m n 、的二元一次方程组,求得方程组的解即可.试题解析:∵关于x 、y 的方程组11225mx ny mx ny ⎧-=⎪⎨⎪+=⎩ 的解为23,x y =⎧⎨=⎩ ∴31222235m n m n ⎧-=⎪⎨⎪+=⎩,解得:11.m n =⎧⎨=⎩即m=1,n=1.19.24x -<≤,数轴见解析.【详解】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解:解不等式5x+1>3(x ﹣1),得:x >﹣2,解不等式12x ﹣1≤7﹣32x ,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:20.(1)图详见解析;(2)4;(3)点P 的坐标(0,5)或(0,3)-【分析】(1)确定出点A 、B 、C 的位置,连接AC 、CB 、AB 即可;(2)过点C 向x 、y 轴作垂线,垂足为D 、E ,△ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积;(3)当点P 在y 轴上时,根据△ABP 的面积4=可求4AP =,即可得出点P 的坐标.【详解】解:(1)如图所示:(2)过点C 向x 、y 轴作垂线,垂足为D 、E .∴四边形DOEC 的面积3412=⨯=,△BCD 的面积12332=⨯⨯=, △ACE 的面积12442=⨯⨯=, △AOB 的面积12112=⨯⨯=. △ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积; ∴123414ABC S =---=.(3)当点P 在y 轴上时,△ABP 的面积142BO AP ==,即1242AP ⨯⨯=,解得:4AP =. 所以点P 的坐标为(0,5)或(0,3)-.【点睛】本题主要考查的是点的坐标与图形的性质,明确△ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积是解题的关键.21.20°【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE 平分∠FGD ,AB ∥CD ,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG 是△EFH 的外角,即可得出∠EFB=55°-35°=20°.【详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE 平分∠FGD ,AB ∥CD ,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG 是△EFH 的外角,∴∠EFB=55°﹣35°=20°.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.22.(1)11,3,5,4a m b n ====(2)【分析】(1)即可进一步求出89部分;(2)将a 、m 、b 、n 的值直接代入式子中进行计算,结果为29,再写出其平方根即可.【详解】 解:3134<<,3,∴811,,95,小数部分是11,3,5,4a m b n ∴====-(2)11,3,5,412121312()1334131241329a mb n m n m n ====-∴++=+=+-+=++=∵29的平方根是∴式子的值的平方根是【点睛】本题考查了估算无理数的大小,平方根的定义,二次根式的计算等,解题关键是理解二次根式的概念.23.(1)A 种商品的单价为20元,B 种商品的单价为15元;(2)购买A 商品8件,B 商品4件,理由见解析【分析】(1)根据表格中数据进而得出等式组成方程组求出答案;(2)利用A 种商品的数量不少于B 种商品数量的2倍,得出商品数量的取值范围,进而求出答案.【详解】解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得:255365x y x y +=⎧⎨+=⎩, 解得:2015x y =⎧⎨=⎩, 答:A 种商品的单价为20元,B 种商品的单价为15元;(2)设第三次购买商品A 种a 件,则购买B 种商品(12-a )件,购买商品的总费用为W ,根据题意可得:a≥2(12-a ),得:8≤a≤12,W=20a+15(12-a )=5a+180,∵W 随a 的增大而增大,∴当a=8时所花钱数最少,即购买A 商品8件,B 商品4件.【点睛】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.。
人教版数学七年级下册第三次月考试卷含答案
A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;
B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;
C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;
D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.
故选C.
【点睛】
本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l株.则共需成本l500元.
(1)求甲、乙两种君子兰每株成本分别为多少元?
(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?
11.若﹣2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.2B.0C.﹣1D.1
12.不等式组 有3个整数解,则a的取值范围是()
A.1<a≤2B.0<a≤1C.0≤a<1D.1≤a<2
二、填空题
13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.
∴
∴
又∵
∴
23.证明见解析
【解析】
分析:由“内错角相等,两直线平行”、“同旁内角互补,两直线平行”可以分别判定AB∥CD,CD∥EF,所以根据平行线的递进性可以证得结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DA 2020-2021新人教版七年级下册数学第三次月考检测卷一.选择题(我不过是你生命中的一个选择,而你却是我这辈子唯一的答案。
)(每小题3分,共30分)1.若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3- 2.下列各式中,正确的是( )±4 B.±3.不等式组⎩⎨⎧+-a x x x <<5335的解集为4<x ,则a 满足的条件是( )A 、4<aB 、4=aC 、4≤aD 、4≥a4.用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤:①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A 、①B 、②C 、③D 、④ 5.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )A. ⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6.以下说法正确的是( )A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 7若200722=--+-n m nm yx ,是关于x,y 的二元一次方程,则m,n 的值分别是A.m =1,n=0B. m =0,n=1C. m =2,n=1D.m =2,n=3 8.如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ;(2)21∠=∠; (3) 43∠=∠;(4) 5∠=∠B .A.1B.2C.3D.49. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2b a +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A .a >bB .a <bC .a =b D.与ab 大小无关10.如果不等式⎩⎨⎧-b y x <>2无解,则b的取值范围是( )A .b >-2 B.b <-2 C .b ≥-2 D .b ≤-2二.填空题)(每题4分,共32分)11.已知a 、b 为两个连续的整数,且a =+b a 。
12、若()0232=++-n m ,则n m 2+的值是______。
13.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直。
请把你认为是真命题的命题的序号填在横线上___________________ 14.不等式-3≤5-2x <3 的正整数解是_________________.15.关于x y 、的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方 236x y +=的解,则k 的值是 .16.若│x 2-25│=0,则x=_______,y=_______. 17.不等式5x-9≤3(x+1)的解集是________. 18.若不等式组,420x a x >⎧⎨->⎩的解集是12x -<<,则a =.三.解答题(人生如戏,全凭演技,别吊死在一棵树上,就如同别守着不会做的难题!)19.解方程组和解不等式组(并把解集表示在数轴上)(8分)(1)()4321213x x xx -<-⎧⎪⎨++>⎪⎩ (2)代入法解32522(32)28x y x x y x +=+⎧⎨+=+⎩ (3)加减法解2525,4315.x y x y +=⎧⎨+=⎩(4)4-38+3-127 (2分)20.如图,EF//AD ,1∠=2∠.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.(7分)解:∵EF//AD ,(已知)∴2∠=_____.(_____________).又∵1∠=2∠,(______) ∴1∠=3∠,(_________). ∴AB//______,(___________)∴∠DGA+∠BAC=180°.(_______________) 21.(8分)解不等式组:()20213 1.x x x ->⎧⎪⎨+-⎪⎩,≥并把解集在数轴上表示出来。
22.(8分)如图12,已知在平面直角坐标系中,三角形ABC 的位置如图所示. (1)你能想办法求出三角形ABC 的面积吗? (3分)(2)将三角形ABC 向右平移6个单位,再向上平移2个单位,请在图中作出(2分)(3)平移后的三角形A B C ''',并写出三角形A B C '''各点的坐标23.已知∠1=∠2,∠D =∠C 求证:∠A =∠F (8分)24.(10分)(题目虽长,不要彷徨,套路不深,何必当真?)某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件。
(1) 求A 、B 两种纪念品的进价分别为多少?(4分)(2) 若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?(6分)25.(8分)(考试不止眼前的难题)已知方程组⎩⎨⎧=++=+m -13y x 13m y x 3的解满足0>+y x ,则m的取值范围是?26.(9分)(还有简单的题)已知方程组⎩⎨⎧=+=+992by ax y x 的解也是方程组⎩⎨⎧=-=++133227322y ax y y x )(的解,求b a 、的值。
27.(9分)(和更简单的题)已知a 31-和︱8b -3︱互为相反数,求 (ab )-2-27 的值。
28.(10分)试确定实数a 的取值范围,使不等式组)(⎪⎪⎩⎪⎪⎨⎧++++++a x >a x >x x 1343450312恰有两个整数解。
321C BAEDFG23题图22题图姓名_______ ____班级___________学号___________一.选择题(每小题3分,共30分)二.填空题(每题4分,共32分)11.______ __ 12._____ ____ 13.____ _____ 14.__________ 15._________ 16.x=________,y=_________17.____________ 18.______________。
三.解答题19.解方程组和解不等式组(并把解集表示在数轴上)(8分)(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(3分)(2)代入法解32522(32)28x y xx y x+=+⎧⎨+=+⎩(3)加减法解2525,4315.x yx y+=⎧⎨+=⎩(4)4-38+3-127(2分)20.如图,EF//AD,1∠=2∠.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.(7分,每空1分)解:∵EF//AD,(已知)∴2∠=_____.(_____________________________).又∵1∠=2∠,(______)∴1∠=3∠,(_________).∴AB//______,(___________)∴∠DGA+∠BAC=180°.(_______________)21.(8分)A22.(8分)23.(8分)24.(10分)25.(8分)26.(9分)27.(9分)28.(10分)答案1-5 CCDBD 6-10 CCCAD11, 7 12, -1 13, 14, 2,3,4 15,4316,5±,3 17,6≤x18,-119,(1)41x(2)21=x23=y(3)0=x5=y(4)31-20. 21.32≤x22,(1)2=∆ABCS(2)略(3))3,5(),4,4(),6,6('''CBA23,24,25,27, 28,。