相控阵天线协同设计

合集下载

基于相控阵技术的多目标定位门架天线设计

基于相控阵技术的多目标定位门架天线设计
第 47卷 第 2期 2021年 6月
湖南交通科技
HUNANCOMMUNICATIONSCIENCEANDTECHNOLOGY
文章编号:1008?844X(2021)02?0025?04
Vol.47 No.2 Jun.,2021
基于相控阵技术的多目标定位门架天线设计
李 异,傅 达
(湖南省交通科学研究院有限公司,湖南 长沙 410015)
1 总 体 方 案
门架天线主要由室外路侧天线和室内路侧控制 器 2部分组成。路侧天线包含微带阵列天线、微波 收发信机、相控阵处理模块、电源模块等 (见图 1),信号数据通过调制 /解调,以 DSRC的方式与
3.3 V 5V
DSRC
3.3 V A/D ARM
图 1 路侧天线原理图
收稿日期:2021?03?22 作者简介:李 异(1981—),男,工程师,从事高速公路机电工程研究。
使用该模型,并结合该省的高速公路实际通行 9903% ~9960%;CPC总体匹配率:9366% ~
数据,即可测算文中所述系统对于该省高速公路收 9622%;车辆图片捕获率:9969% ~9984%。
费系统的经济效益。
5 应 用 案 例
6 结 语
全国高速公路取消省界站项目意义重大, “一
门架计数型系统现已在北京大规模实施落地, 张网” 时代后,高速路网通行效率得到了大幅提
波通信的无序性、车辆 OBU安装位置差异、电子
标签受不同厂家性能之间差异影响等问题。对此,
需要在源头上对前端设备进行优化升级,使其能够
做到正确识别车辆及确切定位,从根源上对跟车干
扰、邻道干扰等进行优化处理。
拆除省界站后的多车道实行自由流收费方式,
收费站进行物理拆除后不设车道栏杆,多车道之间

5G集成相控阵天线:设计,制造和测试

5G集成相控阵天线:设计,制造和测试

Received February6,2020,accepted March4,2020,date of publication March13,2020,date of current version March25,2020.Digital Object Identifier10.1109/ACCESS.2020.2980595Research on Structurally Integrated Phased Array for Wireless CommunicationsQING-QIANG HE1,SHUAI DING2,CHEN XING1,JUN-QUAN CHEN1,GUO-QING YANG1,AND BING-ZHONG WANG2,(Senior Member,IEEE)1Southwest China Institute of Electronic Technology,Chengdu610036,China2Institute of Applied Physics,University of Electronic Science and Technology of China,Chengdu610054,ChinaCorresponding authors:Qing-Qiang He(heqingqiang518@)and Shuai Ding(uestcding@)This work was supported in part by the National Natural Science Foundation of China under Grant61601087,in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2019Z016,and in part by the Sichuan Science and TechnologyProgram under Grant2018GZ0518and Grant2019YFG0510.ABSTRACT Structurally integrated antenna is a kind of highly integrated microwave device with a load-bearing function,and it is usually installed on the structural surface of the air,water and ground vehicles.This paper presents the design,fabrication and testing of a novel structurally integrated Ka-band active antenna for airborne5G wireless communications.The proposed antenna is mainly composed of three parts:a package layer,a control and signal process layer and a RF layer.In the RF layer,the microstrip antenna array,tile transmitting(Tx)modules,micro-channel heat sinks and a stripline feeding network are highly integrated into a functional block with a thickness of2.8mm.Electromechanical co-design methods are developed to design the active antenna array with the superstrates,and two schemes for designing micro-channel heat sinks are evaluated to obtain a uniform temperature distribution.The RF layer is fabricated by using the low-temperature cofired ceramic process,and the three layers are assembled to form the full-size antenna prototype.The mechanical and electromagnetic experiments are carried out,and the results demonstrate the feasibility of the structurally integrated active antenna for airborne wireless communications.INDEX TERMS5G communications,phased array antenna,structurally integrated active antenna,low-temperature cofired ceramic(LTCC),micro-channel heat sinks.I.INTRODUCTIONSignificant momentum has started to build around the5G wireless communication technologies for delivering mobile experience differentiation by providing higher data rates, lower latency,and improved link robustness[1],[2].In this regard,millimeter-wave phased array antenna is a very promising solution for5G wireless communications,due to the wide bandwidths and steerable beams.The millimeter-wave phased array antenna can be applied to realize the wireless connection between the base stations and wireless terminals in a mobile vehicle such as the aircraft,high-speed train,car,and ship.Moreover,it can be continuously steered to the base stations,which could guarantee reliable connec-tions in these mobile environments[3]–[5].In addition,the multi-gigabits-per-second data speeds in5G will provide new wireless communication applications such as uncompressed video streaming,mobile distributed computing,fast largefile The associate editor coordinating the review of this manuscript and approving it for publication was Yasar Amin.transfer,and office in a high-speed mobile environment[6]. However,because of the limited space in a mobile vehicle like the aircraft,the phased array antenna is usually required to have a compact size,light weight and easy installation[7]. In this condition,it is highly desirable to use structurally integrated active antennas for5G wireless communications in a mobile vehicle.Structurally integrated active antennas can embed an active planar printed antenna into the structural surface of the aircraft,high-speed train,car,ship,and armored vehi-cles[8]–[11].For example,the active microstrip antenna array is integrated into the wing or fuselage of an aircraft. Compared with the antennas mounted on the structural sur-face,structurally integrated active antenna features several advantages such as reduced weight,volume and aerodynamic drag.Structurally integrated active antenna is a kind of highly integrated antenna,which receives great attention in recent years.Antenna-on-chip(AoC)and antenna-in package(AiP) solutions are two commonly used techniques to realize the highly integrated antennas[12]–[14].Compared to AiP,AoCVOLUME8,2020This work is licensed under a Creative Commons Attribution4.0License.For more information,see https:///licenses/by/4.0/52359Q.-Q.He et al.:Research on Structurally Integrated Phased Array for Wireless Communicationssolutions eliminate the need of off-chip connections between dies and antennas,but reduce the reliability on manufacturing precision[15].Low-temperature cofired ceramics(LTCC) and liquid crystal polymer(LCP)are two very attractive materials for fabricating the AiP[12],and the mainstream SiGe or CMOS technologies are usually adopted to fabricate the AoC[12],[15],[16].In[17],the authors conducted a chronological review of the research on the AiPs using the LTCC,and the AiPs applied to realize the millimeter-wave communication were demonstrated in[18]–[25].LCP is also a competitive substrate and packaging material due to its excellent electrical properties,flexibility,and multi-layer lamination capability.Several researchers have utilized the LCP to fabricate the AiP and demonstrated wideband,high-gain,and high-efficiency antenna applications[26]–[29].All of the studies promote the development of highly integrated antennas.However,most of the previous studies concentrate on the antenna technology,interconnect and package pro-cesses,while the heat dissipation of the highly integrated active antennas is not considered.Besides,the AiP and AoC cannot be directly installed on the structural surface of the air-craft,high-speed train,car,ship,and armored vehicles,due to the lack of the load-bearing function.Different from the AiP and AoC,this work proposes a structurally integrated active antenna which can simultaneously provide a load-bearing skin and a receiving or sending electromagnetic microwave device.Nowadays,the antennas with a load-bearing function are also of great interest in antennafields.Researchers have proposed different concepts,such as conformal load-bearing antennas[30]–[32],smart skin antenna[33],three-dimensionally integrated microstrip antenna[34],composite antenna array[35],and so on.The basic configuration of the antenna array shown in Fig.1is a sandwich construction consisting of facesheet,honeycomb core,microstrip or pla-nar spiral antenna and feeding networks.The antennas and feeding networks are inserted into the facesheet and hon-eycomb,and the epoxy adhesive is applied to bond the different components and form thefinal antenna with the load-bearing function.From the reported literature,it is found that almost all of the investigations are dedicated to the design and fabrication of the structurally integrated passive antenna [36]–[40].However,in practice,the structurally integrated active antenna is usually required for future5G wireless com-munications,due to its steerable beam pointing capability. This work focuses on the design,fabrication and exper-iments of a novel structurally integrated active antenna. The motivation of this investigation is to develop an active skin antenna for realizing the5G wireless communication between the aircraft and the base stations.Compared with the existing work,the proposed highly integrated antenna consists of a package layer,a control and signal process layer and a RF layer,and can provide a load-bearing function and a steerable beam pointing capability simultaneously.Electromechanical co-design methods are applied to design the antenna array with thesuperstrates,FIGURE1.Schematic diagram of structurally integrated phased array. (a)Overall structural configuration.(b)Exploded view of the RF layer structure.and two design schemes for the micro-channel heat sinks are investigated and compared to obtain a uniform temperature distribution.The LTCC technology is applied to fabricate the RF layer,where the antenna array,Tx modules,micro-channel heat sinks and feeding network are integrated into a functional block with a thickness of2.8mm.The mechanical load-bearing and electromagnetic performance are measured, and the results demonstrate the feasibility of the structurally integrated active antenna prototype.The rest of the work is organized as follows.Sec.II presents the design of the structurally integrated active antenna,and Sec.III succinctly describes the fabrication of the antenna prototype.In addition,Sec.IV presents the mechanical and electromagnetic experimental results,while Sec.IV discusses the impact of the mechanical structure on the performance of the array.Finally,a short conclusion is drawn in Sec.VI.II.DESIGN OF STRUCTURALLY INTEGRATED PHASED ARRAYA.SCHEMATICFigure1shows the schematic diagram of the antenna array system.The system consists of a package layer,a RF layer and a processing layer.The package layer includes the DC voltage source which supplies the power required by the phased array,and can simultaneity achieve impact and envi-ronmental resistances.The RF layer provides the receiving52360VOLUME8,2020Q.-Q.He et al.:Research on Structurally Integrated Phased Array for WirelessCommunicationsFIGURE 2.The proposed microstrip antenna element-dimensionparameters and prospective view.(a)structure (b)E-field (phase =0)(c)E-field (phase =180◦)FIGURE 3.VSWR and axial ratio of the antenna element.and transmitting function in the RF regime,which consists of a micro-strip antenna array,tile-style TR modules,a micro-channel cooling system and a strip-line feeding network.The processing layer comprises mainly the beam control circuit and the processing chip which generates the controlling sig-nal to realize beam scanning.Figure 1(b)shows the exploded view of the RF layer structure.It is fabricated by the LTCC technology.The micro-channel cooling system is located between the feeding net-work and TR modules.The TR modules are integrated on the rear side of the cooling system.All elements in the antenna array are connected to the TR modules through the perpendic-ular interconnects.In order to improve the structural stiffness and strength,the aluminum is used to fabricate the frame and encapsulate shell.The radome on the package layer is made up of upper facesheet and lower foam.The lower foam between the upper facesheet and the antenna array is bonded by the epoxy adhesive to form the antenna prototype.B.DESIGN OF ACTIVE ANTENNA ARRAY WITH SUPERSTRATESThe active antenna array in the RF layer is protected by the super-strates which consist of the upper facesheet and the lower foam.In this subsection,we present the design procedure of the active antenna array with the super-strates.The first step is to design the antenna array without the super-strates.Figure 2shows the geometry of a single microstrip antenna element.It was designed using the Ferro A6M LTCC tape,with a relative dielectric constant of 5.9and a loss tan-gent of 0.002.The thickness of each LTCC layer is 0.1mm.The rectangular patch is fed at the diagonal by a vertical probe to excite two orthogonal modes for circularly polarized radi-ation.The feeding probe is connected to a stripline through via hole of the ground plane.To enhance the impedance matching,ground vias are employed around the feeding probe and the end of the stripline.Besides,the substrate fortheFIGURE 3.VSWR and axial ratio of the antennaelement.FIGURE yout of the antenna array-overall array and 2×2sub-array.radiating patch is 0.5mm thick (5LTCC layers),and the dis-tance between the upper and lower ground planes is 0.2mm (2LTCC layers).The detailed dimensions of the optimized parameters in Fig.2are as follows (unit:mm):W 1=1.63,W 2=0.5,W 3=0.25,L 1=1.78,L 2=0.5,L 3=1.39,R 1=0.35,R 2=0.15,H 1=0.5,H 2=0.2.As shown in Figure 2,the eccentric feeding is adopted to obtain the left-hand circular polarization.The rectangular patch is fed at the diagonal by a vertical probe to excite two orthogonal modes for circularly polarized radiation.The simulated voltage standing wave ratio (VSWR)and axial ratio (AR)are plotted in Fig. 3.It is observed that the impedance bandwidth with VSWR <2is 10.8%(28.3-31.6GHz)and the AR bandwidth with AR <3dB is approximately 5.0%(29.4-30.9GHz).The antenna element is left-hand circular polarization (LHCP)and has a peak simulated gain of 6.23dBi at 30GHz.Based on the single antenna element above,a 52-element antenna array is constructed,as shown in Fig. 4.The 52antenna elements are arranged into a rectangular array,which occupies a total area of 46mm ×44mm.As shown in Fig.4,sequential rotation feeding scheme is adopt in the 2×2sub-array.In order to improve the circularly polarized performance,the four-antenna element are rotated with respect to each other and excited with 90◦phase difference increments,and the phase shifts are introduced by the phase shifters in the Tx modules.The distance between the elements is 5mm,which is a half of the wavelength in free space at 30GHz.Figure 5(a)presents the simulated radiation patterns of the antenna array at 30GHz.It is observed that the antenna arrayVOLUME 8,202052361Q.-Q.He et al.:Research on Structurally Integrated Phased Array for WirelessCommunicationsFIGURE5.Simulated radiation patterns of the antenna array at30GHz.(a)Beam steering(b)xoz-plane(c)yoz-plane.has a peak gain of21.6dB and the side-lobe levels(SLL) are about-15dB in the±45◦sweeping scope.The patterns in xoz and yoz planes are shown in Fig.5(b)and Fig.5(c), respectively.It is observed that the antenna array has a peak gain of21.5dBi and the cross-polarization levels are below -20dBc.Besides,the side-lobe levels(SLL)in xoz-plane and yoz-plane are about-18.1and-18.3dBc,respectively. Figure6(a)shows the block diagram of the active antenna array.The input RF signal is divided by a1:16stripline feeding network.The feeding network with a thickness of4 LTCC layers contains four-stage Wilkinson dividers illus-trated in Fig.6(b).Simulated results show that the input VSWR of the feeding network is below1.5over the frequency range from28to31.8GHz,the phase imbalance of output ports is less than1.6degree,and the power imbalance is about0.3dB.Then,the output signals of the dividers are shifted in phase and amplified by power amplifiers in the Tx modules.The active Tx modules are composed of16sets of transmitter chips.As shown in Fig.6(b),each of the transmitter chipsets at the four corners of the board consist of a6-bit digital phase-shifter and a power amplifier,and each of the other12chipsets consist of four-phase shifter and four power amplifiers.A1:4power divider and four5-bit digital phase-shifters are incorporated in the multi-channel phase shifter.Finally,the output RF signals are fed to each element of the antenna pared with conventional RF transmitter chip sets with a phase shifter and a power amplifier for each antenna element,the proposed RF front end has less integrated chips and occupies a smallerarea.FIGURE6.Structure of the active antenna(a)Block diagram of the activeantenna.(b)Structure of the power divider and layout of the Txmodules. FIGURE7.Structural configuration and dimensions of the superstrates infront of the RF layer.Subsequently,the next step is to determine the super-strates composed of the upper face-sheet and lower foam depicted in Fig.7.The thickness of the super-strates locat-ing above the antenna array not only contributes to the structural stiffness and strength,but also influences the52362VOLUME8,2020Q.-Q.He et al.:Research on Structurally Integrated Phased Array for WirelessCommunicationsTABLE1.Electrical properties of the materials.TABLE2.Mechanical properties of the materials. electromagnetic performance.In order to meet the mechan-ical and electrical requirements simultaneously,the elec-tromechanical co-design method is developed to design the super-strates.Tables1and2give the electrical and mechani-cal properties of the materials used in the antenna structure. The coarse thicknesses of the facesheet and foam are opti-mized by the electromechanical co-design method in[34]. The coarse thickness can provide an optimal structural stiff-ness and strength.However,it cannot guarantee an optimal design for the electromagnetic performance of the antenna array with the super-strates.In the last step,the coarse dimen-sions were applied to develop a full-wave electromagnetic model using the commercial simulation software HFSS from ANSYS.The thicknesses of the face-sheet and foam were further optimized and thefinal dimensions of the super-strates are determined as indicated in Fig.7.C.DESIGN OF MICRO-CHANNEL HEAT SINKAs mentioned above,high-power amplifiers are adopted in the Tx modules to enhance the signal power level.However, each amplifier is a heat source,which could influence the electrical performance of the active antenna array.In this work,a micro-channel heat sink is designed to cool the RF front end.Figure8shows the structural configuration of the micro-channel heat sink which consists of a micro-channel inlet header and a micro-channel outlet header,eight small micro-channels,an inlet and an outlet.The micro-channel heat sink is fabricated based on the LTCC technology,and it is convenient to integrate the micro-channel heat sinks into the RF layer.However,because of a low heat transfer coefficient of the LTCC,it is slow to cool the RF layer.Therefore,under each high-power amplifier,a copper cylinder is utilized to connect the high-power ampli-fier(heat source)with the small micro-channel.Figure8(c) shows the cross section of a micro-channel in the RF layer. The diameter and height of the copper cylinder are1and FIGURE8.Structural configuration of micro-channel heat sinks.(a)Top view(b)Back view(c)Cross sectionview.FIGURE9.Geometry of micro-channel heat sinks.1.2mm,respectively.The coolant from the inletflows into the micro-channel inlet header,and then is shunted into eight small micro-channels.The heat passes through the copper cylinder to the coolant,and then the coolant from the small micro-channels meets at the outlet header andflows away from the outlet.Utilizing the coolant movements,the heat is dissipated from the RF layer.With the same coolant,the greater theflow rate of the coolant,the better the heat dissipation.Moreover,the more uniform theflow rate of the coolant in different micro-channels,the more uniform the temperature distribution in RF layer.The non-uniformity of the temperature distribution in the RF layer can lead to an inconsistent amplitude and phase variations of radiating element excitations which deteriorate the electrical performance of the active antenna array.In order to obtain a uniform temperature distribution,two schemes are designed,analyzed and compared in the following.Figure9shows the geometry structure of micro-channel heat sinks.The cross section of the micro-channel heat sink is rectangle.The length,width and height of the inlet header and outlet header are40mm,2.2mm and0.8mm,respectively. The length,width and height of the small micro-channel are36mm,1mm and0.6mm,respectively.The detailedVOLUME8,202052363Q.-Q.He et al.:Research on Structurally Integrated Phased Array for WirelessCommunicationsFIGURE 10.Temperature field distribution.dimensions of the optimized parameters in Fig.10are as follows (unit:mm):l 0=36,l 1=8,l 2=3,l 3=40,b 1=2.2,b 2=1.Numerical simulations are conducted to obtain the temperature fields of two schemes for the micro-channel heat sinks.Tables III and IV give the material prop-erties and boundary conditions required by the simulation software ANSYS CFX.Figure 10presents the temperature field distributions of structurally integrated active antenna.It can be observed from Fig.10that the temperature scope is from 48.04◦C to 60.17◦C.Table 5gives the statistical results of the temperature dis-tributions on the surface of the RF layer.It also provides the standard deviation of the temperature and maximum tempera-ture difference,which quantitatively evaluate the uniformity of the temperature distribution with and without heat sinks.The small deviation of the temperature and maximum tem-perature difference will cause smaller amplitude and phase variations of the radiating element excitations,which can provide a stable antenna electrical performance.From Tab.5,it is obviously concluded that the scheme with heat sinks can provide a more uniform temperature distribution than that without the heat sinks.The impact from the heat sinks on the performance of the array system is discussed in Sec.V .III.FABRICATIONThis section presents the fabrication of the structurally inte-grated phased array prototype.In the first step,according to the design above,the LTCC technology was exploited to fabricate the RF layer.In this work,the RF layer is made of 25layers Ferro A6M tapes and 5layers copper tapes (GND).Figure 11presents a cross section of the 30layers tapes layout.The micro-channel heat sinks are laminated with 12layer tapes.The methods based on sacrificial vol-ume materials (SVM)are applied to fabricate the micro-channels,and the SVM materials (i.e.carbon-black paste)are applied to fill in the micro-channels before the green tapes were sintered.The LTCC process begins with punch-ing the via holes in the green ceramic tapes.Then,the via holes are metallized followed by the conductor patterning on each tape layer separately.Conductors are patternedusingFIGURE 11.Cross section of the Ferro A6M tapes layout in the RFlayer.FIGURE 12.RF layer specimen.(a)Front view.(b)Back view.TABLE 3.Material properties of microchannel heat sink.screen-printing techniques.After the tape sheets are aligned and laminated,the ceramic sheets are co-fired at the 850◦,and then the SVM evaporates in a pressurized environment of the high temperature,which shapes the resulting micro-channels.Finally,the transmitter chips are welded to the surface of the RF layer.The wire-bonding technique is applied to realize the interconnection between the Tx modules and the feeding network.Figures 12(a)and (b)show the front view and back view of the RF layer specimen,respectively,and the length,width and thickness of the specimen are 46mm,44mm and 2.8mm,respectively.Then,the fabricated control and signal process layer is shown in Fig.13.First,the beam control circuit is fabri-cated by using the PCB manufacturing technology.Then,the pin connections are applied to realize the interconnection52364VOLUME 8,2020Q.-Q.He et al.:Research on Structurally Integrated Phased Array for WirelessCommunicationsTABLE 4.Boundary conditions for numerical simulations.TABLE 5.Statistical results of the temperaturedistribution.FIGURE 13.Control and signal process layer.between the beam control circuit and the DC power.The interconnections are conducted to form an initial assembly of the active antenna array without the package layer.The connections of different layers are shown in Fig.14.Fig-ure 14(a)shows the interconnection between the RF layer and the control and signal process layer,and two groups of pins (36pins in all)are applied to connect the RF chips and the beam control circuit.Figure 14(b)shows the interface between the RF layer and external devices.The control and signal process layer is removed from the drawing,to allow a deeper insight into the structure.The inlet and the outlet which connect the RF layer and external devices,go through the control and signal process layer.The wire crosses the DC power,and connects the beam control circuit and an external computer terminal.Finally,the package layer is fab-ricated,and the antenna and the package layer are integrated to form the final antenna prototype by using the composite technology.In this step,the package layer consists of the encapsulate shell and the super-strates is made of aluminum to improve the structural stiffness and strength.The super-strate consists of the lower foam and the radome which is composited by the upper facesheet.After the package layer is fabricated,the active antenna array in the step 3is put inside the encapsulate shell as shown in 14.The encapsulate shell is made of aluminum to improve the structural stiffness and strength.The super-strateconsistsFIGURE 14.Connections of different layers.(a)Interconnections between the RF layer and the control and signal process layer.(b)Interconnections between the RF layer and the packagelayer.FIGURE 15.Structurally integrated phased array prototype.(a)Front view.(b)Back view.of the lower foam and the radome which is composited by the upper facesheet.After the package layer was fabricated,the active antenna array in the step 3was put inside the encap-sulate shell as shown in Fig.15(a).Subsequently,the radome,the lower foam and the active antenna were bonded by using the composite technology.Each component is bonded on the top or bottom of another one in designed sequence.Fig-ure 15shows the fabricated antenna prototype.IV.EXPERIMENT RESULTSIn this section,experiments are carried out to validate the electromagnetic performance.To demonstrate the electro-magnetic performance,the radiation characteristics of theVOLUME 8,202052365FIGURE 17.Measured normalized scanning patterns of the structurally integrated phased array prototype at 30GHz.fabricated antenna prototype were measured in an anechoic chamber.Figure 16shows the measured and simulated gain and AR against frequency of the antenna prototype.It is observed that the measured 3-dB gain bandwidth ranges from about 28.5GHz to 32GHz with a peak gain of 21.0dBi,while the 3-dB AR bandwidth is from around 28GHz to 32.2GHz.The measured and simulated results are overall in good agreement,and the discrepancy is due to the fabrication tolerance and measurement errors.Figure 17plots the scanning patterns in the azimuth plane at 30GHz.The measured scanning range is from −45◦to 45◦,and the measured beam direction exhibits slight difference from the expected scanning angle (−45◦to +45◦).This difference may be due to the imperfections of the measure-ment system such as the phase error caused by the cables,adapters and alignment issues.The gain fluctuations within the scanning range are smaller than 3.5dB,and the side-lobe levels are better than -12dB.Moreover,it is found that the gain fluctuation is less than 1.5dB when the scanning angle ranges from −30◦to +30◦.When the scanning angle is beyond ±30◦,the gain drops by more than 3dB.This could beFIGURE 18.Measured axial ratio with beam scanned to different angles at 30GHz,(a)θ=0◦,(b)θ=15◦,(c)θ=30◦,(d)θ=45◦(ϕ=0◦plane).attributed to the roll-off of the antenna element patterns that get flattened due to the mutual coupling between the radiating elements.The AR performance of array is also measured.As shown in Fig.18,the ARs are below 3dB within the 3dB beam width of the main beam,when the main beam is steered to 0,15,30and 45◦.V.DISCUSSIONThe mechanical structures and the thermal effects do affect the performance of the array.There are two mechanical struc-tures that affect array performance.One is the radome and the other is the radiator.The other one is the heat sinks.The function of the radome is to protect the antenna front.How-ever,after the radome is introduced,the matching between the array and free space is destroyed,so that the radiation efficiency of the array will be reduced,and eventually the radiation efficiency of the array will be reduced.Therefore,there is a trade-off between radome design and radiation effi-ciency.The material of the radome should have low dielectric constant to reduce the impact on the matching of the antenna to free space.At the same time,the radome should be low lossy to reduce dielectric loss.In our work,the material of the upper sheet of the radome is glass with εr =4,tan δ=0.02,while the lower sheet of the radome is foam with εr =1.1,tan δ=0.005.Figure 19shows the change in gain with and without radome.It can be seen from Fig.19that with a radome,the array gain will drop,however,above 30GHz,the gain decreases less than 2dBi.The heat sink structure does not directly affect the electrical performance of the antenna.The micro-channel heat sink is designed to cool the RF front end.Without the heat sink,as shown in Tab.5,the highest temperature in the RF layer52366VOLUME 8,2020。

相控阵雷达天线舱结构一体化设计

相控阵雷达天线舱结构一体化设计

相控阵雷达天线舱结构一体化设计叶堃;庄文许;田安歌【摘要】为实现一类有源相控阵雷达天线的轻型化,提出了一种相控阵雷达天线舱的一体化设计方法,即模块插箱与骨架主结构有机结合为一体,采用复合材料整体罩构建天线舱防护结构.经对天线舱骨架进行校核分析,结果表明刚强度满足要求,与传统设计方法相比天线舱可减重20%以上.【期刊名称】《雷达与对抗》【年(卷),期】2016(036)003【总页数】4页(P58-61)【关键词】天线舱;一体化;有源相控阵雷达;减重;骨架【作者】叶堃;庄文许;田安歌【作者单位】中国船舶重工集团公司第七二四研究所,南京211153;中国船舶重工集团公司第七二四研究所,南京211153;中国船舶重工集团公司第七二四研究所,南京211153【正文语种】中文【中图分类】TN957.8相控阵雷达以多功能、多目标、精度高等优点获得广泛青睐。

大口径相控阵雷达质量巨大,而解决质量与刚度之间的矛盾从而实现轻型化是雷达结构设计追求的目标。

特别是对舰载平台来说,搭载装备的种类和数量快速增长,对相控阵雷达的轻型化需求和期望更加迫切。

在贯彻轻型化的过程中,由于天线口径变动余量小,模块数量又非常之多,这就需要通过雷达结构总体布局中的一体化设计加以解决。

一体化设计可以有效缓解设备布局和质量的压力,其效果往往影响总体设计的成败[2]。

在相控阵雷达结构中,骨架是天线舱的主体结构,其精度、刚度、强度直接影响到雷达的战术技术指标。

传统的骨架设计一般采用平台化思想,骨架与天线舱设备分开设计。

这种设计方法对质量、空间布局非最优化,往往不能很好地控制质量和体积,不符合当今雷达小型化、轻型化、高集成化的设计理念[3]。

本文提出了一种有源相控阵雷达天线舱结构的设计方法。

基于一体化设计思想,将载荷结构和骨架结构有机结合到一起,即骨架的中间框架既是模块插箱也是骨架的主承重结构,各设备围绕中间框架布局,充分考虑了天线舱结构特点,实现了载荷结构一体化设计以及防护结构一体化设计。

无人机载有源相控阵天线一体化结构设计

无人机载有源相控阵天线一体化结构设计

无人机载有源相控阵天线一体化结构设计李继【期刊名称】《《机械与电子》》【年(卷),期】2019(037)008【总页数】4页(P47-49,54)【关键词】结构设计; 热设计; 抗振动冲击设计; 电磁兼容设计【作者】李继【作者单位】西南电子技术研究所四川成都610036【正文语种】中文【中图分类】TH1220 引言近年来,随着我国航空技术的提升,无人机的发展非常迅速,无人机广泛用于战场侦察、通信中继、电子对抗、空中打击等诸多军事行动[1]。

由于无人机对航程、续航时间等性能指标的严格要求,对无人机机载有源相控阵天线的小型化、轻量化、抗振性、电磁兼容性提出了更严苛的指标,同时机载有源相控阵天线自身的热流密度越来越大,这些特点使得机载有源相控阵天线的结构设计难度越来越大。

1 天线总体设计根据机载有源相控阵天线的功能、装机要求,对天线整机结构作了划分,天线主要包含天线阵面、TR组件、波控模块、电源模块、终端模块,如图 1所示。

图1 某机载有源相控阵天线组成机载有源相控阵天线通常按照功能模块直接设计相应的结构,每个功能模块均有自身的结构件,这种设计的优点是模块独立性高,总体分发任务以模块形式分发,只需规定模块外形尺寸、电气接口、机械接口,简单可靠;缺点是结构件未充分利用,重量较重。

因此采取了一体化设计的思路,将有源相控阵天线的天线阵面与T/R组件进行集成设计,将波控模块与电源模块进行集成设计。

终端模块在电气性能上是天线收发信号的一个中转处理站,通常将其安装在载机上,通过电缆与天线进行互联,在此,直接将终端模块集成安装到天线上,两者只需用电连接器进行盲插,减少了两者的互联电缆。

天线采用强迫风冷散热,为节省空间,将终端模块的中间位置预留出来安装风机,再将终端模块安装在T/R组件上,利用T/R组件的散热齿和终端模块形成风道,天线的总体布局如图2所示。

图2 天线的总体布局天线的工作频段为S频段、B1频段,由于电气性能要求,S频段的天线辐射面的外形尺寸为380 mm×380 mm×5.6 mm,B1频段的天线辐射面的外形尺寸为60 mm×60 mm×7 mm,根据一体化设计原则及电气性能所要求的基本尺寸,天线的外形尺寸定为480 mm×400 mm×50 mm,与同等性能指标的天线相比,本天线的厚度尺寸仅为50 mm,在平台的装机尺寸这一要素上具有竞争优势。

一种双波束同步扫描相控阵天线的设计

一种双波束同步扫描相控阵天线的设计

蒋凡杰 等 : 一种双波束 同步扫描相控阵天线 的设计

17 8
单 元及 射频 和供 电接 口, 面 中央装 有 一 个 多 波束 阵
机箱 , 于形 成所 需 的双 波束 , 用 并具 有波束 扫 描控制
功能 。
2 馈 电 网络 设 计
根 据相控 阵 理 论 JⅣ 单 元 均 匀 直 线 阵 如 图 1 ,
的夹 角 保 持 不 变 , 而 可 以 用 幅度 比较 的 方 法 对 从 ± 0 范 围 内的 目标 实现 测 向接 收 或 跟 踪 。该 天 线 5。 的主要技 术指 标如下 。 ・ 工作 频率 :5 2 0MH 10~ 6 z ・ 极 化 方式 : 平极 化 水
・ 天线 增益 : 2 B > I 8d i
个 傅 里 叶级 数 g ) =F( , + ( 0 A,
个1: 2 分器形 成 A、 3功 B两个 波束 。移 相 器用 于控 制波束 扫描 , 天 线 阵 主波 束 指 向 0 方 向 , 使 两组 电 缆 的长 度分别 满 足
2一LA 1=LA A 3一 2= L 一 L 3= … = A r5、
元 的路 径差 △ 与 天线 阵波束 指 向 A 0 的关 系为
A L= d s ( ) xn △ i () 2
设计中, 移相 器采 用 5bt 数 字 移相 器 , i s 提供 波
束 扫描 所需 的相 位 ; B波束 的夹角 由 电缆 长度 差 A、 实现 , 由式 ( ) 算 两 波束 夹 角 为 5 时 的 电缆 长 度 3计 。
的关系 为
{ s =( =i 去n ( 9 ) )
1 1 8. mi l l
式中, = . 2 1为所用 电缆介 质 的相对介 电常数 。

一种双波束相控阵天线的设计与实现

一种双波束相控阵天线的设计与实现

一种双波束相控阵天线的设计与实现邬树纯;倪文俊【摘要】介绍了一种双波束相控阵天线,阐述了其工作原理、设计方法及实测结果.该天线阵工作于P波段,用于雷达干扰发射系统,发射波束为方位同时双波束,并且每个波束均可独立电扫描,实现了同时对多目标、多方位的雷达干扰.【期刊名称】《舰船电子对抗》【年(卷),期】2014(037)003【总页数】5页(P85-89)【关键词】相控阵;多波束;波束扫描;雷达干扰【作者】邬树纯;倪文俊【作者单位】中国电子科技集团公司51所,上海201802;中国电子科技集团公司51所,上海201802【正文语种】中文【中图分类】TN821.80 引言目前各国大量应用的雷达干扰系统,大多采用单波束天线。

此类系统波束指向单一,通过机械转动实现波束在空间的扫描。

由于雷达体制的不断改进和升级,雷达部署越来越密集,对雷达干扰系统也提出了更高的要求,其中多方位、多目标同时干扰就是摆在雷达干扰系统面前的一个具体问题。

因此,同时多波束雷达干扰技术近年来倍受推崇。

多波束是指天线向空中辐射的电磁波是由多个波束组成,每个波束覆盖一定的空域,从而满足对同时多方位、多目标的覆盖需求。

对于相控阵天线,仅通过改变馈入天线单元的相位即可使波束扫描,实现波束捷变。

本文详细介绍了一种用于雷达干扰发射系统的双波束相控阵天线的设计与工程实现。

该相控阵天线的主要技术指标为:工作频率:P波段;极化:斜45°极化;增益:≥21dBi;波束宽度:25°×6°(方位×俯仰,中心频率);波束数:2个(同时);扫描角度:0°、±12.2°、±25°、±40°7个固定波束。

1 基本原理1.1 相控阵天线原理图1为一个N单元的均匀直线阵列[1-2]。

为讨论方便起见,假定该线阵位于一个直角坐标系内。

线阵中第i个天线单元的激励电流为Ii(i=0,1,…,N-1),每个天线单元所辐射的电场强度与其激励电流成正比。

干货!有源相控阵的天线设计的核心:T-R组件

干货!有源相控阵的天线设计的核心:T-R组件

干货!有源相控阵的天线设计的核心:T/R组件
有源相控阵天线设计的核心是T/R组件。

T/R组件设计考虑的主要因素有:不同形式集成电路的个数,功率输出的高低,接收的噪声系数大小,幅度和相位控制的精度。

同时,辐射单元阵列形式的设计也至关重要。

1 芯片设计理想情况下,所有模块的电路需要集成到一个芯片上,在过去的几十年,大家也都在为这个目标而努力。

然而,由于系统对不同功能单元需求的差别,现有的工程技术在系统性能与实现难度上进行了折衷的考虑,因此普遍的做法是将电路按功能进行了分类,然后放置于不同的芯片上,再通过混合的微电路进行连接,如图所示。

一个T/R模块的基本芯片设置包括了3个MMICs组件和1个数字大规模集成电路(VLSI),如图所示。

高功率放大器(MMIC)
低噪声放大器加保护电路(MMIC)
可调增益的放大器和可调移相器(MMIC)
数字控制电路(VLSI)
根据不同的应用需求,T/R模块可能还需要其他一些电路,如预功放电路需要将输入信号进行放大以满足高峰值功率需求。

大多数X波段及以上频段T/R组件都采用基于GaAs工艺的MMICs技术。

该技术有个缺点就是热传导系数极低,因此基于GaAs的电路需要进行散热设计。

未来T/R组件的发展方向是基于GaN和SiGe的设计工艺。

基于GaN的功率放大器可实现更高的峰值功率输出,从而提升雷达的灵敏度或探测距离,输出功率是基于GaAS工艺电路的5倍以上。

SiGe工艺虽然传输的功率不如GaAs,然而该材料成本较低,适用于未来低成本、低功率密度雷达系统的设计。

2 功率输出通常情况下,在给定阵列的口径后,雷达系统所需要的平均功率输出也基本确。

高密度集成有源相控阵天线体系构架与设计方法

高密度集成有源相控阵天线体系构架与设计方法

高密度集成有源相控阵天线体系构架与设计方法摘要:从“砖式”和“瓦式”两种体制出发,探讨了新一代高密度集成有源相控阵天线的体系构架和特点。

然后研究了高密度集成有源相控阵天线的设计方法,提出了基于多功能芯片集成的有源相控阵天线设计新技术和基于多通道集成的有源相控阵天线设计新技术。

最后给出了高密度集成有源相控阵天线的发展方向。

1 引言各种武器装备从来都是一代代地“纵向”发展的,到了信息时代则进入新阶段,即“横向一体化”或者说“集成”。

“横向一体化”源起市场营销和战略管理,又称“水平一体化”或“水平整合”,是指企业收购或兼并同类产品生产企业以扩大经营规模的成长战略,其实质则是提高系统的“结构级别”。

同样,有源相控阵天线技术的发展也遵循这一规律,朝着结构集成、功能集成、以及平台集成的方向发展。

按照M. I. Skolnik 等人的定义[1],在过去几十年中,人们共研制和生产了三代相控阵天线产品。

第一代是采用电真空器件的无源相控阵天线,例如美国爱国者系统中的MPQ-53 雷达和空间目标监视系统中的丹麦眼镜蛇雷达。

第二代是采用分离器件的固态有源相控阵天线,主要型号有美国弹道导弹预警系统中的铺路爪雷达和以色列的福康预警机雷达。

第三代是采用单片微波集成电路(MMIC)的有源相控阵天线,典型的代表有美国F-35 战机上安装的K 波段数据链相控阵天线和德国航天研发中心研制的“动中通”Ka 频段有源相控阵天线。

最近几年,随着电子技术和集成制造技术的快速发展、以砷化镓、碳化硅、氮化镓、锗硅等为基础材料的超大规模集成电路和超高速数字处理芯片得以实现[2-3],从而牵引了微波电路组装互联技术的发展。

目前,微波电路组装互联技术经历了分立电路到混合集成电路(HMIC)、到单片微波集成电路(MMIC)、到微波多芯片模块(MMCM)、再到三维微波多芯片组件(3D-MMCM)的发展[4],促进了有源相控阵天线朝着更高频段、更小体积、更优性能的方向发展。

一种微带相控阵天线设计

一种微带相控阵天线设计

第48卷第3期(总第189期)2019年9月火控雷达技术FireControlRadarTechnologyVol 48No 3(Series189)Sep 2019天天馈馈线线伺伺服服系系统统收稿日期:20190306作者简介:孙姣(1988-)ꎬ女ꎬ工程师ꎮ研究方向为雷达天线设计与分析技术ꎮ一种微带相控阵天线设计孙㊀姣1㊀蒋延生2㊀张安学2(1.驻西安地区第六军事代表室㊀西安㊀710043ꎻ2.西安交通大学㊀西安㊀710049)摘㊀要:低截获技术的应用大大提高了雷达的生存能力和作战能力ꎮ本文根据低截获雷达要求ꎬ按照天线综合方法ꎬ设计了一款满足指标要求的相控阵天线ꎮ首先ꎬ依据指标极化形式㊁单元间距㊁扫描范围和扫描增益的要求选取双层微带天线作为辐射单元并进行了理论设计和仿真ꎻ然后ꎬ利用HFSS仿真软件仿真设计了并馈双层微带天线和天线子阵ꎬ通过仿真发现电压驻波比和方向图满足设计要求ꎻ最后ꎬ加工了一个辐射单元试验小阵ꎬ测试互耦ꎬ计算其扫描电压驻波比和阵中单元方向图ꎬ性能优良ꎬ验证了天线设计的正确性ꎮ关键词:天线综合ꎻ双层微带ꎻ相控阵天线中图分类号:TN957.51㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1008-8652(2019)03-076-06引用格式:孙姣ꎬ蒋延生ꎬ张安学.一种微带相控阵天线设计[J].火控雷达技术ꎬ2019ꎬ48(3):76-82.DOI:10.19472/j.cnki.1008-8652.2019.03.014TheInventionRelatestoAMicrostripPhasedArrayAntennaDesignSUNJiao1ꎬJIANGYansheng2ꎬZHANGAnxue2(1.TheSixthMilitaryRepresentativeOfficeinXi anꎬXi an710021ꎻ2.Xi anJiaotongUniversityꎬXi an710049)Abstract:Theapplicationoflowprobabilityofinterception(LPI)technologygreatlyimprovesthesurvivabilityandcombatcapabilityofradar.BasedonthemethodofantennasynthesisꎬaphasedarrayantennaisdesignedtomeettherequirementofLPIradar.Firstlyꎬthedouble ̄layermicrostripantennaisselectedastheradiationelementac ̄cordingtotherequirementsofthepolarizationformꎬtheunitspacingꎬthescanningrangeandthescanninggainꎬandthetheoreticaldesignandsimulationarecarriedout.Thenꎬthedouble ̄layermicrostripantennaandantennaarrayaredesignedandfedbyHFSSsimulationsoftware.TheVSWRandthedirectiondiagramarefoundtomeetthedesignrequirementsthroughsimulation.Finallyꎬasmallradiatingelementtestarrayisprocessedtotestthemutualcouplingꎬanditsscanningvoltagestandingwaveratioandtheorientationdiagramoftheelementinthear ̄rayarecalculated.Theexcellentperformanceverifiesthecorrectnessoftheantennadesign.Keywords:antennasynthesisꎻdouble ̄layermicrostripꎻphased ̄arrayantenna0㊀引言雷达不被敌方各种截获接收机截获ꎬ就可以避免被侦察㊁被干扰和被反辐射导弹攻击ꎬ这就促使了低截获概率(LPI)雷达的产生[1]ꎮ低截获概率的实质ꎬ就是雷达的最大作用距离大于敌方侦查接收机的最大探测距离ꎬ即雷达保证在探测到目标的同时ꎬ使得敌方接收机截获到雷达信号的概率最小化ꎮLPI技术的应用大大提高了雷达的生存能力和作战能力[2]ꎮ天线作为雷达系统的重要部件之一ꎬ直接影响第3期孙姣等:一种微带相控阵天线设计着雷达性能的好坏和成本的高低ꎮ在近几十年当中ꎬ随着航空㊁航天技术的飞速发展ꎬ雷达天线也在突飞猛进地发展ꎬ经历了从传统的抛物面天线㊁卡塞格伦天线到波导型阵列天线的逐步过渡ꎮ然而ꎬ由于传统雷达天线主要基于机械扫描技术ꎬ存在着诸多缺点ꎬ如重量体积大㊁扫描速度慢㊁灵活性差等ꎮ相控阵技术的出现使雷达技术得到了更进一步的发展ꎮ它具有灵活性好㊁稳定性高㊁波束扫描速度快等诸多优点ꎮ通过控制各个阵元的相位ꎬ能够实现波束快速扫描ꎬ并且能够根据环境的不同自适应调节波束的指向ꎬ极大提高了雷达的性能[3]ꎮ本文结合实际天线指标要求介绍了相控阵天线综合ꎮ依据宽带宽角扫描辐射单元的要求ꎬ提出了天线单元的设计方法ꎬ设计了一种并馈双层微带天线线阵ꎬ将线阵组成天线子阵ꎬ利用HFSS软件仿真了该形式的天线子阵ꎬ加工了天线子阵ꎬ并进行了外场测试ꎬ对设计方法进行了验证ꎮ1㊀方案设计天线的总设计思想为:采用脉冲和二维接收DBF工作体制ꎬ控制电路和微波电路均高度集成ꎬ减少天线内部各单元之间的线缆连接ꎬ提高天线的可靠性和维修性ꎮ天线由天线阵面㊁高集成信号传输网络㊁信号处理㊁频综和本振㊁供电及散热设备等组成ꎮ天线的电原理见图1ꎮ图1㊀雷达天线电原理图2㊀天线综合相控阵天线综合的方法有傅里叶级数法[4]㊁谢昆诺夫法[5]㊁切比雪夫综合法[6]和泰勒[7]线源综合法等ꎮ本文主要根据泰勒线源综合法进行天线综合设计ꎬ确定天线各个参数ꎮ根据扫描范围的指标要求ꎬ考虑到天线组件的模块化设计㊁天线阵面结构布局的可行性以及接收天线阵面的对称性要求ꎬ天线阵面采用矩形栅格形式ꎮ雷达天线的阵面布局图见图2ꎮ图2㊀雷达天线的阵面布局图方位面采用相扫的方式实现-40ʎ~+40ʎ的空域覆盖要求ꎮ方位面单元间距dx应满足:dxɤλ1+sinθ=10.3mmꎬ方位面单元间距dx取9.9mmꎬ为了满足方位和俯仰面8ʎ宽发ꎬ2个5ʎ同时窄收的工作体制要求ꎬ俯仰面单元间距也取为9.9mmꎮ发射阵面为矩形布局方式ꎬ天线方位包含4个子阵ꎬ俯仰包含4个子阵ꎬ共16个发射子阵ꎬ工作状态时ꎬ发射T组件每通道均工作在饱和放大状态ꎬ发射天线为均匀加权ꎬ发射天线中心频率方向图见图3㊁图4ꎮ图3㊀天线发态方向图77火控雷达技术第48卷图4㊀天线发态方向图㊀㊀为了满足雷达指标的要求ꎬ同时兼顾数据处理和本振功分的问题ꎬ接收阵面采用子阵式DBF工作体制ꎬ近似圆形布局方式ꎬ天线方位包含8个子阵ꎬ俯仰包含8个子阵ꎬ全阵共52个子阵ꎮ接收天线采用同时波束的方法实现方位和俯仰差波束ꎬ接收天线中心频率方向图见图5和图6ꎮ图5㊀天线收态和差方向图图6㊀天线收态和差方向图3 仿真设计高性能辐射单元是相控阵天线的核心元件ꎬ其决定了相控阵天线的扫描性能ꎮ微带天线因具有体积小㊁重量轻㊁剖面低㊁馈电方式灵活㊁价格便宜㊁易与导弹㊁飞行器共形等特点在工程上具有良好的应用背景ꎮ本文采用矩形微带天线作为阵列天线的阵元ꎮ微带天线工作的频率为f0ꎬ矩形贴片的长宽分别为L和Wꎬ所采用的介质板厚度为hꎬ介电常数为εrꎬ则可通过经验公式粗略的求出矩形贴片的长宽ꎬ再通过仿真软件进行优化ꎬ这样可以大幅度地节省天线的设计时间ꎮ综合考虑ꎬ选择RO4350板材ꎬεr为3.66ꎬ板材厚度h为0.508mmꎮ根据上述经验公式计算出微带单元的初始尺寸为L=4.498mm㊁W=5.88mmꎮ利用HFSS软件对所设计的单元天线建模ꎬ并对其进行了仿真ꎬ模型如图7所示ꎮ图7㊀单层微带天线仿真模型图经仿真发现ꎬ单层微带天线的频带比较窄ꎮ为了展宽频带ꎬ我们采用双层微带天线ꎬ天线带宽可达12%ꎮ双层微带天线仿真模型图见图8ꎮ图9和图10为双层微带辐射单元电压驻波比和增益仿真结果ꎮ图8㊀双层微带天线仿真模型图87第3期孙姣等:一种微带相控阵天线设计图9㊀双层微带辐射单元电压驻波比仿真结果图10㊀双层微带辐射单元增益仿真结果㊀㊀对微带天线单元进行组阵时ꎬ单元是通过馈电网络连接的ꎮ微带阵列天线的馈电方式有并联馈电和串联馈电ꎬ通过对比串联馈电和并联馈电的优缺点以及依据仿真结果和实际应用的需求综合考虑ꎬ最终本文选择并联馈电网络组成的阵列天线ꎮ为避免功分网络对辐射单元性能的影响ꎬ功分网络采用一分三并行功分的形式ꎬ与辐射单元位于不同的电路层ꎬ功分器和辐射单元之间通过同轴馈电连接ꎬ实现了辐射单元和馈电网络的物理隔离ꎬ并且通过加载电感钉的匹配方式ꎬ消除了功分网络的谐振现象ꎬ展宽了微带线阵的带宽ꎬ线阵辐射单元之间通过周期性的电感钉形成高阻表面ꎬ消除了单元之间的互耦ꎬ提高了单个天线单元的增益ꎮ并馈仿真模型见图11ꎬ图12为并馈双层微带辐射单元中心频率方向图仿真结果ꎬ图13为并馈双层微带辐射单元电压驻波比仿真结果ꎮ图11㊀并馈双层微带辐射单元图12㊀并馈双层微带辐射单元方向图图13㊀并馈双层微带辐射单元电压驻波比该项目称为子阵式DBF天线ꎬ根据指标的要求ꎬ三个线阵组成一个子阵ꎬ子阵结构图形见图14ꎬ每个线阵通过波珠接插件与一路TR组件或者R组件焊接ꎬ即每个子阵包含3路TR组件或者R组件ꎬ子阵通过smp和J30等盲插结构与高集成的信号传输网络连接ꎬ在仿真设计时考虑固定螺钉对子阵性能的影响ꎮ子阵仿真模型图见图15ꎮ子阵电压驻波比仿真结果见图16ꎬ子阵方向图仿真结果见图17ꎮ通过仿真发现ꎬ子阵三个端口的驻波在频带范围内电压驻波比小于2ꎻ子阵方向图具有较好的对称性ꎮ图14㊀子阵结构图形97火控雷达技术第48卷图15㊀子阵仿真模型图16㊀子阵电压驻波比图17㊀子阵方向图(f0)4 实验验证加工一子阵进行子阵电压驻波比㊁有源单元反射系数(转换成有源单元电压驻波比)及有源单元方向图的测试ꎮ子阵的实物图见图18ꎬ用一块金属铝板代替瓦片式TR组件ꎬ将型号为SMP ̄JFD6A射频接插件焊接到微带天线板上ꎬ微带天线板和金属铝板用导电胶固定ꎮ图18㊀子阵实物图利用网络分析仪进行子阵电压驻波比测试ꎬ测试中间馈电口的电压驻波比ꎬ两边的馈电口接匹配负载ꎬ测试场景和测试结果见图19ꎮ图19㊀子阵电压驻波比的测试有源单元反射系数(转换为有源单元电压驻波比)的测试结果见图20ꎮ08第3期孙姣等:一种微带相控阵天线设计图20㊀有源单元电压驻波比㊀㊀在微波暗室进行子阵有源单元方向图测试ꎬ测试中间端口的有源单元方向图ꎬ其余的端口接匹配负载ꎬ测试场景见图21ꎬ测试结果见图22至图24ꎬ由于二维转台俯仰转动范围有限ꎬ因此ꎬ子阵方向图测试结果俯仰面只能测试ʃ30ʎ内的方向图ꎮ实验结果表明:1)该形式微带天线为线极化ꎬ功率容量满足项目要求ꎬ且体积小ꎬ可以满足在阵面上所占面积足够小的要求ꎬ增加了高次模的截止深度ꎬ减少了高次模的场对频率的敏感度及在总辐射场中所占的比例ꎬ展宽了辐射带的带宽ꎮ图21㊀子阵测试场景图22㊀子阵方向图测试结果(f0-1000MHz)图23㊀子阵方向图测试结果(f0)图24㊀子阵方向图测试结果(f0+1000MHz)㊀㊀2)该形式微带辐射单元具有良好的端口匹配特性ꎮ子阵电压驻波比仿真与实物测试结果一致ꎬ有源单元电压驻波比的仿真结果与实际测试结果也基本可比拟ꎮ3)该形式微带辐射单元具有良好的辐射特性ꎮ有源单元方向图的仿真结果和实际测试结果一致ꎬ波束宽度均为:H面波束宽度大于90ʎꎬE面波束宽度大于25ʎꎮ该形式微带辐射单元剖面低ꎬ重量轻㊁成本低适合大型相控阵天线使用ꎮ18火控雷达技术第48卷5 结束语本文在总结研究背景的基础上对微带相控阵天线进行了研究ꎬ从方案设计出发ꎬ在仿真软件中设计所需的仿真模型ꎬ优化仿真后所得的结果可以满足预先设定的技术指标ꎬ完成了子阵加工制作以及电气性能测试ꎬ测试结果达到了预期目标ꎬ对设计方法进行了验证ꎮ参考文献:[1]㊀曾高强.有源相控阵雷达低截获概率波形研究[D].成都:电子科技大学ꎬ2011.[2]㊀刘琼.低截获概率雷达技术及性能评估方法研究[D].西安:西安电子科技大学ꎬ2015.[3]㊀樊星.相控阵列天线综合宽角度扫描[D].成都:电子科技大学ꎬ2016.[4]㊀SILVERS.MicrowaveAntennaTheoryandDe ̄sign[M].MITꎬRad.Lab.ꎬ1979.[5]㊀SCHELKUNOVSA.AMathematicalTheoryofLinearArrays[J]BellSystemTechnicalJour ̄nalꎬ1943:80 ̄107.[6]㊀DOLPHCL.ACurrentDistributionforBroad ̄sideArraysWhichOptimizestheRelationshipBetweenBeamwidthandSidelobeLevel[J].Proc.IREꎬVol.34ꎬ1946ꎬ35(6):335 ̄345. [7]㊀TAYLORTT.DesignofLineSourceAntennasforNarrowBeamwidthandLowSidelobes[J].BellSystemTechnicalJournalꎬ1968ꎬ47:623 ̄640.(上接第75页)[6]㊀TUINSTRATR.RangeandVelocityDisambig ̄uationinMediumPRFRadarwiththeDBSCANClusteringAlgorithm[C].IEEENationalAero ̄spaceandElectronicsConferenceandOhioIn ̄novationSummitꎬ2016:396 ̄400.[7]㊀AHNSꎬLEEHꎬJUNGBW.MediumPRFSetSelectionforPulsedDopplerRadarsUsingSim ̄ulatedAnnealing[C].IEEERadarConferenceꎬ2011:090 ̄094.[8]㊀连晓锋ꎬ汤子跃ꎬ朱振波ꎬ汪先超ꎬ席秋实ꎬ乔宁.机载相控阵PD雷达的MPRF设计与选择[J].现代防御技术ꎬ2016ꎬ44(4):129 ̄135. [9]㊀HUGHESEJꎬALABASTERCM.MediumPRFRadarPRFOptimisationUsingEvolution ̄aryAlgorithms[C].IEEERadarConferenceꎬ2013:192 ̄197.[10]㊀XIAXG.DopplerAmbiguityResolutionUsingOptimalMultiplePulseRepetitionFrequencies[J].IEEETrans.Aerosp.Electron.Syst.ꎬ1999(35):371 ̄379.[11]㊀马杰ꎬ王永良ꎬ谢文冲.机载预警雷达MPRF优化方法研究[J].空军预警学院学报ꎬ2018ꎬ32(5):331 ̄336.[12]㊀KINGHORNAMꎬWILLIAMSNK.TheDecod ̄abilityofMultiple ̄PRFRadarWaveforms[C].IEEEInternationalRadarConferenceꎬ1997. [13]㊀ALABASTERC.PulseDopplerRadar:Princi ̄plesꎬTechnologyꎬApplications[M].NC:SciTechPublishingꎬ2012.[14]㊀HUGHESEJꎬALABASTERCM.NovelPRFSchedulesforMediumPRFRadar[C].Inter ̄nationalConferenceonRadarꎬ2003.28。

相控阵雷达天线近场多任务测试系统设计方法论文(精选5篇)

相控阵雷达天线近场多任务测试系统设计方法论文(精选5篇)

相控阵雷达天线近场多任务测试系统设计方法论文(精选5篇)第一篇:相控阵雷达天线近场多任务测试系统设计方法论文【摘要】针对相控阵雷达天线近场多任务测试系统设计问题,从系统设计的功能需求进行分析,设计系统层次架构与功能模块等,进而构建多任务测试系统,以提高天线近场测试效率。

【关键词】相控阵雷达;天线;多任务;测试系统;设计方法近场天线测试系统作为相控阵雷达天线性能测试的主要手段,该系统随着相控阵天线技术的完善,其测试效率也不断提升。

基于应用需求,近场天线测试系统实现多任务测试是发展的主要趋势,目前该系统也已经被广泛的推广应用。

一、相控阵雷达天线概述相控阵雷达包括有源电子扫描阵列雷达、无源电子扫描阵列雷达,其主要是通过改变天线表面的阵列波束合成形式,进而改变波束扫描方向的雷达。

此类型的雷达天线的侦测范围较为广泛,利用电子扫描,能够快速的改变波束方向,精准的测量目标信号。

二、近场天线测试系统建设功能需求分析近场天线测试系统设计,需要做好软件需求分析,此系统功能需求如下:1)要能够满足全测试周期可配置,以及软件通用化需求。

此功能需求的实现,责任需要构建众多数据源输入接口,配置通信协议以及软件界面等,面向各类相控阵天线测试,进而达到通用化需求目标。

2)实现多任务测试。

相控阵雷达天线的不断发展,使得传统的单任务测试方法,已经难以满足天线测试需求,基于此进行多任务测试方法设计,在测试探头单独扫描条件下,采取高密度测试方法,即多个频率与波束等,实现高效测试。

三、相控阵雷达天线近场多任务测试系统设计方法多任务测试系统主要是利用软件,进行测试参数预设,包括测试频率、波束角度、扫描架运用范围等。

利用数据处理软件,进行分解转换测试,计算各采样点数据,获取天线方向图性能参数,最后显示图像。

3.1架构设计方法相控阵雷达天线近场多任务测试系统架构设计,其是基于构件化设计思想,利用软件构成元素,由标准接口负责提供特定服务,以支持系统开发。

相控阵天线设计方案

相控阵天线设计方案

相控阵天线设计方案一、相控阵天线需求分析1.天线应用场景图1-(a)图1-(b)如图1所示,定义XOY平面为天线安装面,天线采用平板结构外形,与天花板共形安装。

为了实现AP的远距离覆盖能力,天线需要在天花板平面具备高增益特性;在AP的高密度部署区域,需要天线波束集中于垂直向下区域,同时窄波束有利于降低AP之间的相互干扰。

由此可知,天线需要具备高增益、大角度覆盖的能力。

2.天线指标要求图25G频段:4.9GHz~5.9GHz在xz/yz面:第一档:theta=90°增益大于5dB第二档:theta=90°增益比第一档增益下降4dB第三档:theta=90°/-90°增益小于-9dBtheta=60°/-60°增益小于-6dB2.4G频段:2.4GHz~2.49GHz在xz/yz面:第一档:theta=90°增益大于3dB第二档:theta=90°增益比第一档增益下降4dB第三档:theta=90°/-90°增益小于-9dBtheta=60°/-60°增益小于-6dB根据图2坐标定义,天线波束需要具备在±90°角度内满足大角度、高增益扫描状态。

图3根据图3阵列布局要求,每个天线子阵采用线阵形式,各自覆盖俯仰0°~90°角度,最终实现整阵对于下半空间的全覆盖。

二、天线设计方案阵列天线的大角度扫描是阵列天线设计的一大难点。

从理论上讲阵列的天线增益满足:阵列增益=单元增益+阵因子增益,天线单元的广角辐射特性决定了阵列波束的宽角扫描特性。

当阵列主波束扫描时,随着扫描角度的不同,其增益也在天线单元方向图的限制范围内改变。

当阵列波束扫描至天线单元的增益降至-3dB 的角度时,阵列增益将减小-3dB。

因此,天线单元的3dB 波束覆盖范围,也是阵列的3dB 波束扫描范围。

Ka频段双波束平板卫通相控阵天线设计

Ka频段双波束平板卫通相控阵天线设计

Ka频段双波束平板卫通相控阵天线设计目录1. 内容综述 (2)1.1 研究背景与意义 (2)1.2 研究内容与方法 (3)1.3 文档结构概述 (4)2. Ka频段双波束平板卫通相控阵天线设计基础 (5)2.1 Ka频段特性分析 (6)2.2 双波束原理介绍 (8)2.3 平板卫通相控阵天线基础 (8)3. 设计要求与指标 (10)3.1 设计目标设定 (10)3.2 关键性能指标要求 (12)3.3 性能指标设计方法 (12)4. 天线总体设计 (13)4.1 设计流程概述 (14)4.2 结构布局与材料选择 (15)4.3 电气连接与布线设计 (16)5. 双波束形成网络设计 (18)5.1 阵元设计与配置 (19)5.2 阵列形式选择与优化 (20)5.3 耦合与馈电网络设计 (22)6. 板体结构设计与优化 (23)6.1 板体材料选择与厚度确定 (23)6.2 结构尺寸优化方法 (25)6.3 散热设计考虑 (26)7. 防腐蚀与防护措施 (28)7.1 防腐蚀材料选用 (29)7.2 防护措施规划 (30)7.3 工程实施与验收标准 (31)8. 测试与验证 (32)8.1 测试设备与方法介绍 (33)8.2 关键性能指标测试方案 (33)8.3 测试结果分析与优化建议 (34)9. 结论与展望 (36)9.1 设计总结 (36)9.2 不足之处与改进方向 (38)9.3 未来发展趋势预测 (39)1. 内容综述频段特性分析:深入剖析频段的频谱资源、传输特性以及面临的技术挑战,为后续天线设计提供理论基础。

双波束设计原理:探讨双波束天线的结构设计、波束形成机制以及波束切换技术,确保天线能够在不同方向上实现高效通信。

平板卫通相控阵技术:介绍平板相控阵天线的优势、关键技术及其与卫星通信系统的融合方式,阐述如何通过相控阵技术实现天线的智能化和灵活性。

天线性能优化策略:针对频段双波束平板卫通相控阵天线的关键性能参数,提出优化设计方案,确保天线在各种环境下的性能稳定。

新型宽带数字多波束相控阵天线设计

新型宽带数字多波束相控阵天线设计
( 1 . S o u t h w e s t C h i n a I n s t i t u t e o f E l e c t r o n i c T e c h n o l o g y, C h e n g d u 6 1 0 0 3 6 , C h i n a ;
可靠性也显著降低。基于软件无线 电思想, 利用超外差结构实现宽带信号变频, 并对瞬时带宽内的
信 号 同时进 行模/ 数 或数/ 模 变换 , 再根 据 串 口提 供 的每 个 波束方 位 、 俯仰 和频 率等信 息 , 在 基 带 实现 数 字 多波束 形成 。设计 了一套 s频段 、 瞬 时宽 带1 0 0 M H z 的数 字 多波束 相控 阵天 线 系统。 测试 结 果
2 . C h o n g q i n g U n i v e r s i t y , C h o n g q i n g 4 O 0 0 4 4 , C h i n a )
Ab s t r a c t : Wi t h t h e i n c r e a s i n g n u mb e r s o f b e a r n f o r mi n g,t h e we i g h t ,s i z e,p o we r c o n s u mp t i o n o f t r a d i t i o n a l d i g i — t a l mu l t i . b e a m p h a s e d a r r a y a n t e n n a s ma y i n c r e a s e s i g n i ic f a n t l y,a n d he t s y s t e m S b a s i c r e l i a b i l i t y w i l l d e c ea r se s i g n i ic f nt a l y.B a s e d o n s o f t wa r e r a d i o t h e o r y, a n e w me t h o d i s p r e s e n t e d.S u p e r h e t e r dy o n e i s u s e d t o r e a l i z e wi d e b a n d s i g n a l re f q u e n c y c h ng a i n g,a n d A/ D o r D/ A c o n v e te r r o f s i na g l s i s r e a l i z e d i n i n s t nt a ne a o u s b a n d— w i d t h s i mu l t a n e o u s l y. Ac c o r d i n g t o t h e a z i mu t h a n g l e,p i t c h a n g l e a n d f r e q u e n c e s u p p o te r d b y s e r i e s p o r t ,t h e mu l t i . b e m a i s f o r me d i n t h e b a s e b a n d.An S . b a n d d i g i t a l mu l t i — b e a m p h se a d a ra y a n t e n n a wi t h 1 0 0 MHz i n— s t a n t a n e o u s b a n d wi d t h i s d e s i g n e d.Th e e x p e r i me n t a l r e s u l t s s h o w ha t t t h e T /R a n t e n n a s c a n f o r m t h ee r i n d e — p e n d e n t b e a ms s i mu l t a n e o u s l y. I n t h e a z i mu t h a l o mn i d i r e c t i o n a l s c n l e 0 。~7 0 。 ,t he

有源相控阵雷达天线结构设计

有源相控阵雷达天线结构设计

有源相控阵雷达天线结构设计CHANG Wenkai;HU Longfei;CHEN Dongyu;LI Lixian;LI Liang【摘要】相控阵雷达天线作为一种涉及多个学科知识的复杂机械电子学设备,其结构设计必须依靠系统的设计方法.以某车载相控阵雷达天线为例,提出了其结构设计中需要考虑的核心关键因素,并对各关键因素的设计方法进行了研究,系统地叙述了该类天线的结构设计方法.【期刊名称】《机械与电子》【年(卷),期】2019(037)007【总页数】6页(P33-37,42)【关键词】有源相控阵天线;结构设计【作者】CHANG Wenkai;HU Longfei;CHEN Dongyu;LI Lixian;LI Liang【作者单位】;;;;【正文语种】中文【中图分类】TN957.80 引言有源相控阵雷达天线分为模拟有源相控阵天线和数字有源相控阵天线,前者采用移相器、馈线等模拟器件,波束合成在阵面完成,后者采用接收机前移的方式使用DDS 移相来产生信号的相移。

数字相控阵天线虽是前沿的高新技术,但其成本高且可靠性低,所以模拟相控阵天线仍是军用雷达发展和应用的主流。

模拟相控阵天线经过多年的发展,电气及结构基础技术已基本成熟,后续高集成、小体积和易维护将是主要发展方向,也是本文的研究重点。

1 总体设计相控阵天线结构设计作为一种复杂的机械电子学设计,融合了机、电、磁和热等多学科知识[1],因此总体设计应首先明确阵面电气硬件构成、阵面电气网络结构和系统散热等关键技术需求,如图1所示。

图1 设计流程然后基于可维修性中的可接近性思想,以高集成和小体积为目标对硬件进行总体布局设计,力求结构简单、维修快速可达。

2 互联设计相控阵天线属于典型的阵列重复式天线结构,因此系统网络结构的研究一般都是基于阵面级、子阵(阵列)级和组件级进行划分。

相控阵天线阵面的网络主要包括射频网络、控制网络和电源网络,这些网络直接决定了阵面的总体结构,互联设计主要研究各网络内部及网络间互联关系。

医院相控阵雷达解决方案(3篇)

医院相控阵雷达解决方案(3篇)

第1篇随着医疗技术的不断发展,医院对于设备的要求越来越高,特别是在医疗成像领域。

相控阵雷达作为一种先进的成像技术,在医疗领域展现出巨大的应用潜力。

本文将针对医院相控阵雷达解决方案进行详细阐述,包括技术原理、应用场景、系统设计、性能优化等方面。

一、引言相控阵雷达(Phased Array Radar)是一种利用多个天线单元,通过电子方式实现波束的快速扫描和聚焦的技术。

相比传统的机械扫描雷达,相控阵雷达具有扫描速度快、抗干扰能力强、体积小、重量轻等优点。

在医疗领域,相控阵雷达可应用于心脏成像、肿瘤检测、血管成像等方面,具有极高的应用价值。

二、相控阵雷达技术原理相控阵雷达的基本原理是利用多个天线单元形成阵列,通过电子方式控制各个天线单元的相位,从而实现波束的聚焦和扫描。

以下是相控阵雷达技术原理的详细解析:1. 天线单元:相控阵雷达由多个天线单元组成,每个单元可以发射和接收电磁波。

天线单元的排列方式可以是线性、平面或三维。

2. 相位控制:通过控制各个天线单元的相位,可以实现波束的聚焦和扫描。

相位控制通常采用数字信号处理器(DSP)实现。

3. 波束合成:将各个天线单元发射的电磁波进行合成,形成具有特定方向和强度的波束。

4. 波束扫描:通过改变各个天线单元的相位,实现波束在空间中的快速扫描。

5. 信号处理:接收到的回波信号经过信号处理,提取出有用的信息,如距离、速度、角度等。

三、医院相控阵雷达应用场景1. 心脏成像:相控阵雷达可应用于心脏成像,通过测量心脏各部位的运动速度和方向,实现心脏的动态成像。

2. 肿瘤检测:相控阵雷达可应用于肿瘤检测,通过测量肿瘤的回波信号,实现肿瘤的定位和大小测量。

3. 血管成像:相控阵雷达可应用于血管成像,通过测量血管的血流速度和方向,实现血管的动态成像。

4. 呼吸系统成像:相控阵雷达可应用于呼吸系统成像,通过测量肺部的回波信号,实现肺部的动态成像。

5. 神经系统成像:相控阵雷达可应用于神经系统成像,通过测量脑部回波信号,实现脑部的动态成像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档