三角函数图像的平移

合集下载

高中数学三角函数的平移

高中数学三角函数的平移

三角函数平移一.基本知识点【1】三角函数平移(1)()sin sin x x ωωϕ→+的平移方法: ;(2)()sin sin x A x ωϕ→+的平移方法: ;(3) sin cos x x →的平移方法: ;(4)()sin x ωϕ+平移后图像关于y 轴对称的方法: ;()sin x ωϕ+平移后图像关于原点对称的方法:;()sin x ωϕ+平移后图像与原来图像重合的方法: ;二.例题分析【例1】将函数y=sinx 的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.【变式1】将函数y=sin2x 的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是【变式2】把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,【例2】(2010年天津文)5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点 ( )(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【例3】要得到函数cos(2)4y x π=-的图象,只需要将函数sin 2y x =的图象 ( )A .向左平移8π个单位 B .向右平移8π个单位C .向左平移4π个单位 D .向右平移4π个单位【变式1】已知()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到()cos g x x ϖ=的图象,只要将()y f x =的图象A. 向左平移8π个单位长度 B. 向右平移8π个单位长度C. 向左平移4π个单位长度 D. 向右平移4π个单位长度【例4】(2009年天津文)已知函)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是()A2π B 83π C 4π D 8π 【变式1】(2011年全国2)设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)31 (B) 3 (C) 6 (D) 9【变式2】将函数sin y x ω=(其中ω>0)的图象向右平移4π个单位长度,所得图象经过3,04π⎛⎫ ⎪⎝⎭,则ω的最小值是。

关于三角函数图像的平移变换

关于三角函数图像的平移变换

三角函数图像的平移、变换一、 引入以简单函数为例,解说“左加右减、上加下减” 。

讲清横移的实质是把全部x 替代为 x+a ;二、三角函数图像的平移之历年高考真题1、为了获得函数y sin(2 x) 的图像,只需把函数 y sin(2 x) 的图像( A )向左平移个长度单364位( B )向右平移 个长度单位4( C )向左平移个长度单位( D )向右平移个长度单位22【答案】 B2、将函数 ysin x 的图像上全部的点向右平行挪动个单位长度, 再把所得各点的横坐标伸长到本来的102 倍(纵坐标不变) ,所得图像的函数分析式是( A ) ysin(2 x ) (B ) ysin(2 x)sin( 1x10sin( 1x 5 ( C ) y) ( D ) y )2102 20分析:将函数 y sin x 的图像上全部的点向右平行挪动个单位长度, 所得函数图象的分析式为 y = sin( x10-)再把所得各点的横坐标伸长到本来的 2 倍(纵坐标不变) ,所得图像的函数分析式是10y sin( 1x) . 【答案】 C 210以本题为例,解说横向变换的实质也是替代。

可发问:上述步骤反演,结果怎样?3、( 2010 天津文)( 8)右图是函数 y Asin ( x+ )( xR )在区间 - 5上的图象,为了获得这个函数的图象,只,6 6要将 y sin x ( x R )的图象上全部的点(A) 向左平移 个单位长度,再把所得各点的横坐标缩短到原3来的 1倍,纵坐标不变2(B) 向左平移个单位长度, 再把所得各点的横坐标伸长到原3来的 2 倍,纵坐标不变(C) 向左平移个单位长度,再把所得各点的横坐标缩短到本来的1倍,纵坐标不变621【答案】 A【分析】本题主要考察三角函数的图像与图像变换的基础知识,属于中等题。

由图像可知函数的周期为,振幅为1,因此函数的表达式能够是y=sin(2x+ ).代入( - , 0)可得的6一个值为,故图像中函数的一个表达式是y=sin(2x+ ),即 y=sin2(x+ ),因此只需将 y=sinx ( x∈ R)3 3 6 1倍,纵坐标不变。

三角函数的平移变换

三角函数的平移变换

函数)sin(A ϕω+=x y 的图像1、函数sin()y A x ωϕ=+的图像与sin y x =图像间的关系:① 函数sin y x =的图像纵坐标不变,横坐标向左(ϕ>0)或向右(ϕ<0)平移||ϕ个单位得()sin y x ϕ=+的图像;② 函数()sin y x ϕ=+图像的纵坐标不变,横坐标变为原来的1ω,得到函数()sin y x ωϕ=+的图像;③ 函数()s i n y x ωϕ=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ωϕ=+的图像;要特别注意,若由()sin y x ω=得到()sin y x ωϕ=+的图像,则向左或向右平移应平移||ϕω个单位。

2、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:【典型例题】例1将函数)3sin(2π+=x y 的图象上所有点的横坐标缩短到原来的21(纵坐标不变), 所得图象对应的表达式为A .)321sin(2π+=x y B .)621sin(2π+=x yC .)32sin(2π+=x yD .)322sin(2π+=x y 例2、110610. 将函数)32cos(4π-=x y 的图像向右平移6π个单位,所得图像的解析式是(A ))62cos(4π-=x y (B ))322cos(4π-=x y (C )x y 2cos 4= (D )x y 2sin 4=例3、080606.为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需把函数sin 2y x =的图象( ) A . 向左平移3π个单位长度B . 向右平移3π个单位长度C . 向左平移6π个单位长度D . 向右平移6π个单位长度试题分析:因为sin 2sin 236y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以只需将函数sin 2y x =的图像向右平移6π各单位即可得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象;故D 正确.【会考真题】1、101213.为得到函数)42sin(π+=x y 的图像,只须将函数x y 2sin =上所有点( )(A )向右平移4π个单位 (B )向左平移4π个单位 (C )向右平移8π个单位 (D )向左平移8π个单位2、060615:要得到函数cos(2),3y x x R π=+∈的图像,只需把曲线cos 2y x =上所有的点( )(A )向左平行移动3π个单位长度 (B )向右平行移动3π个单位长度 (C )向左平行移动6π个单位长度 (D )向右平行移动6π个单位长度例4 、将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是(A ) (B )(C ) (D ) 解析:将函数的图像上所有的点向右平行移动个单位长度,所得函数图象的解析式为y =sin (x -) 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是.【答案】C1、100113:把函数3sin y x =的图像上每个点的横坐标伸长到到原来的两倍(纵坐标保持不变),然后再将整个图像向左平移3π个单位,所得图像的函数解析式是( )(A )3sin(2)6y x π=-(B )13sin()26y x π=+ (C )3sin(2)3y x π=- (D )13sin()23y x π=+2、070614或090113:将函数sin()()3y x x R π=-∈的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图像向左平移3π个单位长度,则得到的图像的函数解析式是( )(A )1sin2y x = (B )1sin()23y x π=- (C )sin(2)6y x π=- (D )1sin()26y x π=-sin y x =10πsin(2)10y x π=-sin(2)5y x π=-1sin()210y x π=-1sin()220y x π=-sin y x =10π10π1sin()210y x π=-3、090614:把函数sin(2),4y x x R π=+∈的图像向右平移8π个单位长度,再把所得图像上各点的横坐标缩短到到原来的12倍(纵坐标不变),则所得图像对应的函数解析式为( ) (A )cos(4)8y x π=+(B )sin(4)8y x π=+ (C )cos 4y x = (D )sin 4y x =例5、为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象( )A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度解析 y =cos(2x +π3)=sin[π2+(2x +π3)]=sin(2x +5π6).故要得到y =sin(2x +5π6)=sin2(x +5π12)的图象,只需将函数y =sin2x 的图象向左平移5π12个单位长度.。

三角函数的像变换与平移

三角函数的像变换与平移

三角函数的像变换与平移三角函数是数学中非常重要的概念之一,在三角函数中,像变换与平移是两个重要的概念。

它们描述了函数图像在坐标系中的移动和变形过程。

本文将重点介绍三角函数的像变换与平移。

1. 像变换(Image Transformation)像变换是指通过特定的变换规则,改变函数图像的形状、位置或尺寸等性质。

对于三角函数而言,常见的像变换包括拉伸、压缩、翻转和反转等。

1.1 拉伸(Stretch)拉伸是指改变函数图像在横轴和纵轴方向上的尺寸,使其变得更长或更短。

对于正弦函数(sin)和余弦函数(cos)而言,拉伸可以分别沿横轴和纵轴方向进行。

例如,当正弦函数的图像被沿横轴方向拉伸时,函数的周期将变得更长,波峰和波谷之间的距离增加;而当余弦函数的图像被沿纵轴方向拉伸时,函数的振幅(波峰或波谷与横轴的距离)增加。

1.2 压缩(Compression)压缩是指改变函数图像在横轴和纵轴方向上的尺寸,使其变得更短或更窄。

与拉伸相反,压缩使函数的周期变短,波峰和波谷之间的距离缩小;同时,压缩会使函数的振幅减小。

1.3 翻转(Reflection)翻转是指将函数图像相对于横轴或纵轴进行对称变换,以改变图像的朝向。

对于正弦函数和余弦函数而言,翻转可以使波形上下颠倒或左右翻转。

1.4 反转(Inversion)反转是指将函数图像的正负进行翻转,使得原本正值的部分变为负值,负值的部分变为正值。

对于正弦函数和余弦函数而言,反转会使波形关于横轴或纵轴进行对称。

2. 平移(Translation)平移是指将函数图像在坐标系中沿横轴或纵轴方向上移动,以改变图像的位置。

对于正弦函数和余弦函数而言,平移可以使波形向左或向右平移一定的距离,或者向上或向下平移。

2.1 横向平移(Horizontal Translation)横向平移是指将函数图像沿横轴方向上移动,通常用参数h表示平移的距离。

当h为正值时,函数图像向右平移;当h为负值时,函数图像向左平移。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。

三角函数图像的变换与特征

三角函数图像的变换与特征

三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。

在本文中,我们将探讨三角函数的变换和它们的特征。

一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。

对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。

b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。

2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。

b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。

二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。

对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。

b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。

2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。

b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。

三角函数的平移伸缩变换规律

三角函数的平移伸缩变换规律

三角函数的平移伸缩变换规律三角函数是数学中非常重要的一部分,它在数学、物理、工程等领域都有着广泛的应用。

在三角函数中,平移和伸缩变换是非常常见的操作,通过对三角函数的平移和伸缩变换,我们可以得到不同的函数图像,从而更好地理解和分析函数的性质。

接下来,我们将详细介绍三角函数的平移伸缩变换规律。

首先,让我们来了解一下什么是三角函数的平移和伸缩变换。

在数学中,平移变换是指将函数图像沿着坐标轴的方向进行平移,而伸缩变换则是指对函数图像进行拉伸或压缩。

对于三角函数而言,平移和伸缩变换会改变函数图像的周期、振幅、相位等性质。

对于正弦函数和余弦函数而言,它们的平移和伸缩变换规律如下:1. 正弦函数的平移和伸缩变换规律:设y = A*sin(B(x-C)) + D,其中A、B、C、D为常数,则:A控制振幅的变化,当|A|>1时,振幅增大;当0<|A|<1时,振幅减小。

B控制周期的变化,周期T=2π/|B|。

C控制相位的变化,向右平移C个单位;向左平移-C个单位。

D控制上下平移,向上平移D个单位;向下平移-D个单位。

2. 余弦函数的平移和伸缩变换规律:设y = A*cos(B(x-C)) + D,其中A、B、C、D为常数,则:A、B、C、D的作用与正弦函数相似,只是对于余弦函数而言,A控制振幅的变化,B控制周期的变化,C控制相位的变化,D控制上下平移。

除了正弦函数和余弦函数外,切线函数和余切函数也有类似的平移和伸缩变换规律:3. 切线函数的平移和伸缩变换规律:设y = A*tan(B(x-C)) + D,其中A、B、C、D为常数,则:A控制纵向拉伸或压缩。

B控制周期的变化,周期T=π/|B|。

C控制横向平移。

D控制上下平移。

4. 余切函数的平移和伸缩变换规律:设y = A*cot(B(x-C)) + D,其中A、B、C、D为常数,则:A、B、C、D的作用与切线函数相似,只是对于余切函数而言,A控制纵向拉伸或压缩,B控制周期的变化,C控制横向平移,D控制上下平移。

(完整版)三角函数图像平移变换

(完整版)三角函数图像平移变换

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。

1。

为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。

三角函数的平移

三角函数的平移

三角函数的平移
三角函数的平移是指将三角函数的图像在坐标系中向某一方向移动,而不改变其形状。

三角函数的平移可以通过改变函数中的参数来实现,这些参数可以是函数的角度或者是函数的横坐标。

三角函数的平移可以用来解决很多数学问题,比如求解三角形的面积,求解抛物线的焦点,求解椭圆的长短轴等等。

三角函数的平移也可以用来求解更复杂的数学问题,比如求解椭圆的焦点,求解抛物线的顶点,求解椭圆的面积等等。

三角函数的平移也可以用来解决物理问题,比如求解物体的运动轨迹,求解物体的加速度,求解物体的动量等等。

三角函数的平移也可以用来求解更复杂的物理问题,比如求解物体的动能,求解物体的势能,求解物体的力等等。

总之,三角函数的平移是一种非常有用的数学和物理技术,它可以用来解决各种数学和物理问题,并且可以用来求解更复杂的问题。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以经由过程变更A kωϕ,,,来互相转化.A ω,影响图象的外形,k ϕ,影响图象与x 轴交点的地位.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称高低平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换办法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象.xy sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为本来的1/2 横坐标不变 纵坐标伸长为本来的3倍例1将sin y x =的图象如何变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(办法一)①把sin y x=的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到本来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到本来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. (办法二)①把sin y x =的图象的纵坐标伸长到本来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到本来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y 纵坐标不变 横坐标缩短为本来的1/2 纵坐标不变 横坐标向左平移π/6 个单位横坐标不变 纵坐标伸长为本来的3倍移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解释:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到本来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭. 对于庞杂的变换,可引进参数求解. 例2将sin 2y x =的图象如何变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 剖析:应先经由过程引诱公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭, 在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 依据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

三角函数的平移

三角函数的平移

三角函数的平移三角函数是数学中常见且重要的函数之一,包括正弦函数、余弦函数和正切函数。

这些函数在实际应用中具有广泛的意义,而其中一项关键操作就是平移。

一、平移定义和基本概念平移是指将图形或函数在一定方向上进行移动,而不改变其形状和大小。

对于三角函数而言,平移可以通过改变函数的幅值、相位和角度单位来实现。

1. 幅值的平移对于正弦函数和余弦函数,平移可以通过改变幅值来实现。

幅值即函数图像在y轴上的偏移量。

当幅值为正时,图像会向上平移,在y轴上方显示;当幅值为负时,图像会向下平移,在y轴下方显示。

2. 相位的平移相位是指函数图像在x轴上的偏移量,也称为水平平移。

对于正弦函数和余弦函数,相位变化会导致函数在x轴上发生平移。

相位正数右平移,相位负数左平移。

3. 角度单位的平移三角函数中的角度单位通常为弧度制和度数制,不同的角度单位会影响函数图像在x轴上的变化。

当角度单位为度数制时,函数图像在x轴上向右平移;当角度单位为弧度制时,函数图像在x轴上向左平移。

二、平移的公式和示例以下是三种常见的三角函数的平移公式:1. 正弦函数平移公式:y = a·sin(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。

2. 余弦函数平移公式:y = a·cos(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。

3. 正切函数平移公式:y = a·tan(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。

示例:以正弦函数为例,说明平移的具体过程。

假设原始的正弦函数为:y = sin(x)若要对其进行平移,可以通过修改幅值、相位和角度单位来实现。

比如,将原始正弦函数的幅值改为2,相位改为π/6,角度单位改为弧度制,则新的正弦函数为:y = 2·sin(1(x - π/6))三、三角函数平移的应用举例三角函数平移在实际应用中具有广泛的应用,下面介绍两个常见的应用举例。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩之邯郸勺丸创作函数sin()y A x kωϕ=++的图象与函数sin y x=的图象之间可以通过变更A kωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. xy sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为原来的1/2 横坐标不变 纵坐标伸长为原来的3倍例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y 纵坐标不变 横坐标缩短为原来的1/2 纵坐标不变 横坐标向左平移π/6 个单位横坐标不变 纵坐标伸长为原来的3倍πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

三角函数的平移知识点和练习

三角函数的平移知识点和练习

三角函数图象的作法:1.y=Asin(ωx+φ)的图象:的图象:①用五点法作图①用五点法作图::五点取法由ωx +j =0=0、、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图描点作图. .②图象变换:先平移、再伸缩两个程序③A---A---振幅振幅振幅 vp2=T--------周期周期周期 pw 21==T f --------频率频率频率 相位--+j w x 初相--j2、函数sin()y A x k w j =++的图象与函数sin y x =的图象之间可以通过变化A k w j ,,,来相互转化.A w ,影响图象的形状,k j ,影响图象与x 轴交点的位置.轴交点的位置.由由A 引起的变换称振幅变换,引起的变换称振幅变换,由由w 引起的变换称周期变换,它们都是伸缩变换;由j 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象j j j <¾¾¾¾¾¾¾®向左向左((>0)>0)或向右或向右或向右((0)平移个单位长度得sin()y x j =+的图象()w w w¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾®®横坐标伸长横坐标伸长(0<(0<<1)<1)或缩短或缩短或缩短((>1)1到原来的纵坐标不变 得sin()y x w j =+的图象()A A A >¾¾¾¾¾¾¾¾¾®纵坐标伸长纵坐标伸长((1)1)或缩短或缩短或缩短(0<(0<<1)为原来的倍横坐标不变 得sin()y A x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k j =++的图象.的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<¾¾¾¾¾¾¾¾¾®纵坐标伸长或缩短为原来的倍(横坐标不变横坐标不变))得sin y A x =的图象(01)(1)1()w w w<<>¾¾¾¾¾¾¾¾¾®横坐标伸长或缩短到原来的纵坐标不变得sin()y A x w =的图象(0)(0)j j j w><¾¾¾¾¾¾¾®向左或向右平移个单位得sin ()y A x x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k w j =++的图象.的图象.注意:利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种x ? ? ? ? j w +x2p p23pp 2)sin(j w +=x A yA 0 -A 0变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

三角函数图象平移

三角函数图象平移

三角函数图象平移
三角函数图象平移是一类在数学中经常使用的操作,在它的应用中,可以简化许多复杂的计算,我们经常会用到这种方法来解决各种数学问题。

三角函数图象平移是指在三角函数的图象上进行的一种操作,它的目的是将三角函数的图象进行位移,当图象经过平移操作之后,其图象的变化将会发生变化。

在数学中,三角函数是指以三角形为基础的函数。

它们最常见的有三种,即正弦函数、余弦函数和正切函数。

这三个函数的图象都是圆形的,它们的图象可以描述为一个圆环。

图象的平移操作,就是将三角函数的图象从原点移动到其他位置。

在这个操作中,只需要对函数的参数进行修改就可以完成平移操作,具体的操作方法是,若要将图象向左平移$a$个单位,则将函数的参数$x$加上$a$;若要将图象向右平移$b$个单位,则将函数的参数$x$减去$b$。

在函数图象的平移操作中,需要注意的是,当函数图象在向左或者向右平移时,函数中的参数并不会改变,而只是改变函数图象的位置,这样的操作可以让我们快速的确定函数的图象,也可以减少繁琐的计算过程。

此外,我们还可以通过平移操作来得出同一函数的多个图象,从而可以更加深入地了解函数的特性及其变化规律。

例如,对于正弦函数$y=sin(x)$,我们可以通过平移操作,得到一组正弦函数图象,这样我们就可以更加清晰地比较和观察这些函数图象之间的变化规律。

另外,三角函数图象的平移也可以用于解决实际的数学问题。

例如,在分析抛物线的运动轨迹时,可以通过三角函数图象的平移,来简化计算,从而达到快速解决问题的目的。

总之,三角函数图象的平移是一种重要的操作,它可以简化许多复杂的计算,帮助我们快速求解数学问题,也可以帮助我们更加清晰地观察函数的变化规律。

三角函数图像的变换

三角函数图像的变换

三角函数图像的变换三角函数是一类重要的基础函数,包括正弦函数、余弦函数、正切函数等。

在数学中,我们经常遇到需要对三角函数进行图像变换的情况,比如平移、伸缩、翻转等。

本文将介绍三角函数图像的常见变换以及它们对函数图像的影响。

一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动一段距离。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴向右平移a个单位,新函数为y=sin(x-a)。

当a取正值时,函数图像向右平移;当a取负值时,函数图像向左平移。

平移变换后的图像与原图像形状相同,只是位置不同。

二、伸缩变换伸缩是指将函数图像进行横向或纵向的比例拉伸或压缩。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴方向进行压缩b倍,新函数为y=sin(bx)。

当b大于1时,函数图像横向压缩;当0<b<1时,函数图像横向拉伸。

同样,沿纵轴方向进行伸缩也可得到相应的函数图像变换。

三、翻转变换翻转是指将函数图像沿着横轴或纵轴进行翻转,也称为镜像变换。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴进行翻转,新函数为y=-sin(x)。

同样地,纵向翻转可得到相应的函数图像变换。

四、混合变换除了单一的平移、伸缩和翻转变换,我们还可以通过组合这些变换来得到更复杂的函数图像变换。

比如,可以将平移、伸缩和翻转变换相结合,得到更丰富多样的变换效果。

以上是对三角函数图像常见变换的简要介绍,下面我们将进一步讨论这些变换对函数图像的具体影响。

1.平移变换的影响:平移变换只改变了函数图像的位置,不改变其形状。

假设原函数图像位于坐标系上方,若平移后函数图像向右移动,则新函数图像将出现在原来的右侧;若平移后函数图像向左移动,则新函数图像将出现在原来的左侧。

平移变换对函数图像的垂直位置没有影响。

2.伸缩变换的影响:横向伸缩会拉伸或压缩函数图像。

当b大于1时,函数图像在x轴方向上被压缩,变得更加陡峭;当0<b<1时,函数图像在x轴方向上被拉伸,变得更加平缓。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数 y Asi n ( x) k的图象与函数 y sin x 的图象之间可以通过变化 A,,,k来相互转化. A,影响图象的形状,,k影响图象与x 轴交点的位置.由 A 引起的变换称振幅变换,由引起的变换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩y sin x 的图象向左 ( >0) 或向右 (0)平移个单位长度得 y sin( x) 的图象横坐标伸长 (0<<1) 或缩短 ( >1)到原来的1(纵坐标不变 )得 y sin(x) 的图象纵坐标伸长 ( A 1) 或缩短 (0< A <1)为原来的 A倍 (横坐标不变 )得 y Asin(x) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 y Asin( x) k 的图象.y sin x纵坐标不变横坐标向左平移π/3个单位纵坐标不变横坐标缩短为原来的 1/2横坐标不变纵坐标伸长为原来的 3倍先伸缩后平移y sin x 的图象纵坐标伸长 ( A 1)或缩短 (0 A 1)为原来的 A倍( 横坐标不变 )y sin(x)3y sin(2x)3y 3sin(2x)3得 yAsin x 的图象 横坐标伸长 (0 1) 或缩短 ( 1)到原来的 1(纵坐标不变 )得 yAsin( x) 的图象向左 ( 0)或向右 ( 0)平移个单位得 yAsin x( x ) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 yA sin( x ) k 的图象.纵坐标不变y sin x横坐标缩短为原来的 1/2纵坐标不变横坐标向左平移π /6个单位横坐标不变纵坐标伸长为原来的 3倍y sin 2xy sin(2x)3y 3sin(2x ) 3例 1 将 y sin x 的图象怎样变换得到函数y 2sin2 xπ1 的图象.4解:(方法一)①把y sin x 的图象沿 x 轴向左平移π个单位长度,得y sin xπ的图象;②将所得44图象的横坐标缩小到原来的1,得 y sin 2xπ的图象;③将所得图象的纵坐标伸长到原来的2 倍,得24y 2sin 2xπ的图象;④最后把所得图象沿y 轴向上平移 1 个单位长度得到y2sin 2xπ 1 的图象.44(方法二)①把 ysin x 的图象的纵坐标伸长到原来的2 倍,得 y 2sin x 的图象;②将所得图象的横坐标缩小到原来的1,得 y 2sin2 x 的图象; ③将所得图象沿 x 轴向左平移 π个单位长度得 y 2sin 2 x π 的 2 88 图象;④最后把图象沿 y 轴向上平移 1 个单位长度得到 y π 1 的图象.2sin 2 x4说明: 无论哪种变换都是针对字母x 而言的.由 ysin 2x 的图象向左平移π个单位长度得到的函数图象8的解析式是 y sin 2xπ而不是 ysin 2 xπ ,把 ysin xπ的图象的横坐标缩小到原来的1,得到884 2的函数图象的解析式是y sin 2xπ而不是y sin 2 x π .44 对于复杂的变换,可引进参数求解.例 2将 y sin 2 x 的图象怎样变换得到函数y cos 2 xπ的图象.4分析:应先通过诱导公式化为同名三角函数.解: y sin 2 x cos π2x cos 2x π ,22在 y cos 2xπ中以 x a 代 x ,有 y cos 2( x a)πcos 2x2a π .222 根据题意,有 2 x 2a π 2x π,得 a π.2 4 8所以将 y sin 2 x 的图象向左平移π个单位长度可得到函数y cos 2xπ 的图象.84。

三角函数的像变换规律总结

三角函数的像变换规律总结

三角函数的像变换规律总结三角函数是数学中的重要概念,它们在数学和物理等领域中有广泛的应用。

像变换规律是描述三角函数在图像上的移动、拉伸和反转等变化规律。

在本文中,我们将总结常见的三角函数的像变换规律。

一、正弦函数的像变换规律正弦函数是最常见的三角函数之一,其一般式为y =A*sin(Bx+C)+D,其中A、B、C、D为常数参数。

1. 水平方向平移:当C改变时,函数图像在水平方向上发生平移。

当C>0时,向左平移;当C<0时,向右平移。

平移的距离等于C的绝对值除以B。

2. 垂直方向平移:当D改变时,函数图像在垂直方向上发生平移。

当D>0时,向上平移;当D<0时,向下平移。

平移的距离等于D。

3. 垂直方向拉伸或压缩:当A改变时,函数图像在垂直方向上发生拉伸或压缩。

当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。

拉伸或压缩的程度与|A|的大小有关。

二、余弦函数的像变换规律余弦函数也是常见的三角函数之一,其一般式为y =A*cos(Bx+C)+D,其中A、B、C、D为常数参数。

1. 水平方向平移:与正弦函数类似,余弦函数在改变C时在水平方向上发生平移。

当C>0时,向左平移;当C<0时,向右平移。

平移的距离等于C的绝对值除以B。

2. 垂直方向平移:与正弦函数类似,余弦函数在改变D时在垂直方向上发生平移。

当D>0时,向上平移;当D<0时,向下平移。

平移的距离等于D。

3. 垂直方向拉伸或压缩:与正弦函数类似,余弦函数在改变A时在垂直方向上发生拉伸或压缩。

当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。

拉伸或压缩的程度与|A|的大小有关。

三、正切函数的像变换规律正切函数是另一个常见的三角函数,其一般式为y =A*tan(Bx+C)+D,其中A、B、C、D为常数参数。

由于正切函数在某些点上无定义,因此在图像上会有一些特殊的性质。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩河北 张军红函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像的平移
一.选择题(共19小题)
1.(2016•自贡校级模拟)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()
A.向左平行移动个单位长度B.向右平行移动个单位长度
C.向左平行移动个单位长度D.向右平行移动个单位长度2.(2016•洛阳二模)将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.
3.(2016•日照一模)将函数y=sin(2x﹣)图象向左平移个单位,所得函数图象的一条对称轴的方程是()
A.x=B.x=C.x=D.x=﹣
4.(2016•平度市一模)要得到函数的图象可将y=sin2x的图象()
A.向右平移个单位长度B.向左平移个单位长度
C.向右平移个单位长度D.向左平移个单位长度
5.(2016•绵阳模拟)为了得到函数的图象,只需把函数的图象上所有的点的()
A.横坐标伸长到原来的2倍,纵坐标不变
B.横坐标缩短到原来的倍,纵坐标不变
C.纵坐标伸长到原来的2倍,横坐标不变
D.纵坐标缩短到原来的倍,横坐标不变
6.(2016•河西区二模)将函数f(x)=2sin(2x+)的图象向右平移φ(φ>0)个单位,再将图象上每一点的横坐标缩短到原来的倍(纵坐标不变),所得图象关于直线x=对称,则φ的最小值为()
A.B.C.D.
7.(2016•临沂二模)将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一
个减区间是()
A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣,] 8.(2016•衡阳校级模拟)将函数y=sin2x的图象向右平移个单位,再将
图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象对应的函数解析式是()
A.y=﹣cos4x B.y=﹣cosx C.y=sin(x+)D.y=﹣sinx
9.(2016•吴忠模拟)函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()
A.向左平移个单位长度B.向右平移个单位长度
C.向左平移个单位长度D.向右平移个单位长度
10.(2016•上饶一模)设函数,则下列结论正确的是()
①f(x)的图象关于直线对称
②f(x)的图象关于点对称
③f(x)的图象向左平移个单位,得到一个偶函数的图象
④f(x)的最小正周期为π,且在上为增函数.
A.③ B.①③ C.②④ D.①③④
11.(2016•洛阳四模)已知函数f(x)=sin(ωx+φ)(ω>0,|ω|<)的部分图象如图所示,则y=f(x)的图象可由y=cos2x图象()
A.向右平移个长度单位B.向左平移个长度单位
C.向右平移个长度单位D.向左平移个长度单位
12.(2016•衡水模拟)函数y=sin2x+acos2x的图象左移π个单位后所得函数的图象关于直线x=﹣对称,则a=()
A.1 B.C.﹣1 D.﹣
(2016•云南一模)为得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x 13.
的图象()
A.向左平移个长度单位B.向右平移个长度单位
C.向左平移个长度单位D.向右平移个长度单位
14.(2016•湖南模拟)将函数y=cos2x的图象向左平移个单位,得到函数y=f(x)•co sx的图象,则f(x)的表达式可以是()
A.f(x)=﹣2sinx B.f(x)=2sinx
C.f(x)=sin2x D.f(x)=(sin2x+cos2x)
15.(2016•中山市校级模拟)已知函数f(x)=2sinxsin(x++φ)是奇函数,其中φ∈(0,π),则函数g(x)=cos(2x﹣φ)的图象()A.关于点(,0)对称
B.可由函数f(x)的图象向右平移个单位得到
C.可由函数f(x)的图象向左平移个单位得到
D.可由函数f(x)的图象向左平移个单位得到
16.(2016•白山一模)已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|<)图象相邻对称轴的距离为,一个对称中心为(﹣,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象()
17.(2016•石嘴山校级二模)如果函数y=2sin(2x﹣φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()
A.B.C.D.
18.(2016•遂宁模拟)要得到函数y=sin x的图象,只要将函数y=cos2x的图象()
A.向右平移个单位长度,再将各点的横坐标伸长为原来的4倍,纵坐标不变
B.向左平移个单位长度,再将各点的横坐标缩短为原来的倍,纵坐标不变
C.向左平移个单位长度,再将各点的横坐标伸长为原来的4倍,纵坐标不变
D.向右平移个单位长度,再将各点的横坐标缩短到原来的,纵坐标不变19.(2016•东城区模拟)已知函数y=sinωx(ω>0)在一个周期内的图象
如图所示,要得到函数y=sin(x+)的图象,则需将函数y=sinωx的图象()
A.向右平移B.向左平移C.向右平移D.向左平移
二.填空题(共11小题)
20.(2016•和平区三模)设ω>0,函数的图象向右平移
个单位后与原图象重合,则ω的最小值是.
21.(2016•松江区一模)将函数的图象上的所有点向右平移
个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.
22.(2016•成都校级模拟)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则φ=.
23.(2016•肇庆三模)已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为.
24.(2016•眉山模拟)已知函数f(x)=sin(2x+),将y=f(x)的图象
向右平移个单位长度后,得到函数g(x)的图象,若动直线x=t与函数
y=f(x)和y=g(x)的图象分别交于M、N两点,则|MN|的最大值为.25.(2016•烟台二模)已知函数f(x)=cos(2x+φ)的图象关于点(π,
0)对称,若将函数f(x)的图象向右平移m(m>0)个单位得到一个偶函数的图象,则实数m的最小值为.
26.(2016•浙江二模)已知函数f(x)=2sinxcosx+2cos2x﹣,则函数f(x)的最小正周期为,将f(x)图象向左平移φ(<φ
<π)个单位长度后得到函数为偶函数,则φ=.27.(2016•兰州模拟)已知函数f(x)=Acos(ωx+α)(A>0,ω>0,0<α<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边
三角形,则f(1)的值为.
28.(2014•南充一模)给出下列四个命题:
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有;
③已知S n是等差数列{a n}的前n项和,若S7>S5,则S9>S3;
④若函数为R上的奇函数,则函数y=f(x)的图象一定关于点
成中心对称.
⑤函数f(x)=cos3x+sin2x﹣cosx(x∈R)有最大值为2,有最小值为0.
其中所有正确命题的序号为.
29.(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平
移个单位后,与函数y=sin(2x+)的图象重合,则φ=.
30.(2012•宝安区校级模拟)下列说法正确的是(填上你认为正确的所有命题的序号)
①函数y=﹣sin(kπ+x)(k∈Z)是奇函数;
②函数y=2sin的图象关于点对称;
③函数y=2sin(2x+)+sin(2x﹣)的最小正周期是π;
④△ABC中,cosA>cosB充要条件是A<B;
⑤函数y=cos2+sinx的最小值是﹣1.
三角函数图像的平移
参考答案
一.选择题(共19小题)
1.D;2.B;3.A;4.B;5.B;6.D;7.D;8.B;9.C;10.A;11.A;12.C;13.B;14.A;15.B;16.D;17.C;18.A;19.D;
二.填空题(共11小题)
20.;21.y=sin4x;22.-或;23.4;24.;25.;26.π;
;27.-;28.①③;29.;30.①③④⑤;
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档