图像分割综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。
在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,
本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。
关键词:图像分割;边界;区域;水平集;马尔科夫
Abstract
Image segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.
Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.
This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.
Keywords: Image segmentation; Border; Area;Level-set;Markov
第1章引言
1.1 图像分割的背景和重要作用
图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的
应用领域,而理解图像的第一步就是图像的分割。图像分割是对图像进行分析和理解的关键步骤,是数字图像处理中最重要和最基本的技术手段,是一种基本的计算机视觉技术,准确地对图像进行分割,对工程实践及量化分析都有重要的价值。其中,感兴趣目标的参数测量和特征提取等过程都是以图像分割为预处理的,图像的分割技术使得进一步的图像理解和应用成为可能。在实际工程中,研究者不是对图像的所有部分都感兴趣的,而图像分割的目的就是把图像空间分割成一些有意义的区域,从而把感兴
趣的区域提取出来,以便进行进一步的图像应用和处理,因此图像分割算法的研究有着重要的理论价值和实际意义。
图像分割技术在医学、军事工程等领域中都有着广泛的应用。图像分割技术可以便于对获得的各种定量定性的图像数据进行分析,使这些数据更好的应用到工程实践中。例如在医学上,随着影像医学技术在医学中的作用越来越大,图像分割在医学应用中具有特殊的重要意义,分割技术使得人们能够获得有效的医学图像信息。分割后的图像广泛应用于病变部位诊断、术前方案制定、术后监测等各个重要的环节。图像分割是一个经典难题,图像分割是提取数字图像中组织信息的关键步骤,图像分割技术的发展更是决定了数字图像处理中其它相关技术的发展。而如何找到科学、准确的分割方法,使分割后的图像具有良好的分割效果,从而具有非常广泛的应用,是分割方法研究领域的重点。本文综述和讨论了图像分割技术的应用,分割技术的发展趋势、研究热点及其图像分割的评价等问题, 并重点讨论了每类分割方法的原理、特点, 展望了医学图像分割的前景和面临的挑战。
1.2 本文的安排和结构框架
本文基于如下结构展开:
第二章中介绍了图像分割的基础性理论、发展历程及应用中存在的难
点问题;第三章中分析了图像分割算法的原理及特点,包括传统的分割算法和近年来新兴的分割算法,并分析了相关的研究动态;第四部分对并行边界算法和分水岭算法进行了MATLAB仿真,对仿真结果进行了分析和归纳;在第五章中进行了总结和展望,在这个部分,对上文进行了总结,并对图像分割的发展趋势和前景进行了简单的概括。