题组层级快练 (80)
2021高考物理大一轮复习题组层级快练:第五单元 机械能 作业21 功和功率Word版含答案
题组层级快练(二十一) 功和功率一、选择题1.如图所示,木块B 上表面是水平的,当木块A 置于B 上,并与B 保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中( ) A .A 所受的合力对A 不做功 B .B 对A 的弹力做正功 C .B 对A 的摩擦力做正功 D .A 对B 做正功 答案 C解析 A 、B 一起沿固定的光滑斜面由静止开始下滑,加速度为gsin θ.由于A 速度增大,由动能定理可知,A 所受的合力对A 做功,B 对A 的摩擦力做正功,B 对A 的弹力做负功,选项A 、B 项错误,C 项正确;A 对B 不做功,D 项错误.2.某汽车以恒定功率P 、初速度v 0冲上倾角一定的斜坡时,汽车受到的阻力恒定不变,则汽车上坡过程的vt 图像不可能是下图中的( )答案 A解析 根据P =Fv ,若a >0,则物体加速运动,加速度会减小,当加速度减为零时,速度达到最大,故C 项正确,A 项错误;若a =0,则物体速度不变,做匀速运动,故B 项正确;若a <0,即加速度沿斜面向下,物体减速,故加速度会减小,故D 项正确;本题选不可能的,故选A 项.3.质量为5×103kg 的汽车在水平路面上由静止开始以加速度a =2 m/s 2开始做匀加速直线运动,所受阻力是1.0×103N ,则汽车匀加速起动过程中( ) A .第1 s 内汽车所受牵引力做功为1.0×104J B .第1 s 内汽车所受合力的平均功率20 kW C .第1 s 末汽车所受合力的瞬时功率为22 kW D .第1 s 末汽车所受牵引力的瞬时功率为22 kW 答案 D解析 据牛顿第二定律F -f =ma 得牵引力F =f +ma =1.1×104N .第1 s 内汽车位移x =12at 2=1 m ,第1 s 末汽车速度v =at =2 m/s ,汽车合力F 合=ma =1×104N ,则第1 s 内汽车牵引力做功:W F =Fx =1.1×104J ,故A 项错;第1 s 内合力做功:W =F 合x =1×104J ,平均功率P =W t=1×104W ,故B 项错;1 s 末合力的瞬时功率P 合=F合v =2×104W ,故C项错;1 s 末牵引力瞬时功率P =Fv =2.2×104W =22 kW ,故D 项正确.4.汽车从静止匀加速启动,最后做匀速运动,其速度随时间及加速度、牵引力和功率随速度变化的图像如图所示,其中正确的是( )答案 ACD解析 汽车启动时,由P =Fv 和F -F f =ma 可知,匀加速启动过程,牵引力F 、加速度a 恒定不变,速度和功率均匀增大,当功率增大到额定功率后保持不变,牵引力逐渐减小到与阻力相等,加速度逐渐减小到零,速度逐渐增大到最大速度,故A 、C 、D 项正确. 5.在9.3阅兵中,20架直升机在空中组成数字“70”字样,而领头的直升机悬挂的国旗让人心潮澎湃.如图所示,为了使国旗能悬在直升机下不致漂起来,在国旗下端还悬挂了重物,假设国旗与悬挂物的质量为m ,直升机质量为M ,并以速度v 匀速直线飞行,飞行过程中,悬挂国旗的细线与竖直方向夹角为α,那么以下说法不正确的是( ) A .国旗与悬挂物受到3个力的作用 B .细线的张力做功的功率为mgvcos αC .国旗与悬挂物所受合力做的功为零D .国旗与悬挂物克服阻力做功的功率为mgvtan α 答案 B解析 国旗与悬挂物受3个力,重力、细线的拉力、空气阻力,如图:有F =mgcos α,则F 的功率为P F =Fvsin α=mgvtan α,克服阻力做功的功率P f =fv =mgvtan α,由于国旗与悬挂物匀速,故合力做功为零,A 、C 、D 三项正确,B 项错误,故选B 项.6.如图所示,卡车通过定滑轮以恒定的功率P 0拉绳,牵引河中的小船沿水面运动,已知小船的质量为m ,沿水面运动时所受的阻力为f 且保持不变,当绳AO 段与水面的夹角为θ时,小船的速度为v ,不计绳子与滑轮的摩擦,则此时小船的加速度等于( )A.P 0mv -fm B.P 0mv cos 2θ-f m C.f m D.P 0mv答案 A解析 设绳子的拉力为F ,功率P 0=Fvcos θ,对小船,由牛顿第二定律得加速度a =Fcos θ-f m =P 0mv -fm,选项A 正确. 7.质量为m 的汽车发动机额定输出功率为P ,当它在平直的公路上以加速度a 由静止开始匀加速启动时,其保持匀加速运动的最长时间为t ,汽车运动中所受的阻力大小恒定,则( )A .若汽车在该平直的路面上从静止开始以加速度2a 匀加速启动,其保持匀加速运动的最长时间为t 2B .若汽车以加速度a 由静止开始匀加速启动,经过时间t 2发动机输出功率为12PC .汽车保持功率P 在该路面上运动可以达到的最大速度为PatP -ma 2tD .汽车运动中所受的阻力大小为P at答案 BC解析 当以加速度a 加速运动时有:F -f =ma ,F =f +ma ,匀加速达到的最大速度为:v =P f +ma ,故所需时间为:t =v a =P a (f +ma ),当加速度为2a 时,匀加速达到最大速度为:v ′=P f +2ma ,所需时间为:t ′=P 2a (f +2ma ),故A 项错误;t 2时刻速度为v ′=a·t 2,故功率为:P ′=(f +ma)·at2,汽车的额定功率为:P =(f +ma)at ,故B 项正确;根据P =(f +ma)at ,得f =P at -ma ,当牵引力等于阻力时速度最大为:v =P f =PatP -ma 2t ,故C 项正确,D 项错误.8.如图所示,木板可绕固定水平轴O 转动.木板从水平位置OA 缓慢转到OB 位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2 J .用F N 表示物块受到的支持力,用F f 表示物块受到的摩擦力.在此过程中,以下判断正确的是( )A .F N 和F f 对物块都不做功B .F N 对物块做功为2 J ,F f 对物块不做功C .F N 对物块不做功,F f 对物块做功为2 JD .F N 和F f 对物块所做功的代数和为0 答案 B解析 由做功的条件可知:只要有力,并且物块沿力的方向有位移,那么该力就对物块做功.由受力分析知,支持力F N 做正功,但摩擦力F f 方向始终和速度方向垂直,所以摩擦力不做功.由动能定理W -mgh =0,故支持力F N 做功为mgh ,B 项正确.9.(2014·课标全国Ⅱ)一物体静止在粗糙水平地面上,现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度为v ,若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v ,对于上述两个过程,用W F1、W F2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( ) A .W F2>4 W F1,W f2>2 W f1 B .W F2>4 W F1,W f2=2 W f1 C .W F2<4 W F1,W f2=2 W f1 D .W F2<4 W F1,W f2<2W f1答案 C解析 由题意可知,两次物体均做匀加速运动,则在同样的时间内,它们的位移之比为x 1:x 2=v 2t ∶2v2t =1∶2;两次物体所受的摩擦力不变,根据功的公式,则有滑动摩擦力做功之比W f1:W f2=fx 1∶fx 2=1∶2;再由动能定理,则有W F1-W f1=12mv 2-0,W F2-W f2=4×12mv 2-0;由上两式可解得:W F2=4W F1-2W f1,C 项正确,A 、B 、D 项错误.10.如图甲所示,滑轮质量、摩擦均不计,质量为2 kg 的物体在F 作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知( )A .物体加速度大小为2 m/s 2B .F 的大小为21 NC .4 s 末F 的功率大小为42 WD .4 s 内F 做功的平均功率为42 W 答案 C解析 由图乙可知,物体的加速度a =0.5 m/s 2,由2F -mg =ma 可得:F =10.5 N ,A 、B 两项均错误;4 s 末力F 的作用点的速度大小为v F =2×2 m/s =4 m/s ,故4 s 末拉力F 做功的功率为P =F·v F =42 W ,C 项正确;4 s 内物体上升的高度h =4 m ,力F 的作用点的位移l =2h =8 m ,拉力F 所做的功W =F·l=84 J ,4 s 内拉力F 做功的平均功率P =Wt =21 W ,D 项错误.11.质量为2×103kg 的汽车由静止开始沿平直公路行驶,行驶过程中牵引力F 和车速倒数1v 的关系图像如图所示.已知行驶过程中最大车速为30 m/s ,设阻力恒定,则( ) A .汽车所受阻力为6×103NB .汽车在车速为5 m/s 时,加速度为3 m/s 2C .汽车在车速为15 m/s 时,加速度为1 m/s 2D .汽车在行驶过程中的最大功率为6×104W 答案 CD解析 当牵引力等于阻力时,速度最大,由图线可知阻力大小F f =2 000 N ,故A 项错误.倾斜图线的斜率表示功率,可知P =F f v =2 000×30 W =60 000 W ,车速为5 m/s 时,汽车的加速度a =6 000-2 0002 000 m/s 2=2 m/s 2,故B 项错误;当车速为15 m/s 时,牵引力F =P v =60 00015 N =4 000 N ,则加速度a =F -F f m =4 000-2 0002 000 m/s 2=1 m/s 2,故C 项正确;汽车的最大功率等于额定功率,等于60 000 W ,故D 项正确.12.(2017·山西监测)(多选)在倾角为θ的光滑斜面上有两个用轻弹簧连接的物块A 和B ,它们的质量分别为m 和2m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态.现用一沿斜面方向的恒力拉物块A 使之沿斜面向上运动,当B 刚离开C 时,A 的速度为v ,加速度方向沿斜面向上、大小为a ,则( ) A .从静止到B 刚离开C 的过程中,A 发生的位移为3mgsin θkB .从静止到B 刚离开C 的过程中,重力对A 做的功为-3m 2g 2sin θkC .B 刚离开C 时,恒力对A 做功的功率为(mgsin θ+ma)vD .当A 的速度达到最大时,B 的加速度大小为a2答案 AD解析 开始系统静止时,设弹簧压缩量为x ,由平衡条件有:kx =mgsin θ,解得:x =mgsin θk .当B 刚离开挡板时,设弹簧伸长量为x ′,对B 受力分析,kx ′=2mgsin θ,解得:x ′=2mgsin θk ,所以从静止到B 刚离开C 过程中,A 的位移为x +x ′=3mgsin θk,A 项正确;重力对A 做功W G =-mgh =-3m 2g 2sin 2θk ,B 项错;B 刚离开C 时,对A 、B 及弹簧组成的整体,由牛顿第二定律有:F -3mgsin θ=ma ⇒F =3mgsin θ+ma ,所以拉力做功功率P =Fv =(3mgsin θ+ma)v ,C 项错;当A 的速度达到最大时,A 所受合外力为零,对A 根据平衡条件有:F 弹+mgsin θ=F ,解得:F 弹=2mgsin θ+ma ,对B ,根据牛顿第二定律有:F 弹-2mgsin θ=2ma ′,解两式得:a ′=a2,D 项正确.二、非选择题13.(2017·广东肇庆二模)某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v —t 图像,图像如下图所示(除2 s —10 s 时间段图像为曲线外,其余时间段图像均为直线).已知在小车运动的过程中,2 s —14 s 时间段内小车的功率保持不变,在14 s 末通过遥控使发动机停止工作而让小车自由滑行,小车的质量为1.0 kg ,可认为在整个运动过程中小车所受到的阻力大小不变.求:(1)14 s -18 s 时间段小车的加速度大小; (2)小车匀速行驶阶段的功率; (3)小车在2 s -10 s 内位移的大小.解析 (1)在14 s -18 s 时间段,由图像可得加速度大小为: a =v 14-v 18Δt①将数据代入①式,解得a =1.5(m/s 2)(2)在14 s -18 s ,小车在阻力f 作用下做匀减速运动: f =ma② 代入数据,解②式,得f =1.5(N) ③在10 s -14 s ,小车做匀速直线运动: 牵引力 F =f =1.5 N小车匀速行驶阶段的功率:P =Fv ④ 将数据代入④式,解得P =9(W) (3)2 s -10 s ,根据动能定理,可得 Pt -fs 2=12mv 2-12mv 22⑤ 其中:v =6 m/s ,v 2=3 m/s由⑤解得小车在2 s -10 s 内位移s 2=39(m)14.在一次抗洪抢险活动中,解放军某部利用直升机抢救一重要落水物体,静止在空中的直升机上的电动机通过悬绳将物体从离飞机90 m 处的洪水中吊到机舱里.已知物体的质量为80 kg ,吊绳的拉力不能超过1 200 N ,电动机的最大输出功率为12 kW.为尽快把物体安全救起,操作人员采取的办法是:先让吊绳以最大的拉力工作一段时间,达到最大功率后电动机就以最大功率工作,当物体到达机舱时恰好达到最大速度.(g 取10 m/s 2)求: (1)落水物体刚到达机舱时的速度; (2)这一过程所用的时间.解析 (1)第一阶段绳以最大拉力拉着物体匀加速上升,当电动机达到最大功率时,功率保持不变,物体变加速上升,速度增大,拉力减小,当拉力与重力相等时,速度达到最大.由P m =Fv m ,得v m =P m mg =12×10380×10 m/s =15 m/s此即物体刚到机舱时的速度.(2)匀加速上升的加速度为a 1=F m -mg m =1 200-80×1080 m/s 2=5 m/s 2匀加速阶段的末速度v 1=P m F m =12 0001 200 m/s =10 m/s匀加速上升时间t 1=v 1a 1=105 s =2 s匀加速上升的高度h 1=v 12t 1=102×2 m =10 m以最大功率上升过程由动能定理得 P m t 2-mg(h -h 1)=12mv m 2-12mv 12解得t 2=5.75 s所以吊起落水物体所用总时间为 t =t 1+t 2=(2+5.75) s =7.75 s。
专题一正确使用词语(包括熟语)
题组层级快练(一)专题一正确使用词语(包括熟语)1.依次填入文中横线上的词语,全都恰当的一项是()一株株瘦削的枝条上,绽放着一簇簇耀眼的黄花,梭梭、沙枣、红柳等沙生植物郁郁葱葱,勾画出一条绿色隔离带,阻挡着风沙侵蚀的步伐,孕育着绿色的希望。
谁能想到,38 年前,这里是一片漫天黄沙的。
八步沙,是腾格里沙漠南缘、古浪县北部的一个风沙口。
上世纪六七十年代,这里的沙丘以每年7.5 米的速度向南移动,严重侵害着周边10 多个村庄和2 万多亩良田,给当地3 万多群众的生产生活以及过境公路铁路造成巨大。
面对步步紧逼的沙丘,一些人上新疆、去宁夏、走内蒙,开始逃离家乡。
当风沙袭来时,有人逃离家园,更有人留下来守护家园!为了不断恶化的自然环境。
1981年,作为三北防护林前沿阵地,古浪县着手治理荒漠,对八步沙试行“政府补贴、个人承包,谁治理、谁拥有”政策。
改革开放初期,承包沙漠对于当地人来说是一件“破天荒”的大事,谁能有勇气向茫茫沙漠发起挑战?关键时刻,石满、郭朝明、贺发林、张润元、罗元奎、程海站了出来。
这几位普普通通的西北治沙老人,被当地人亲切地称为“六老汉”。
当黄沙肆虐的时候,六老汉抱着护庄稼、保饭碗的质朴愿望,扛起共产党员应有的担当,不畏恶劣环境,无惧艰苦劳作。
他们的朴素情怀、坚定信念、勇往直前,点亮了治沙A .不毛之地危害遏制谱写B .不毛之地危险遏止撰写C .荒山野岭危害遏止谱写D.荒山野岭危险遏制撰写答案A解析“不毛之地”指不长庄稼的地方,泛指贫瘠、荒凉的土地或地带。
“荒山野岭”指荒凉没有人烟的山岭。
这里说的是八步沙贫瘠、荒凉,而不是说其没有人烟,故选“不毛之地”。
“危害”指使受破坏;损害。
“危险”指有遭到损害或失败的可能;遭到损害或失败的可能性。
这里说的是移动的沙丘给当地3 万多群众的生产生活以及过境公路铁路造成巨大的损害,而不是遭到损害的可能性,故选“危害”。
“遏制”指制止,控制。
“遏止”指阻止。
这里说的是控制不断恶化的自然环境,而不是阻止不断恶化的环境,故选“遏制”。
2025高考数学一轮复习题组层级快练60含答案
题组层级快练(六十)一、单项选择题1.抛物线y =2x 2的焦点到准线的距离是( ) A .2 B .1 C.12 D.14答案 D解析 抛物线标准方程x 2=2py (p >0)中p 的几何意义为抛物线的焦点到准线的距离,又p =14,故选D.2.过点F (0,3)且与直线y +3=0相切的动圆圆心的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=-12y D .x 2=12y 答案 D解析 由题意,得动圆的圆心到直线y =-3的距离与到点F (0,3)的距离相等,所以动圆的圆心是以点F (0,3)为焦点、直线y =-3为准线的抛物线,其方程为x 2=12y .3.已知抛物线x 2=2py (p >0)上的一点M (x 0,1)到其焦点的距离为2,则该抛物线的焦点到其准线的距离为( ) A .6 B .4 C .3 D .2 答案 D解析 由题可知,1+p2=2,解得p =2,所以该抛物线的焦点到其准线的距离为p =2.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ) A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y 答案 D 解析 由e 2=1+b 2a 2=4得b a=3,则双曲线的渐近线方程为y =±3x ,即3x ±y =0, 抛物线C 2的焦点坐标为⎝⎛⎭⎫0,p2,则有p 22=2,解得p =8,故抛物线C 2的方程为x 2=16y . 5.已知抛物线y 2=4x 的焦点为F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为( ) A .4 B .5 C .8 D .10答案 A解析 由抛物线y 2=4x ,知p 2=1,则焦点F (1,0).设点P ⎝⎛⎭⎫y 024,y 0,则由|PF |=5,得⎝⎛⎭⎫y 024-12+y 02=5,解得y 0=±4,所以S △PKF =12×p ×|y 0|=12×2×4=4.故选A.6.已知抛物线y 2=16x 的焦点为F ,P 点在抛物线上,Q 点在圆C :(x -6)2+(y -2)2=4上,则|PQ |+|PF |的最小值为( ) A .4 B .6 C .8 D .10答案 C解析 如图,过点P 向准线作垂线,垂足为A ,连接PC ,则|PF |=|P A |,当CP 垂直于抛物线的准线时,|CP |+|P A |最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为x =-4,C (6,2),半径为2,所以|PQ |+|PF |的最小值为|AQ |=|CA |-2=10-2=8.7. 中国古代桥梁的建筑艺术,有不少是世界桥梁史上的创举,充分显示了中国劳动人民的非凡智慧.如图为一个抛物线形拱桥,当水面离拱顶2 m 时,水面宽8 m .若水面下降1 m ,则水面宽度为( )A .2 6 mB .4 6 mC .4 2 mD .12 m答案 B解析 根据题意,以拱顶为原点,拱顶所在水平直线为x 轴,拱顶所在竖直直线为y 轴建系,设该抛物线的方程为x 2=-2py (p >0),又由当水面离拱顶2 m 时,水面宽8 m ,即点(4,-2)和(-4,-2)在抛物线上,则有16=-2p (-2),解得p =4,故抛物线的方程为x 2=-8y ,若水面下降1 m ,即y =-3,则有x 2=24,解得x =±26,此时水面宽度为26-(-26)=46(m).故选B.8.已知抛物线C :y =18x 2,点P 为抛物线C 上一动点,A (0,2),B (4,5),O 为坐标原点,当|P A |+|PB |取得最小值时,四边形OABP 的面积为( ) A .18 B .14 C .10 D .6答案 C解析 由题意,抛物线C :x 2=8y ,可得点A (0,2)为其焦点,准线方程为y =-2,易知点B 在抛物线内,设点P 到准线的距离为d ,作BM 垂直于准线,垂足为M ,则|P A |+|PB |=|PB |+d ≥|BM |=7,即当P ,B ,M 三点共线时,|P A |+|PB |取得最小值,此时点P 的横坐标为4,将x =4代入y =18x 2,可得点P 坐标为(4,2),OA ∥BP ,四边形OABP 的面积为(2+3)×42=10.故选C.9.(2024·西安四校联考)已知点F 是抛物线E :y 2=2px (p >0)的焦点,O 为坐标原点,A ,B 是抛物线E 上的两点,满足|F A |+|FB |=10,F A →+FB →+FO →=0,则p =( ) A .1 B .2 C .3 D .4答案 D解析 本题考查抛物线的定义及性质.方法一:由题意得F ⎝⎛⎭⎫p 2,0,设A (x 1,y 1),B (x 2,y 2),则|F A |+|FB |=x 1+p 2+x 2+p 2=x 1+x 2+p =10①,由F A →+FB →+FO →=0,知F A →+FB →+FO →=⎝⎛⎭⎫x 1+x 2-3p 2,y 1+y 2=0,所以x 1+x 2=3p 2②,联立①②,解得p =4.故选D. 方法二:不妨设A (x 0,y 0)在第一象限,连接AB ,OA ,OB .由于F A →+FB →+FO →=0,则F 为△ABO 的重心,根据抛物线的对称性可知A ,B 两点关于x 轴对称,则2x 03=p 2,即x 0=3p 4.所以|F A |=|FB |=5,所以x 0+p 2=3p 4+p2=5,解得p =4.故选D. 二、多项选择题10.已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 相交于A ,B 两点,则( ) A .|AB |=8 B .OA ⊥OBC .△AOB 的面积为2 2D .线段AB 的中点到直线x =0的距离为2 答案 AC解析 设A (x 1,y 1),B (x 2,y 2),抛物线C :y 2=4x ,则p =2,焦点为(1,0),则直线y =x -1过焦点.联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0,易得Δ>0,则x 1+x 2=6,x 1x 2=1,所以|AB |=x 1+x 2+p =6+2=8,故A 正确;y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=-4,由OA →·OB →=x 1x 2+y 1y 2=1-4=-3≠0,所以OA 与OB 不垂直,故B 错误;原点到直线y =x -1的距离为d =|1|2=12,所以△AOB 的面积为S =12×d ×|AB |=12×12×8=22,故C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3,故D 错误.11.(2024·南京市模拟)已知抛物线y 2=4x 的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是( ) A .若O 为线段PQ 中点,则|PF |=2 B .若|PF |=4,则|OP |=2 5 C .存在直线l ,使得PF ⊥QF D .△PFQ 面积的最小值为2答案 AD解析 若O 为PQ 中点,则x P =1,所以|PF |=x P +1=2,A 正确;若|PF |=4,则x P =4-1=3,所以|OP |=x P 2+y P 2=x P 2+4x P =21,B 错误;设P (a 2,2a )(a ≠0),则Q ⎝⎛⎭⎫-1,-2a ,所以FP →=(a 2-1,2a ),QF →=⎝⎛⎭⎫2,2a ,所以FP →·QF →=2a 2-2+4=2a 2+2>0,所以FP 与FQ 不垂直,即C 错误;易知S △PFQ =12×1×⎪⎪⎪⎪2a +2a =⎪⎪⎪⎪a +1a ≥2,当a =±1时取等号,即D 正确. 三、填空题与解答题12.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作P A ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________. 答案 43解析 设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF |=|P A |=y 0+1=43.13.已知抛物线y 2=ax 上的点M (1,m )到其焦点的距离为2.则该抛物线的标准方程为________. 答案 y 2=4x解析 ∵抛物线y 2=ax 的准线方程为x =-a4,且抛物线y 2=ax 上的点M (1,m )到其焦点的距离为2,∴a >0,且1+a4=2,∴a =4.即抛物线的标准方程为y 2=4x .14.(2021·北京)已知抛物线C :y 2=4x ,焦点为F ,点M 为抛物线C 上的点,且|FM |=6,则M 的横坐标是________;作MN ⊥x 轴于N ,则S △FMN =________. 答案 5 4 5解析 抛物线C :y 2=4x ,则焦点F (1,0),准线l 方程为x =-1,过点M 作ME ⊥l ,垂足为E ,设M (x 0,y 0),则|MF |=|ME |=6,所以x 0+1=6,则x 0=5,所以M 的点横坐标为5,又点M 在抛物线上,故y 02=4×5=20,所以|y 0|=25,即|MN |=25,所以S △FMN =12×|FN |×|MN |=12×(5-1)×25=4 5.15.抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程. 答案 y 2=4x解析 设抛物线y 2=2px (p >0)的内接直角三角形为Rt △AOB ,直角边OA 所在直线方程为y =2x ,则另一直角边OB 所在直线方程为y =-12x .解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p . 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ). ∵|OA |2+|OB |2=|AB |2,∴p 24+p 2+64p 2+16p 2=325.∴p =2,∴所求的抛物线方程为y 2=4x .16.【多选题】已知抛物线E :x 2=4y 的焦点为F ,圆C :x 2+(y -1)2=16与抛物线E 交于A ,B 两点,点P 为劣弧AB 上不同于A ,B 的一个动点,过点P 作平行于y 轴的直线l 交抛物线E 于点N ,则以下结论正确的是( ) A .点P 的纵坐标的取值范围是(3,5) B .圆C 的圆心到抛物线准线的距离为1 C .|PN |+|NF |等于点P 到抛物线准线的距离 D .△PFN 周长的取值范围是(8,10)答案 ACD 解析对于A ,圆C :x 2+(y -1)2=16的圆心为(0,1),半径r =4,与y 的正半轴交点为(0,5),由⎩⎪⎨⎪⎧x 2=4y ,x 2+(y -1)2=16,解得y =3(负值舍去),所以点P 的纵坐标的取值范围是(3,5),故正确;对于B ,因为圆C 的圆心为抛物线的焦点,所以圆C 的圆心到抛物线准线的距离为p =2,故错误;对于C ,由抛物线的定义得|PN |+|NF |等于点P 到抛物线准线的距离,故正确;对于D ,△PFN 的周长为|PF |+|PN |+|NF |=r +y P +1=y P +5∈(8,10),故正确.故选ACD.。
2025高考数学一轮复习题组层级快练1含答案7777
题组层级快练(一)一、单项选择题1.下列说法正确的是( )A .M ={(2,3)}与N ={(3,2)}表示同一集合B .M ={(x ,y )|x +y =1}与N ={y |x +y =1}表示同一集合C .M ={x ∈N |x (x +2)≤0}有2个子集D .设U =R ,A ={x |lg x <1},则∁U A ={x |lg x ≥1}={x |x ≥10}答案 C2.若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .BB .AC .∅D .Z答案 D 解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z .3.(2023·全国甲卷,理)设集合A ={x |x =3k +1,k ∈Z },B ={x |x =3k +2,k ∈Z },U 为整数集,∁U (A ∪B )=( )A .{x |x =3k ,k ∈Z }B .{x |x =3k -1,k ∈Z }C .{x |x =3k -2,k ∈Z }D .∅答案 A解析 因为整数集Z ={x |x =3k ,k ∈Z }∪{x |x =3k +1,k ∈Z }∪{x |x =3k +2,k ∈Z },U =Z ,所以∁U (A ∪B )={x |x =3k ,k ∈Z }.故选A.4.已知集合A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B 有________个真子集.( )A .3B .16C .15D .4 答案 A解析 A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B ={(1,1),(-1,-1)},真子集个数为22-1=3.故选A.5.(2023·山东济宁检测)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-2,-1,0,1},B ={x |x 2-x -2=0},则下列四个图中的阴影部分所表示的集合为{-2,0,1}的是( )答案 C解析因为A={-2,-1,0,1},B={x|x2-x-2=0}={-1,2},所以A∩B={-1},A∪B={-2,-1,0,1,2}.则A中的阴影部分所表示的集合为{-2,0,1,2};B中的阴影部分所表示的集合为{2};C中的阴影部分所表示的集合为{-2,0,1};D中的阴影部分所表示的集合为{-1}.故选C.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},M∪N={x|0≤x≤1},所以M∪N=[0,1].7.(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.T D.Z答案 C解析当n=2k,k∈Z时,S={s|s=4k+1,k∈Z};当n=2k+1,k∈Z时,S={s|s=4k+3,k∈Z}.所以T S,S∩T=T.故选C.8.(2024·河北辛集中学模拟)已知集合A={1,3,a2-2a},B={3,2a-3},C={x|x<0},若B⊆A且A∩C=∅,则a=()A.1 B.2C.3 D.2或3答案 B解析方法一:由题得2a-3=1或2a-3=a2-2a.若2a-3=1,则a=2,故A={0,1,3},B={1,3},此时满足B⊆A,A∩C=∅.若2a-3=a2-2a,则a=1或a=3,当a=1时,A={-1,1,3},B={-1,3},此时A∩C ={-1},不符合题意;当a=3时,a2-2a=3,不符合题意.故a=2,选B.方法二:因为A∩C=∅,故集合A中的元素均为非负数,从而a2-2a≥0,得a≤0或a≥2,故排除A;由集合中元素的互异性得2a-3≠3,即a≠3,排除C、D.故选B.9.若非空且互不相等的集合M,N,P满足:M∩N=M,N∪P=P,则M∪P=()A.M B.NC.P D.∅答案 C解析∵M∩N=M,∴M⊆N,∵N∪P=P,∴N⊆P,∵M,N,P非空且互不相等,∴M N P,∴M∪P =P.故选C.10.(2018·课标全国Ⅱ,理)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4答案 A解析方法一:由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C31C31=9,故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.二、多项选择题11.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫13x ,x ∈R ,则下列选项正确的是( ) A .M =NB .N ⊆MC .M ∩N =∅D .M =∁R N答案 CD 解析 由题意得M ={y |y ≤0},N ={y |y >0},∴∁R N ={y |y ≤0},∴M =∁R N ,M ∩N =∅.12.(2024·重庆八中适应性考试)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .A ∩B =∅B .A ∩B =BC .A ∪B =UD .(∁U B )∪A =A答案 CD解析 令U ={1,2,3,4},A ={2,3,4},B ={1,2},满足(∁U A )∪B =B ,但A ∩B ≠∅,A ∩B ≠B ,故A 、B 均不正确;由(∁U A )∪B =B ,知∁U A ⊆B ,∴U =[A ∪(∁U A )]⊆(A ∪B ),∴A ∪B =U ,由∁U A ⊆B ,知∁U B ⊆A ,∴(∁U B )∪A =A ,故C 、D 均正确.13.1872年,德国数学家戴德金用有理数的“分割”来定义无理数(史称“戴德金分割”).所谓“戴德金分割”,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =∅,M 中每一个元素均小于N 中的每一个元素,则称(M ,N )为“戴德金分割”.试判断下列选项中,可能成立的是( )A .M ={x ∈Q |x <0},N ={x ∈Q |x >0}是一个戴德金分割B .M 没有最大元素,N 有一个最小元素C .M 有一个最大元素,N 有一个最小元素D .M 没有最大元素,N 也没有最小元素答案 BD解析 对于A ,因为M ∪N ={x ∈Q |x ≠0}≠Q ,故A 错误;对于B ,设M ={x ∈Q |x <0},N ={x ∈Q |x ≥0},满足“戴德金分割”,故B 正确;对于C ,不能同时满足M ∪N =Q ,M ∩N =∅,故C 错误;对于D ,设M ={x ∈Q |x <2},N ={x ∈Q |x ≥2},满足“戴德金分割”,此时M 没有最大元素,N 也没有最小元素,故D 正确.三、填空题与解答题14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________. 答案 {0,1} {1,0,-1} {-1}解析因为A⊆B,所以|x|∈B,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A={0,1},则A∩B={0,1},A∪B={1,0,-1},∁B A={-1}.15.已知集合A={x|log2x<1},B={x|0<x<c},c>0.若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求a的值;(2)若A∪B=A,求a的取值范围;(3)若U=R,A∩(∁U B)=A,求a的取值范围.答案(1)-1或-3(2)(-∞,-3](3){a|a≠-1±3且a≠-1且a≠-3}解析A={1,2}.(1)由A∩B={2},得2∈B,则4+4a+4+a2-5=0,得a=-1或-3.当a=-1时,B={x|x2-4=0}={2,-2},符合题意;当a=-3时,B={x|x2-4x+4=0}={2},符合题意.综上,a=-1或-3.(2)由A∪B=A,得B⊆A.①若B=∅,则Δ=4(a+1)2-4(a2-5)<0,得a<-3;②若B={1},则1+2a+2+a2-5=0且Δ=0,此时无解;③若B={2},则4+4a+4+a2-5=0且Δ=0,得a=-3;④若B={1,2},则1+2a+2+a2-5=0且4+4a+4+a2-5=0,此时无解.综上,a的取值范围为(-∞,-3].(3)由A∩(∁U B)=A,得A∩B=∅,所以1+2a+2+a2-5≠0且4+4a+4+a2-5≠0,解得a≠-1±3且a≠-1且a≠-3.故a的取值范围为{a|a≠-1±3且a≠-1且a≠-3}.17.(2024·成都七中月考)已知非空集合A,B满足A∪B={1,2,3,4},A∩B=∅,且A的元素个数不是A中的元素,B的元素个数不是B中的元素,则集合A,B的所有可能情况种数为()A.1 B.2C.3 D.4答案 B解析易知A的元素个数不能为2,否则A,B中必然有一个含有元素2,且集合中元素个数为2,不合题意.所以A的元素个数为1或3,所以可能情况有A={3},B={1,2,4}或A={1,2,4},B={3},共2种.故选B. 18.【多选题】设集合X是实数集R的子集,如果x0∈R满足对任意的a>0,都存在x∈X,使得0<|x-x0|<a,则称x0为集合X的聚点.则下列集合中是以0为聚点的集合有()A .{x |x ∈R ,x ≠0}B .{x |x ∈Z ,x ≠0} C.⎩⎨⎧⎭⎬⎫x |x =1n ,n ∈N *D.⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *答案 AC解析 对于A ,对任意的a >0,都存在x =a 2使得0<|x -0|=a 2<a ,故0是集合{x |x ∈R ,x ≠0}的聚点. 对于B ,对于某个实数a >0,比如取a =12,此时对任意的x ∈{x |x ∈Z ,x ≠0},都有|x -0|≥1,也就是说0<|x -0|<12不可能成立,从而0不是集合{x |x ∈Z ,x ≠0}的聚点. 对于C ,对任意的a >0,都存在n >1a ,即1n <a ,0<|x -0|=1n <a ,故0是集合{x |x =1n,n ∈N *}的聚点. 对于D ,n n +1=1-1n +1,故n n +1随着n 的增大而增大,故n n +1的最小值为11+1=12,即x ≥12,故对任意的0<a <12,不存在x ,使得0<|x -0|<a ,故0不是集合⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *的聚点.故选AC.。
专题七 语言表达简明、得体、准确、鲜明、生动
题组层级快练(七)专题七语言表达简明、得体、准确、鲜明、生动1.阅读下面一段文字,完成后面的题目。
大家好!①非常荣幸能够代表毕业生发言。
此时此刻,②我心情非常激动。
高中三年,③我们早已习惯于在学校的生活,早已离不开四季飘香的校园。
④我们将告别大家朝夕相处的同学、学识渊博的老师。
⑤在此,⑥请允许我代表高三的全体同仁,⑦向我们的恩师致以崇高的敬意!今后,⑧我们这些高足,⑨定当以自己的实际行动报答母校……(1)文中画线的句子中有两处表达不简明,应删除个别词语。
表达不简明的句子序号分别是________和________。
(2)文中画线的句子中有两处表达不得体,应替换个别词语。
表达不得体的句子序号分别是________和________。
答案(1)③④(2)⑥⑧解析③“在”多余;④“大家”多余;⑥“同仁”不得体;⑧“高足”不得体。
2.下面是一封校庆邀请函的部分内容,其中有五处不得体,请找出并作修改。
学校诚邀您来看一下校庆典礼,与贵校师生共襄盛典。
您的拨冗惠顾就是对我们的最大支持。
如能参加,务必于5月10日前发回执告知,以便学校做好接待准备。
如不能亲临,可将贺信呈送到校庆办公室。
①将____________改为____________②将____________改为____________③将____________改为____________④将____________改为____________⑤将____________改为____________答案①“来看一下”改为“出席”或“参加”;②“贵校”改为“我校”“全校”或“本校”;③“惠顾”改为“光临”或“莅临”;④“务必”改为“希望”或“请”;⑤“呈送”改为“惠寄”“寄送”或“发送”。
解析这是一封代表学校发出的书面邀请函,所以在遣词造句时不仅需要正确使用书面语体,而且还要恰当地使用敬谦辞。
①“来看一下”属于口语词汇,不符合邀请函的语体风格,可将其改为“出席”或“参加”。
高考调研题组层级快练历史2023电子版
高考调研题组层级快练历史2023电子版一、选择题(本大题共25小题,满分50分,每小题2分。
每小题所列的四个选项中,只有一项符合题目要求)1、据考证,周武王灭商后,封舜的后代妫满于陈,妫满死后被谥为陈胡公.其后代便以“陈”为姓氏。
陈姓源流反映了西周时期一项重要的政治制度。
这项制度是A.郡县制B.行省制C.宗法制D.九品中正制2、某历史学习兴趣小组在探讨中国古代小农经济的基本特点时,形成了如下一些观点,你认为错误的是A.以一家一户为单位B.农业和家庭手工业相结合C.经济上自给自足D.生产的产品大部分投放市场3、商鞅变法规定:制止弃农经商,未经允许从商者罚作奴隶。
此规定体现的经济政策是A.海禁政策B.闭关锁国C.重农抑商D.土地国有4、明太祖朱元璋曾在8天内,平均每天批阅奏章两百多件,处理国事四百多件,为减轻负担,他设置了A.御史大夫B.中书省C.殿阁大学士D.军机处5、明确规定中国割让香港岛给英国的不平等条约是A《南京条约》 B.《北京条约》 C.《天津条约》 D.《辛丑条约》6、慈禧太后一直被认为是晚清封建顽固派的最高代表,可她支持洋务运动,这是因为洋务派“中学为体、西学为用”的主张有利于A.废除封建制度B.维护清朝统治C.推行君主立宪D.促进民主共和7、有同学收集了一些研究性学习素材,其中涉及“张謇”“短暂的春天”“国民经济建设运动”“军管理”“《中美友好通商航海条约》”等内容。
他探究的主题应该是A.近代中国民族资本主义的曲折发展B.近代中国经济结构的变动C.近代中国思想解放潮流D.近代中国反侵略、求民主的潮流8、1905年,中国人自己摄制的电影首映成功。
这部影片不论对中国电影史,还是中国京剧史来讲,都是弥足珍贵的资料,它是A.《定军山》B.《歌女红牡丹》C.《渔光曲》D.《风云儿女》9、陈独秀在《敬告青年》一文中写道:国人而欲脱蒙昧时代……当以科学与人权并重。
以此文的发表为开端的运动是A.太平天国运动B.义和团运动C.新文化运动D.维新变法运动10、为集中全力纠正博古等人的“左倾”军事路线错误,会议委托张闻天起草《中央关于反对敌人五次“围剿”的总结的决议》这次会议应该是A.八七会议B.中共三大C.中共七大D.遵义会议11、1958年8月13日,《人民日报》社论写道:“这又一次生动地证明:“人有多大胆,地有多大产”,解放了的人民可以创造出史无前例的奇迹来······”。
【高考调研】高考数学一轮复习 题组层级快练90(含解析)
题组层级快练(九十)1.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x′=5x ,y′=3y后,曲线C 变为曲线x′2+y′2=1,则曲线C 的方程为( )A .25x 2+9y 2=1 B .9x 2+25y 2=1 C .25x +9y =1 D.x 225+y 29=1 答案 A2.极坐标方程ρ=cos θ化为直角坐标方程为( ) A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14答案 D解析 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D. 3.极坐标方程ρcos θ=2sin2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆答案 C4.设点M 的直角坐标为(-1,-3,3),则它的柱坐标为( ) A .(2,π3,3)B .(2,2π3,3)C .(2,4π3,3)D .(2,5π3,3)答案 C5.(2015·北京西城一模)在极坐标系中,过点(2,π2)且与极轴平行的直线方程是( )A .ρ=0B .θ=π2C .ρcos θ=2D .ρsin θ=2 答案 D解析 极坐标为(2,π2)的点的直角坐标为(0,2),过该点且与极轴平行的直线的方程为y =2,其极坐标方程为ρsin θ=2,故选D.6.(2015·北京海淀期末练习)下列极坐标方程表示圆的是( ) A .ρ=1 B .θ=π2C .ρsin θ=1D .ρ(sin θ+cos θ)=1解析 ρ=1化为直角坐标方程为x 2+y 2=1,表示圆心在原点,半径为1的圆,故A 正确;θ=π2化为直角坐标方程为x =0(y ≥0),表示射线,故B 不正确;ρsin θ=1化为直角坐标方程为y =1,表示直线,故C 不正确;ρ(sin θ+cos θ)=1化为直角坐标方程为x +y =1,表示直线,故D 不正确.7.(2015·皖北协作区联考)在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为( )A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)答案 A解析 ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为(2,π6),故选A.8.在极坐标系中,极坐标为(2,π6)的点到极点和极轴的距离分别为( )A .1,1B .1,2C .2,1D .2,2答案 C解析 点(ρ,θ)到极点和极轴的距离分别为ρ,ρ|sin θ|,所以点(2,π6)到极点和极轴的距离分别为2,2sin π6=1.9.在以O 为极点的坐标系中,直线l 的极坐标方程是ρcos θ-2=0,直线l 与极轴相交于点M ,以OM 为直径的圆的极坐标方程是( )A .ρ=2cos θB .ρ=2sin θC .2ρ=cos θD .ρ=2+cos θ答案 A解析 直线l :ρcos θ-2=0的直角坐标方程是x =2,直线l 与x 轴相交于点M (2,0),以OM 为直径的圆的直角坐标方程为(x -1)2+y 2=1,即x 2-2x +y 2=0,化为极坐标方程是ρ2-2ρcos θ=0,即ρ=2cos θ.10.在极坐标系中,与圆ρ=4sin θ相切的一条直线的方程是( ) A .ρsin θ=2 B .ρcos θ=2 C .ρcos θ=4D .ρcos θ=-4解析 方法一:圆的极坐标方程ρ=4sin θ即ρ2=4ρsin θ,所以直角坐标方程为x 2+y 2-4y =0. 选项A ,直线ρsin θ=2的直角坐标方程为y =2,代入圆的方程,得x 2=4,∴x =±2,不符合题意;选项B ,直线ρcos θ=2的直角坐标方程为x =2,代入圆的方程,得(y -2)2=0,∴y =2,符合题意.同理,以后选项都不符合题意.方法二:如图,⊙C 的极坐标方程为ρ=4sin θ,CO ⊥Ox ,OA 为直径,|OA |=4,直线l 和圆相切, l 交极轴于点B (2,0),点P (ρ,θ)为l 上任意一点,则有cos θ=|OB ||OP |=2ρ,得ρcos θ=2.11.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π4(ρ>0)所表示的图形的交点的极坐标是________.答案 (1,0),(2,π4)解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0). 当θ=π4时,ρ=2,故交点的极坐标为(2,π4).12.(2014·陕西)在极坐标系中,点(2,π6)到直线ρsin(θ-π6)=1的距离是________.答案 1解析 ρsin(θ-π6)=ρ(sin θcos π6-sin π6cos θ)=1,因为在极坐标系中,ρcos θ=x ,ρsin θ=y , 所以直线可化为x -3y +2=0. 同理点(2,π6)可化为(3,1),所以点到直线距离d =|3-3+2|3+1=1.13.在极坐标系中,点M (4,π3)到曲线ρcos(θ-π3)=2上的点的距离的最小值为________.答案 2解析 点M (4,π3)的直角坐标为M (2,23),曲线ρcos(θ-π3)=2,即ρ(12cos θ+32sin θ)=2,化为普通方程为x +3y -4=0. 点M (2,23)到此直线的距离d =|2+23×3-4|1+32=2即为所求.14.在极坐标系中,已知圆ρ=2cos θ与直线4ρcos θ+3ρsin θ+a =0相切,则a =________. 答案 1或-9解析 圆ρ=2cos θ即ρ2=2ρcos θ,即(x -1)2+y 2=1,直线4ρcos θ+3ρsin θ+a =0,即4x +3y +a =0,已知圆ρ=2cos θ与直线4ρcos θ+3ρsin θ+a =0相切, ∴圆心到直线的距离等于半径. 即|4+0+a |42+32=1,解得a =1或-9. 15.(2015·广州综合测试一)在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,则实数a 的值为________.答案 -5或-1解析 将直线ρ(sin θ-cos θ)=a 化为普通方程,得y -x =a ,即x -y +a =0,将曲线ρ=2cos θ-4sin θ的方程化为普通方程,得x 2+y 2=2x -4y ,即(x -1)2+(y +2)2=5,圆心坐标为(1,-2),半径长为r = 5.设圆心到直线AB 的距离为d ,由勾股定理可得d =r 2-|AB |22=5-2322=2,而d =|1--+a |12+-2=|a +3|2=2,所以|a +3|=2,解得a =-5或a =-1. 16.已知极坐标方程C 1:ρ=10,C 2:ρsin(θ-π3)=6.(1)化C 1,C 2的极坐标方程为直角坐标方程,并分别判断曲线形状; (2)求C 1,C 2交点间的距离.答案 (1)C 1:x 2+y 2=100,C 2:3x -y +12=0 (2)16 解析 (1)由C 1:ρ=10,得ρ2=100.∴x 2+y 2=100. 所以C 1为圆心在(0,0),半径等于10的圆.由C 2:ρsin(θ-π3)=6,得ρ(12sin θ-32cos θ)=6.∴y -3x =12,即3x -y +12=0. 所以C 2表示直线.(2)由于圆心(0,0)到直线3x -y +12=0的距离为d =|12|32+-2=6<10,所以直线C 2被圆截得的弦长等于2102-62=16.17.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 答案 (1)x +3y -2=0,M (2,0),N (233,π2)(2)θ=π6,ρ∈R解析 (1)由ρcos(θ-π3)=1,得ρ(12cos θ+32sin θ)=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0); 当θ=π2时,ρ=233,所以N (233,π2).(2)M 点的直角坐标为(2,0),N 点的直角坐标为(0,233).所以P 点的直角坐标为(1,33),则P 点的极坐标为(233,π6).所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).18.(2014·辽宁)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.答案 (1)C :⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数) (2)ρ=34sin θ-2cos θ思路 (1)利用相关点法先求出直角坐标方程,再写出参数方程.(2)先联立方程求出P 1,P 2两点的坐标,进而求出P 1P 2的中点坐标,得到与l 垂直的直线方程,再化为极坐标方程.解析 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+(y2)2=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t(t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为(12,1),所求直线斜率为k =12.于是所求直线方程为y -1=12(x -12).化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.(2015·广东肇庆一模)已知曲线C 的极坐标方程为ρ=2(ρ>0,0≤θ<2π),曲线C 在点(2,π4)处的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为________.答案 x +y -22=0解析 根据极坐标与直角坐标的转化公式可以得到曲线ρ=2⇒x 2+y 2=4,点(2,π4)⇒(2,2).因为点(2,2)在圆x 2+y 2=4上,故圆在点(2,2)处的切线方程为2x +2y =4⇒x +y -22=0,故填x +y -22=0.。
高考调研高一数学必修一题组层级快练答案
高考调研高一数学必修一题组层级快练答案1、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ2、36、下列生活实例中, 数学原理解释错误的一项是( ) [单选题] *A. 从一条河向一个村庄引一条最短的水渠, 数学原理: 在同一平面内, 过一点有且只有一条直线垂直于已知直线(正确答案)B. 两个村庄之间修一条最短的公路, 其中的数学原理是:两点之间线段最短C. 把一个木条固定到墙上需要两颗钉子, 其中的数学原理是: 两点确定一条直线D. 从一个货站向一条高速路修一条最短的公路, 数学原理: 连结直线外一点与直线上各点的所有线段中, 垂线段最短.3、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案)B.-13℃C.+10℃D.+13℃4、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
记录一被测人员在一周内的体温测量结果分别为+1,-3,-5,+1,-6,+2,-4,那么,该被测者这一周中测量体温的平均值是(??)[单选题] *A.1℃B.31℃C.8℃(正确答案)D.69℃5、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限6、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)7、以A(3,2),B(6,5),C(1,10)为顶点的三角形是()[单选题] *A、锐角三角形B、锐角三角形C、直角三角形(正确答案)D、无法判断8、1、方程x2?-X=0 是(? ? )? ? ? ? ? ? 。
[单选题] *A、一元一次方程B、一元二次方程(正确答案)C、二元一次方程D、二元二次方程9、二次函数y=3x2-4x+5的二次项系数是()。
高考调研数学目录
目录
第九章 解析几何
第1课时 直线方程 题组层级快练(五十九)(word) 第2课时 两直线的位置关系 题组层级快练(六十)(word) 第3课时 圆的方程 题组层级快练(六十一)(word) 第4课时 直线与圆、圆与圆的位置关系 题组层级快练(六十二)(word) 第5课时 椭圆(一) 题组层级快练(六十三)(word) 第6课时 椭圆(二) 题组层级快练(六十四)(word) 第7课时 双曲线(一) 题组层级快练(六十五)(word)
目录
第5课时 三角函数的图像 题组层级快练(二十四)(word) 第6课时 三角函数的性质 题组层级快练(二十五)(word) 专题研究 三角函数的值域与最值 专题层级快练(二十六)(word) 第7课时 正、余弦定理 题组层级快练(二十七)(word) 专题研究 正、余弦定理应用举例 专题层级快练(二十八)(word)
第7页
目录
第五章 平面向量与复数
第1课时 向量的概念及线性运算 题组层级快练(二十九)(word) 第2课时 平面向量基本定理及坐标运算 题组层级快练(三十)(word) 第3课时 平面向量的数量积 题组层级快练(三十一)(word) 专题研究 平面向量的综合应用 专题层级快练(三十二)(word) 第4课时 复数 题组层级快练(三十三)(word)
第10页
目录
第八章 立体几何
第1课时 空间几何体的结构、三视图、直观图 题组层级快练(四十八)(word) 第2课时 空间几何体的表面积、体积 题组层级快练(四十九)(word) 专题研究 球与几何体的切接问题 专题层级快练(五十)(word) 第3课时 空间点、线、面间位置关系 题组层级快练(五十一)(word) 第4课时 直线、平面平行的判定及性质 题组层级快练(五十二)(word) 第5课时 直线、平面垂直的判定及性质 题组层级快练(五十三)(word)
【高考调研】高考数学一轮复习 题组层级快练66(含解析)
题组层级快练(六十六)1.抛物线y =4x 2的焦点到准线的距离是( ) A.18 B.14 C.116D .1答案 A解析 由x 2=14y ,知p =18,所以焦点到准线的距离为p =18.2.过点P (-2,3)的抛物线的标准方程是( ) A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y答案 A解析 设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,∴y 2=-92x或x 2=43y ,选A.3.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是( )A.72 B .4 C.92 D .5答案 C解析 设抛物线y 2=2x 的焦点为F ,则F (12,0).又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12.又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.4.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .8答案 C解析 设双曲线的方程为x 2a 2-y 2a 2=1,抛物线的准线为x =-4,且|AB |=43,故可得A (-4,23),B (-4,-23),将点A 的坐标代入双曲线方程得a 2=4,故a =2.故实轴长为4.5.(2015·甘肃天水期末)以坐标轴为对称轴,原点为顶点,且过圆x 2+y 2-2x +6y +9=0圆心的抛物线方程是( )A .y =3x 2或y =-3x 2B .y =3x 2C .y 2=-9x 或y =3x 2D .y =-3x 2或y 2=9x答案 D解析 易知圆x 2+y 2-2x +6y +9=0的圆心坐标为(1,-3),当抛物线的焦点在x 轴上时,设抛物线方程为y 2=mx ,将(1,-3)代入得m =9,所以抛物线方程为y 2=9x ;当抛物线的焦点在y 轴上时,设抛物线的方程为x 2=ny ,将(1,-3)代入得n =-13,所以抛物线方程为y =-3x 2.综上知,所求抛物线方程为y =-3x 2或y 2=9x .6.(2015·山东烟台期末)已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为( )A .4 2B .6 2C .4D .6答案 C解析 抛物线y 2=4x 的焦点F (1,0),准线方程为x =-1,由于直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,所以由抛物线的定义得m +n +2=|AB |,其最小值即为通径长2p =4.故选C.7.(2015·吉林长春调研测试)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115D .3答案 B解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2,故选B.8.(2015·湖北武汉调研)已知O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4答案 C解析 设点P (x 0,y 0),则点P 到准线x =-2的距离为x 0+ 2.由抛物线定义,得x 0+2=42,x 0=32,则|y 0|=2 6.故△POF 的面积为12×2×26=2 3.9.点A 是抛物线C 1:y 2=2px (p >0)与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的交点,若点A到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 6答案 C解析 求抛物线C 1:y 2=2px (p >0)与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的交点为⎩⎪⎨⎪⎧y 2=2px ,y =b ax ,解得⎩⎪⎨⎪⎧x =2pa 2b2,y =2pab ,所以2pa 2b 2=p 2,c 2=5a 2,e =5,故选C.10.(2013·新课标全国Ⅱ理)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x答案 C解析 方法一:设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF |=x 0+p 2=5,则x 0=5-p2.又点F 的坐标为(p 2,0),所以以MF 为直径的圆的方程为(x -x 0)(x -p2)+(y -y 0)y =0.将x =0,y =2代入得px 0+8-4y 0=0,即y 202-4y 0+8=0,所以y 0=4.由y 20=2px 0,得16=2p (5-p2),解之得p =2或p =8.所以C 的方程为y 2=4x 或y 2=16x .故选C.方法二:由已知得抛物线的焦点F (p2,0),设点A (0,2),抛物线上点M (x 0,y 0),则AF →=(p 2,-2),AM→=(y 202p,y 0-2).由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M (8p,4).由抛物线定义可知:|MF |=8p +p2=5.又p >0,解得p =2或p =8,故选C.11.(2015·河南许昌一模)设抛物线的顶点在原点,准线方程为x =2,则抛物线的方程为________. 答案 y 2=-8x解析 设抛物线方程为y 2=-2px (p >0),因为准线方程为x =2,∴p =4.故抛物线方程为y 2=-8x . 12.(2015·黑龙江大庆一模)已知圆x 2+y 2+mx -14=0与抛物线y 2=4x 的准线相切,则m =________.答案 34解析 圆x 2+y 2+mx -14=0圆心为(-m 2,0),半径r =m 2+12,抛物线y 2=4x 的准线为x =-1.由|-m 2+1|=m 2+12,得m =34.13.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.答案 2 6解析 建立如图所示的平面直角坐标系,设抛物线的方程为x 2=-2py (p >0),由点(2,-2)在抛物线上,可得p =1,则抛物线方程为x 2=-2y . 当y =-3时,x =±6, 所以水面宽为2 6 米.14.(2015·衡水调研)抛物线y 2=2px (p >0)的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2p ,则双曲线的离心率为________.答案102解析 设点M 在第一象限,∵|MF |=2p ,∴M 的坐标为(32p ,3p ).又∵准线经过双曲线的左顶点,∴a =p2.∴双曲线方程为x 2p 24-y 2b 2=1.将点M 代入可得b 2=38p 2.∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=1+38p 2p 24=52.∴e =102. 15.(2015·北京顺义一模)已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,垂足为A .如果△APF 是边长为4的正三角形,那么此抛物线的焦点坐标为________,点P 的横坐标x P =________.答案 (1,0),3解析 如图所示.设P (y 202p ,y 0),则|PA |=y 202p +p 2=4.①又在Rt △AMF 中,∠AFM =∠FAP =60°, 故tan ∠AFM =|AM ||MF |=|y 0|p = 3.②联立①②式,得p =2,|y 0|=2 3.故焦点坐标为(1,0),点P 的横坐标为x =y 202p=3.16.抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.答案 y 2=4x解析 设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x .解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝ ⎛⎭⎪⎫p2,p ;解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).∵|OA |2+|OB |2=|AB |2,且|AB |=513,∴⎝ ⎛⎭⎪⎫p 24+p 2+(64p 2+16p 2)=325. ∴p =2,∴所求的抛物线方程为y 2=4x .17.(2015·河北唐山模拟)已知抛物线E :y 2=2px (p >0)的准线与x 轴交于点M ,过点M 作圆C :(x -2)2+y 2=1的两条切线,切点为A ,B ,|AB |=423.(1)求抛物线E 的方程;(2)过抛物线E 上的点N 作圆C 的两条切线,切点分别为P ,Q ,若P ,Q ,O (O 为原点)三点共线,求点N 的坐标.答案 (1)y 2=4x (2)(32,6)或(32,-6)解析 (1)由已知得M (-p2,0),C (2,0). 设AB 与x 轴交于点R ,由圆的对称性可知,|AR |=223.于是|CR |=|AC |2-|AR |2=13.所以|CM |=|AC |sin ∠AMC =|AC |sin ∠CAR =|AC ||CR ||AC |=3.即2+p2=3,p =2.故抛物线E的方程为y 2=4x .(2)设N (s ,t ).P ,Q 是以NC 为直径的圆D 与圆C 的两交点.圆D 方程为(x -s +22)2+(y -t2)2=s -2+t24,即x 2+y 2-(s +2)x -ty +2s =0.① 又圆C 方程为x 2+y 2-4x +3=0,②②-①,得(s -2)x +ty +3-2s =0.③P ,Q 两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ 的方程.因为直线PQ 经过点O ,所以3-2s =0,s =32.故点N 坐标为(32,6)或(32,-6).过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 中点的纵坐标为6,求抛物线方程.答案 x 2=2y 或x 2=4y 解析 x 2=2py 变形为y =12px 2,∴y ′=x p.设A (x 1,y 1),B (x 2,y 2), ∴y ′|x =x 1=x 1p.∴切线AM 方程为y -y 1=x 1p(x -x 1).即y =x 1p x -x 212p .同理BM 方程为y =x 2p x -x 222p.又(2,-2p )在两条直线上, ∴-2p =2x 1p -x 212p ,-2p =2x 2p -x 222p.∴x 1,x 2是方程x 22p -2xp-2p =0的两根.即x 2-4x -4p 2=0.∴x 1+x 2=4,x 1x 2=-4p 2. ∴y 1+y 2=12p (x 21+x 22)=12p [(x 1+x 2)2-2x 1x 2]=12p(16+8p 2). 又∵线段AB 中点纵坐标为6, ∴y 1+y 2=12,即12p (16+8p 2)=12.解得p =1或p =2.∴抛物线方程为x 2=2y 或x 2=4y .。
2025高考数学一轮复习题组层级快练26含答案
题组层级快练(二十六)一、单项选择题 1.tan 255°=( ) A .-2-3 B .-2+ 3 C .2- 3 D .2+ 3答案 D解析 tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-33=2+ 3.2.(2021·全国乙卷,文)cos 2π12-cos 25π12=( )A.12 B.33 C.22D.32 答案 D解析 cos 2π12-cos 25π12=cos 2π12-cos 2(π2-π12)=cos 2π12-sin 2π12=cos π6=32.故选D.3.(2024·河北保定一中期末)已知sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( )A .-15B. 15 C .-75D. 75答案 D解析 ∵sin 2α=2425,0<α<π2,∴sin αcos α=1225,sin α>0,cos α>0.又∵sin 2α+cos 2α=1,∴(sin α+cos α)2=1+2sin αcos α=4925,∴sin α+cos α=75.∴2cos ⎝⎛⎭⎫π4-α=2⎝⎛⎭⎫22cos α+22sin α=cos α+sin α=75.4.(2020·课标全国Ⅲ)已知sin θ+sin(θ+π3)=1,则sin ⎝⎛⎭⎫θ+π6等于( )A.12B.33C.23D.22答案 B解析 由题意得,sin θ+12sin θ+32cos θ=1,则32sin θ+32cos θ=1.∴32sin θ+12cos θ=33,即sin ⎝⎛⎭⎫θ+π6=33.故选B.5.若α+β=π6,且2+cos αsin α=sin 2β1+cos 2β,则cos β=( )A .-34B.34C .-14D.14答案 A解析 因为2+cos αsin α=sin 2β1+cos 2β=2sin βcos β2cos 2β=sin βcos β,所以(2+cos α)cos β=sin αsin β,整理得2cos β+cos(α+β)=0.又α+β=π6,所以2cos β+cos π6=0,即cos β=-34.故选A.6.(2019·课标全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A.15 B.55C.33D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=2cos 2α.∵cos α≠0,∴cos α=2sin α.又sin 2α+cos 2α=1,且α∈⎝⎛⎭⎫0,π2,所以sin α=55.故选B.7.已知α∈⎝⎛⎭⎫-π2,π2,且3cos 2α+10sin α=-1,则cos α的值为( )A .-13B.13 C.223 D.23答案 C解析 由3cos 2α+10sin α=-1,可得3(1-2sin 2α)+10sin α=-1,解得sin α=-13或sin α=2(舍去).因为α∈⎝⎛⎭⎫-π2,π2,sin α=-13,所以cos α=1-sin 2α=1-⎝⎛⎭⎫-132=223.故选C.8.设a =cos 50°cos 127°+cos 40°sin 127°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .a >c >b答案 D解析 a =sin 40°cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°cos 239°+sin 239°=cos 78°=sin 12°,∵sin 13°>sin 12°>sin 11°,∴a >c >b .故选D.9.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( ) A.π3 B.2π3 C.π6 D.π4答案 A解析 由已知得tan A +tan B =-3(1-tan A tan B ), ∴tan A +tan B1-tan A tan B=-3,即tan(A +B )=- 3.∴tan C =tan[π-(A +B )]=-tan(A +B )=3, 又0<C <π,∴C =π3.10.(2022·新高考Ⅱ卷)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则( )A .tan(α+β)=-1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α-β)=1答案 C解析 由题意得sin αcos β+sin βcos α+cos αcos β-sin αsin β=22×22(cos α-sin α)sin β,整理,得sin αcos β-sin βcos α+cos αcos β+sin αsin β=0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1.故选C. 二、多项选择题11.(2024·海南海口模拟)已知α∈(π,2π),sin α=tan α2=tan β2,则( )A .tan α= 3B .cos α=12C .tan β=4 3D .cos β=17答案 BD解析 因为sin α=tan αcos α=tan α2,且α∈(π,2π),所以cos α=12,所以sin α=-32,tan α=-3,故A 错误,B 正确.tanβ2=-32,所以tan β=2tanβ21-tan 2β2=-43, cos β=cos 2β2-sin 2β2sin 2β2+cos 2β2=1-tan 2β21+tan 2β2=17,故C 错误,D 正确.故选BD.12. 《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?其意思为:今有水池1丈见方(即CD =10尺),芦苇生长在水的中央,长出水面的部分为1尺.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设θ=∠BAC ,现有下述四个结论,其中正确的是( )A .水深为12尺B .芦苇长为15尺C .tanθ2=23D .tan ⎝⎛⎭⎫θ+π4=-177答案 ACD解析 设BC =x ,则AC =x +1,∵AB =5,∴52+x 2=(x +1)2,∴x =12,即水深为12尺,A 正确;芦苇长为13尺,B 错误;由tan θ=125=2tanθ21-tan 2θ2,解得tanθ2=23(负值已舍去),C 正确;∵tan θ=125,∴tan ⎝⎛⎭⎫θ+π4=1+tan θ1-tan θ=-177,D 正确.故选ACD.三、填空题13.计算:(1)sin 250°1+sin 10°=________;(2)1-tan 17°1+tan 17°+cos 146°1+sin 34°=________; (3)sin 47°-sin 17°cos 30°cos 17°=________;(4)sin 40°(tan 10°-3)=________. 答案 (1)12 (2)0 (3)12(4)-1解析 (1)原式=1-cos 100°2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.(2)原式=cos 17°-sin 17°cos 17°+sin 17°+-cos 34°1+sin 34°=cos 17°-sin 17°cos 17°+sin 17°-cos 217°-sin 217°(cos 17°+sin 17°)2 =cos 17°-sin 17°cos 17°+sin 17°-cos 17°-sin 17°cos 17°+sin 17°=0.(3)sin 47°=sin(30°+17°)=sin 30°cos 17°+cos 30°sin 17°,∴原式=sin 30°cos 17°cos 17°=sin 30°=12.(4)原式=sin 40°·⎝⎛⎭⎪⎫sin 10°cos 10°-3=sin 40°·sin 10°-3cos 10°cos 10°=sin 40°·2⎝⎛⎭⎫12sin 10°-32cos 10°cos 10°=sin 40°·2(cos 60°·sin 10°-sin 60°·cos 10°)cos 10°=sin 40°·2sin (10°-60°)cos 10°=sin 40°·-2sin 50°cos 10°=-2sin 40°·cos 40°cos 10°=-sin 80°cos 10°=-1.14.(2022·浙江)若3sin α-sin β=10,α+β=π2,则sin α=________,cos 2β=________.答案31010 45解析 因为α+β=π2,所以β=π2-α,所以3sin α-sin β=3sin α-sin ⎝⎛⎭⎫π2-α=3sin α-cos α=10sin(α-φ)=10,其中sin φ=1010,cos φ=31010.所以α-φ=π2+2k π,k ∈Z ,所以α=π2+φ+2k π,k ∈Z ,所以sin α=sin ⎝⎛⎭⎫π2+φ+2k π=cos φ=31010.因为sin β=3sin α-10=-1010,所以cos 2β=1-2sin 2β=1-15=45. 15.已知tan θ=2,则sin 3θsin θ=________.答案 13解析 ∵tan θ=2,∴sin 2θ=23,sin 3θ=sin(θ+2θ)=3sin θ-4sin 3θ,sin 3θsin θ=3-4sin 2θ=3-4×23=13.16.若▲表示一个整数,该整数使得等式▲cos 40°+3sin 40°=4成立,则这个整数▲为( )A .-1B .1C .2D .3答案 B 解析 因为▲cos 40°+3sin 40°=4,所以▲sin 40°+3cos 40°=2sin 80°,则▲sin 40°+3cos 40°=2cos10°,因此▲sin 40°+3cos 40°=2cos(40°-30°)=2cos 40°cos 30°+2sin 40° sin 30°=2×32cos 40°+2×12sin 40°=sin 40°+3cos 40°,所以▲=1,故选B.17.(2024·衡水中学调研卷)已知sin(θ+20°)=15,则sin(2θ-50°)的值为( )A .-2325B.2325C.4625D.25答案 A解析 sin(2θ-50°)=sin [(2θ+40°)-90°]=-cos(2θ+40°)=2sin 2(θ+20°)-1=-2325.18.已知x ,y ∈⎝⎛⎭⎫0,π2,sin(x +y )=2sin(x -y ),则x -y 的最大值为( )A.π3 B.π6 C.π4 D.π8 答案 B解析 由x ,y ∈⎝⎛⎭⎫0,π2,得tan x >0,tan y >0,x -y ∈⎝⎛⎭⎫-π2,π2,由sin(x +y )=2sin(x -y ),得sin x cos y +cosx sin y =2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y 1+tan x tan y =2tan y 1+3tan 2y=21tan y +3tan y ≤33,当且仅当tan y =33时等号成立,由于f (x )=tan x 在⎝⎛⎭⎫-π2,π2上单调递增,则x -y 的最大值为π6.。
快速划分段落层次能力训练题(附答案)
快速划分段落层次能力训练[1]1、我看见过波澜壮阔的大海,欣赏过水平如镜的西湖,却从没看见过漓江这样的水。
漓江的水真静啊,静得让你感觉不到它在流动;漓江的水真清啊,清得可以看见江底的沙石;漓江的水真绿啊,绿得仿佛那是一块无瑕的翡翠。
船桨激起的微波扩散出一道道水纹,才让你感觉到船在前进,岸在后移。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型2、我攀登过峰峦雄伟的泰山,游览过红叶似火的香山,却从没看见过桂林这一带的山。
桂林的山真奇啊,一座座拔地而起,各不相连,像老人,像巨象,像骆驼,奇峰罗列,形态万千;桂林的山真秀啊,像翠绿的屏障,像新生的竹笋,色彩明丽,倒映水中;桂林的山真险啊,危峰兀立,怪石嶙峋,好像一不小心就会栽倒下来。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型3、第二个节目是交换礼品。
每间牢房,每个人都准备了礼物,送给认识的或者不认识的战友,作为联欢的纪念品。
最多的礼物是“贺年片”,那是用小块的草纸做的,上面用红药水画上鲜红的五角星或者镰刀锤子,写上几句互相鼓励的话。
楼七室经过昼夜赶工,刻出了一百多颗红的、黄的、晶亮的五角星,分送给各个牢房的同志。
女室送给各室的是一幅幅绣了字的锦旗,那些彩色的线,是从他们的袜子上拆下来的……本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型4、一个寒冷的冬天,南加州沃尔逊小镇上来了一群逃难的人,他们面呈菜色,疲惫不堪。
善良而朴实的沃尔逊人,家家烧火做饭,款待他们,这些逃难的人,显然很久没有吃到这么好的食物了,他们连一句感谢的话也顾不上说,就狼吞虎咽地吃起来。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型5、年轻人留了下来,很快成了杰克逊大叔庄园里的一把好手。
2019版高考数学(理)一轮总复习作业:80二项式定理
题组层级快练(八十)1.(2017·湖北宜昌一中月考)从1到10十个数中,任意选取4个数,其中,第二大的数是7的情况共有( )A .18种B .30种C .45种D .84种答案 C解析 分两步:先从8、9、10这三个数中选取一个数作最大的数有C 31种方法;再从1、2、3、4、5、6这六个数中选取两个比7小的数有C 62种方法,故共有C 31C 62=45种情况,应选择C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为( )A .10 B .20C .30 D .40答案 B解析 将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C 53C 22×2=20(种),故选B.3.(2018·广东省实验中学月考)甲、乙、丙三个部门分别需要招聘工作人员2名、1名、1名,现从10名应聘人员中招聘4人到甲、乙、丙三个部门,那么不同的招聘方法共有( )A .1 260种 B .2 025种C .2 520种 D .5 040种答案 C解析 先从10人中选2人去甲部门,再从剩下的8人中选2人去乙、丙两个部门,有C 102A 82=2 520种不同的招聘方法.4.(2017·课标全国Ⅱ,理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种 B .18种C .24种 D .36种答案 D解析 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有=6种,再C42C21C11A22分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).5.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中,若每个盒子放2个,其中标号为1,2的小球放入同一个盒子中,则不同的放法共有( )A .12种 B .16种C .18种 D .36种答案 C解析 可先分组再排列,所以有C 42A 33=18(种)放法.126.(2017·安徽毛坦厂中学阶段测试)6名志愿者(其中4名男生,2名女生)义务参加宣传活动,他们自由分成两组完成不同的两项任务,但要求每组最多4人,女生不能单独成组,则不同的工作安排方式有( )A .40种 B .48种C .60种 D .68种答案 B解析 4,2分法:A 22(C 64-1)=14×2=28,3,3分法:C 63C 33=20,∴共有48种.7.某校高一有6个班,高二有5个班,高三有8个班,各年级分别举行班与班之间篮球单循环赛,则共需要进行比赛的场数为( )A .C 62C 52C 82 B .C 62+C 52+C 82C .A 62A 52A 82 D .C 192答案 B解析 依题意,高一比赛有C 62场,高二比赛有C 52场,高三比赛有C 82场,由分类计数原理,得共需要进行比赛的场数为C 62+C 52+C 82,选B.8.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18 B .24C .30 D .36答案 C解析 排除法.先不考虑甲、乙同班的情况,将4人分成三组有C 42=6种方法,再将三组同学分配到三个班级有A 33=6种分配方法,再考虑甲、乙同班的分配方法有A 33=6种,所以共有C 42A 33-A 33=30种分法.故选C.9.(2018·西安五校)某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( )A .80种 B .90种C .120种D .150种答案 D解析 有二类情况:(1)其中一所学校3名教师,另两所学校各一名教师的分法有C 53A 33=60(种);(2)其中一所学校1名教师,另两所学校各两名教师的分法有C 51××A 33=90(种).∴共有150种.故选D.C42210.(2017·河北唐山一中模拟)中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案的种数有( )A .C 419 B .C 389C .C 409 D .C 399答案 D解析 首先每个学校配备一台,这个没有顺序和情况之分,剩下40台;将剩下的40台象排队一样排列好,则这40台校车之间有39个空.对这39个空进行插空(隔板),比如说用9个隔板隔开,就可以隔成10部分了.所以是在39个空里选9个空插入隔板,所以是C 399.11.某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得-30分;选乙题答对得10分,答错得-10分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( )A .24 B .36C .40 D .44答案 D解析 分以下四种情况讨论:(1)两位同学选甲题作答,一个答对一个答错,另外两个同学选乙题作答,一个答对一个答错,此时共有C 42×2×2=24(种);(2)四位同学都选择甲题或乙题作答,两人答对,另外两人答错,共有C 21C 42=12(种)情况;(3)一人选甲题作答并且答对,另外三人选乙题作答并且全部答错,此时有C 41=4(种)情况;(4)一人选甲题作答并且答错,另外三人选乙题作答并且全部答对,此时有C 41=4(种)情况.综上所述,共有24+12+4+4=44(种)不同的情况.故选D.12.(2017·湖南衡阳八中期末)有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有________种(用数字作答).答案 50解析 因为每项活动最多安排4人,所以可以有三种安排方法,即(4,2),(3,3),(2,4).当安排4,2时,需要选出4个人参加第一个项目,共有C 64=15种;当安排3,3时,共有C 63=20种;当安排2,4时,共有C 62=15种,所以共有15+20+15=50种.13.(2017·山东聊城重点高中联考)三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有________种.答案 60解析 若每个村去一个人,则有A 43=24种分配方法;若有一个村去两人,另一个村去一人,则有C 31A 42=36种分配方法,所以共有60种不同的分配方法.14.某学校新来了五名学生,学校准备把他们分配到甲、乙、丙三个班级,每个班级至少分配一人,则其中学生A 不分配到甲班的分配方案种数是________.答案 100解析 A 的分配方案有2种,若A 分配到的班级不再分配其他学生,则把其余四人分组后分配到另外两个班级,分配方法种数是(C 43+)A 22=14;若A 分配到的班级再分配C42C22A22一名学生,则把剩余的三名学生分组后分配到另外两个班级,分配方法种数是C 41C 31A 22=24;若A 分配到的班级再分配两名学生,则剩余的两名学生就分配到另外的两个班级,分配方法种数是C 42A 22=12.故总数为2×(14+24+12)=100.15.(2017·北京海淀区二模)某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有________种不同的抽调方法.答案 84解析 方法一:(分类法),在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C 71种;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A 72种;一类是从3个车队中各抽调1辆,有C 73种.故共有C 71+A 72+C 73=84(种)抽调方法.方法二:(隔板法),由于每个车队的车辆均多于4辆,只需将10个份额分成7份.可将10个小球排成一排,在相互之间的9个空当中插入6个隔板,即可将小球分成7份,故共有C 96=84(种)抽调方法.16.(2017·安徽皖北协作区联考)3个单位从4名大学毕业生中选聘工作人员,若每个单位至少选聘1人(4名大学毕业生不一定都能选聘上),则不同的选聘方法种数为________.(用具体数字作答)答案 60解析 当4名大学毕业生全选时有·A 33,当选3名大学毕业生时有A 43,即不同的C41C31A22选聘方法种数为·A 33+A 43=60.C41C31A2217.(2017·人大附中期末)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案 60解析 分情况:一种情况将有奖的奖券按2张,1张分给4个人中的2个人,种数为C 32C 11A 42=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 43=24,则获奖情况总共有36+24=60种.1.(2017·安徽毛坦厂中学月考)今年,我校迎来了安徽师范大学数学系5名实习教师,若将这5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )A .180种 B .120种C .90种 D .60种答案 C解析 将5名实习教师分配到高一年级的3个班实习,每班至少一名,最多2名,则将5名教师分成三组,一组1个,另两组都是2人,有=15(种)方法.再将3组分到3C51·C42A22个班,共有15·A 33=90(种)不同的分配方案.故选C.2.计划将排球、篮球、乒乓球3个项目的比赛安排在4个不同的体育馆举办,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2个的安排方案共有( )A .60种 B .42种C .36种 D .24种答案 A解析 若3个项目分别安排在3个不同的场馆,则安排方案共有A 43=24(种);若有两个项目安排在同一个场馆,另一个安排在其他场馆,则安排方案共有C 32·A 42=36(种).综上,在同一个体育馆比赛的项目不超过2个的安排方案共有24+36=60(种).故选A.3.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144 B .72C .36 D .48答案 C解析 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有种;C42C21C11A22第二步将分好的三组分配到3个学校,其分法有A 33种.所以满足条件的分配方案有×A 33=36(种).C42C21C11A224.(2018·衡水中学调研卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种 B .20种C .36种 D .52种答案 A解析 将4个小球分2组,①=3种;②C 41C 33=4种.①中的这3种分组方法任意C42C22A22放均满足条件,∴3×A 22=6种放法.②中的4种分组方法各只对应1种放法.故总种数为6+4=10种.5.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.则安排这6项工程的不同方法总数为( )A .10 B .20C .30 D .40答案 B解析 因为工程丙完成后立即进行工程丁,若不考虑与其他工程的顺序,则安排这6项工程的不同方法数为A 55,对于甲、乙、丙、丁所处位置的任意排列有且只有一种情况符合要求,因此,符合条件的安排方法总数为=5×4=20.A55A336.(2018·诸暨一模)在第二届乌镇互联网大会中,为了提高安保的级别,同时为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国的人员要在a ,b ,c 三家酒店各选择一家,且每家酒店至少有一个参会国的人员入住,则这样的安排方法共有( )A .96种 B .124种C .130种 D .150种答案 D解析 可以把五个参会国的人员分成三组,一种是按照1,1,3分;另一种是按照1,2,2分.当按照1,1,3分时,共有C 53A 33=60种方法;当按照1,2,2分时,共有=90种方法.根据分类加法计数原理可得安排方法共有60+90=150种.C52C32A33A22。
人教版高考数学一轮复习-题组层级快练(含解析)附参考答案
人教版高考数学一轮复习-题组层级快练(含解析)附参考答案(附参考答案)1.y=ln(-x)的导函数为()A.y′=-B.y′=1xC.y′=ln(x) D.y′=-ln(-x)答案B2.若曲线y=x3在点P处的切线的斜率为3,则点P的坐标为()A.(-1,1) B.(-1,-1)C.(1,1)或(-1,-1) D.(1,-1)答案C解析y′=3x2,∴3x2=3.∴x=±1.当x=1时,y=1,当x=-1时,y=-1.3.已知函数y=xlnx,则这个函数在点x=1处的切线方程是()A.y=2x-2 B.y=2x+2C.y=x-1 D.y=x+1答案C解析∵y′=lnx+1,∴x=1时,y′|x=1=1.∵x=1时,y=0,∴切线方程为y=x-1.4.(2015·济宁模拟)已知f(x)=x(2 014+lnx),f′(x0)=2 015,则x0=()A.e2B.1C.ln2 D.e答案B解析 由题意可知f ′(x)=2 014+lnx +x ·=2 015+lnx.由f ′(x0)=2 015,得lnx0=0,解得x0=1.5.若函数f(x)=ax4+bx2+c 满足f ′(1)=2,则f ′(-1)等于()A .-1B .-2C .2D .0答案 B解析 f ′(x)=4ax3+2bx ,∵f ′(x)为奇函数且f ′(1)=2,∴f ′(-1)=-2.6.若函数f(x)=x2+bx +c 的图像的顶点在第四象限,则函数f ′(x)的图像是()答案 A解析 由题意知 即⎩⎪⎨⎪⎧ b <0,b2>4c.又f ′(x)=2x +b ,∴f ′(x)的图像为A.7.f(x)与g(x)是定义在R 上的两个可导函数,若f(x),g(x)满足f ′(x)=g ′(x),则f(x)与g(x)满足()A .f(x)=g(x)B .f(x)=g(x)=0C .f(x)-g(x)为常数函数D .f(x)+g(x)为常数函数答案 C8.若P 为曲线y =lnx 上一动点,Q 为直线y =x +1上一动点,则|PQ|min =()A .0 B.22C.D .2答案 C解析 如图所示,直线l 与y =lnx 相切且与y =x +1平行时,切点P 到直线y =x +1的距离|PQ|即为所求最小值.(lnx)′=,令=1,得x =1.故P(1,0).故|PQ|min==.故选C.9.曲线y=-在点M(,0)处的切线的斜率为()A.- B.12C.- D.22答案B解析∵y′=·[cosx(sin x+cosx)-sinx·(cos x-sinx)]=,∴y′|x==,∴k=y′|x==.10.(2015·山东烟台期末)若点P是函数y=ex-e-x-3x(-≤x≤)图像上任意一点,且在点P处切线的倾斜角为α,则α的最小值是()A.B.3π4C.D.π6答案B解析由导数的几何意义,k=y′=ex+e-x-3≥2-3=-1,当且仅当x=0时等号成立.即tanα≥-1,α∈[0,π),又∵tanα<0,所以α的最小值为,故选B.11.已知y=x3-x-1+1,则其导函数的值域为________.答案[2,+∞)12.已知函数f(x)=f′()cosx+sinx,所以f()的值为________.答案1解析因为f′(x)=-f′()sinx+cosx,所以f′()=-f′()sin+cos,所以f′()=-1.故f()=f′()cos+sin=1.13.(2013·江西文)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=________.答案2解析由题意y′=αxα-1,在点(1,2)处的切线的斜率为k=α,又切线过坐标原点,所以α==2.14.(2015·广东肇庆一模)曲线f(x)=在x=0处的切线方程为________.答案2x+y+1=0解析根据题意可知切点坐标为(0,-1),f′(x)==,故切线的斜率为k=f′(0)==-2,则直线的方程为y-(-1)=(-2)(x-0)⇒2x+y+1=0,故填2x +y+1=0.15.(2015·河北邯郸二模)曲线y=log2x在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.答案log2e解析∵y′=,∴k=.∴切线方程为y=(x-1).∴三角形面积为S△=×1×==log2e.16.若抛物线y=x2-x+c上的一点P的横坐标是-2,抛物线过点P的切线恰好过坐标原点,则实数c的值为________.答案4解析∵y′=2x-1,∴y′|x=-2=-5.又P(-2,6+c),∴=-5.∴c=4.17.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.答案(1)y=13x-32(2)切点坐标为(1,-14)或(-1,-18),切线方程为y =4x-18或y=4x-14解析(1)可判定点(2,-6)在曲线y=f(x)上.∵f′(x)=(x3+x-16)′=3x2+1,∴在点(2,-6)处的切线的斜率为k=f′(2)=13.∴切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)∵切线与直线y =-x +3垂直,∴切线的斜率为k =4.设切点的坐标为(x0,y0),则f ′(x0)=3x +1=4.∴x0=±1.∴或⎩⎪⎨⎪⎧ x0=-1,y0=-18.∴切点坐标为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18.即y =4x -18或y =4x -14.18.设函数f(x)=ax -,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0.(1)求f(x)的解析式;(2)证明:曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.答案 (1)f(x)=x -(2)定值为6解析 (1)方程7x -4y -12=0可化为y =x -3.当x =2时,y =.又f ′(x)=a +,于是解得⎩⎪⎨⎪⎧ a =1,b =3.故f(x)=x -.(2)证明:设P(x0,y0)为曲线上的任一点,由y ′=1+知曲线在点P(x0,y0)处的切线方程为y -y0=(1+)(x -x0),即y -(x0-)=(1+)(x -x0).令x =0得y =-,从而得切线与直线x =0的交点坐标为(0,-). 切线与直线y =x 的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x =0,y =x 所围成的三角形面积为|-||2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.1.若曲线y=lnx(x>0)的一条切线是直线y=x+b,则实数b的值为()A.2 B.ln2+1C.ln2-1 D.ln2答案C解析∵y=lnx的导数为y′=,∴=,解得x=2.∴切点为(2,ln2).将其代入直线y=x+b,得b=ln2-1.2.下列图像中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图像,则f(-1)=()A.B.-13C.D.-或53答案B解析f′(x)=x2+2ax+a2-1=(x+a)2-1,∴y=f′(x)是开口向上,以x=-a为对称轴,(-a,-1)为顶点的抛物线.∴(3)是对应y=f′(x)的图像.∵由图像知f′(0)=0,对称轴x=-a>0,∴a2-1=0,a<0,∴a=-1.∴y=f(x)=x3-x2+1.∴f(-1)=-,选B.3.y=x2sincos的导数为________.答案y′=xsinx+x2cosx.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.2D.3
答案C
解析由已知得S3=3a2=12,即a2=4,∴d=a3-a2=6-4=2.
3.在等差数列{an}中,若a1=2,a3+a5=10,则a7=()
A.5B.8
C.10D.14
答案B
解析由等差数列的性质,得a1+a7=a3+a5.
因为a1=2,a3+a5=10,所以a7=8,选B.
11.已知在等差数列{an}中,|a3|=|a9|,公差d<0,Sn是数列{an}的前n项和,则()
A.S5>S6B.S5<S6
C.S6=0D.S5=S6
答案D
解析∵d<0,|a3|=|a9|,∴a3>0,a9<0,且a3+a9=2a6=0.∴a6=0,a5>0,a7<0.∴S5=S6.故选D.
12.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为 的等差数列,
A.13B.12
C.11D.10
答案A
解析因为a1+a2+a3=34,an-2+an-1+an=146,
所以a1+a2+a3+an-2+an-1+an=34+146=180.
又因为a1+an=a2+an-1=a3+an-2,
所以3(a1+an)=180,从而a1+an=60.
所Байду номын сангаасSn= = =390,即n=13.
(1)若S5=5,求S6及a1;
(2)求d的取值范围.
答案(1)S6=-3,a1=7(2)d≤-2 或d≥2
解析(1)由题意知S6=- =-3,a6=S6-S5=-8,
所以 解得a1=7,所以S6=-3,a1=7.
(2)因为S5S6+15=0,
所以(5a1+10d)(6a1+15d)+15=0.即2a12+9da1+10d2+1=0.
A.- B.-
C.- D.-
答案C
解析{an}的公差d= =- ,∴新等差数列的公差d′=(- )× =- ,故选C.
9.(2017·绍兴一中交流卷)等差数列{an}的公差d<0,且a12=a212,则数列{an}的前n项和Sn取得最大值时的项数n是()
A.9B.10
C.10和11D.11和12
答案C
则|m-n|等于()
A.1B.
C. D.
答案C
解析由题设可知前4项和等于四个根之和4× + ·d=2+2,d= ,∴方程的四个根分别为 , , , ,∴|m-n|=| · - · |= .故选C.
13.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()
5.(2016·课标全国Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()
A.100B.99
C.98D.97
答案C
解析设等差数列{an}的公差为d,因为{an}为等差数列,且S9=9a5=27,所以a5=3.又a10=8,解得5d=a10-a5=5,所以d=1,所以a100=a5+95d=98,选C.
答案6
解析设等差数列{an}的公差为d,由已知得 解得 所以S6=6a1+ ×6×5d=36+15×(-2)=6.
16.已知在数列{an}中,a3=2,a5=1,若 是等差数列,则a11等于________.
答案0
解析记bn= ,则b3= ,b5= ,数列{bn}的公差为 ×( - )= ,b1= ,∴bn= ,即 = .∴an= ,故a11=0.
()
A.0B.37
C.100D.-37
答案C
解析∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列.
∵a1+b1=25+75=100,a2+b2=100,∴{an+bn}的公差为0.∴a37+b37=100.
8.(2017·四校联考)在等差数列{an}中,a2=5,a7=3,在该数列中的任何两项之间插入一个数,使之仍为等差数列,则这个新等差数列的公差为()
4.(2017·山东师大附中)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()
A.138B.135
C.95D.23
答案C
解析由等差数列性质得2a3=4,2a4=10.
即a3=2,a4=5,公差d=3,a1=2-6=-4∴S10=-4×10+ ×3=95,故选C.
题组层级快练
1.由下列各表达式给出的数列{an}:
①Sn=a1+a2+…+an=n2;②Sn=a1+a2+…+an=n2-1;
③an+12=an·an+2;④2an+1=an+an+2(n∈N*).
其中表示等差数列的是()
A.①④B.②④
C.①②④D.①③④
答案A
2.已知数列{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于()
解析由d<0,得a1≠a21,又a12=a212,∴a1+a21=0,∴a11=0,故选C.
10.(2017·杭州学军中学)设Sn是等差数列{an}的前n项和,若 = ,则 =()
A. B.
C. D.
答案A
解析令S3=1,则S6=3,∴S9=1+2+3=6.
S12=S9+4=10,∴ = ,故选A.
14.已知{an}为等差数列,Sn为其前n项和,若a1= ,S2=a3,则a2=________;
Sn=________.
答案1
解析设公差为d,则由S2=a3,得2a1+d=a1+2d,所以d=a1= ,故a2=a1+d=1,Sn=na1+ d= .
15.(2016·北京)已知{an}为等差数列,Sn为其前n项和.若a1=6,a3+a5=0,则S6=________.
17.已知An={x|2n<x<2n+1且x=7m+1,m,n∈N},则A6中各元素的和为________.
答案891
解析∵A6={x|26<x<27且x=7m+1,m∈N},
各数成一首项为71,公差为7的等差数列.
∴71+78+…+127=71×9+ ×7=891.
18.设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.
6.设Sn为等差数列{an}的前n项和,若S8=4a3,a7=-2,则a9等于()
A.-6B.-4
C.-2D.2
答案A
解析S8= =4(a3+a6).因为S8=4a3,所以a6=0.又a7=-2,
所以d=a7-a6=-2,所以a8=-4,a9=-6.故选A.
7.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于