基于ANSYS的齿轮运动学和静力学仿真分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 54 •内燃机与配件基于ANSYS的齿轮运动学和静力学仿真分析
黄如周淤;张伟雄于
(①珠海格力精密模具有限公司,珠海519070;②清远职业技术学院,清远511510)
摘要:为了解决在注塑模的螺纹抽芯机构中齿轮的选用问题,详细阐述了利用A N SYS有限元分析软件对齿轮传动作运动学和 静力学仿真分析,使得能够合理选用液压马达及优化齿轮的结构设计,从而提高齿轮的使用寿命。
关键词院齿轮;ANSYS;仿真;螺纹抽芯机构;注塑模
0引言
在注塑模的抽芯机构中常用齿轮传动结构进行抽芯,
然而齿轮由于几何形状、载荷工况及材料力学性能的原因
常常会发生失效。
一般来说,齿轮的失效通常都集中在轮
齿部分,主要的失效形式有:轮齿折断、齿面磨损、齿面点
蚀、齿面胶合、齿面塑性变形等五种。
圆柱齿轮主要有两种
失效形式,即接触疲劳失效和弯曲疲劳失效。
弯曲疲劳主
要发生在齿根部,这是因为齿轮在载荷作用下,其根部所
产生的弯曲应力最大,且在齿根过渡圆角处有应力集中[|]。
同时,齿轮在转动过程中使轮齿重复受载,在交变应力反 复作用下,齿根处将产生疲劳裂纹,裂纹扩张导致轮齿弯 曲疲劳折断[2]。
本文将以带有螺纹的塑料产品作为注塑模中抽芯结 构的分析依据,并运用ANSYS有限元分析软件通过对齿 轮静力学和运动学仿真分析[3],可得到抽芯齿轮机构中主 动轮上的转矩大小,为液压马达的选择作出数据支撑。
通 过静力学仿真分析,计算出齿面的接触应力和齿根的弯曲 应力,从而可通过材料和结构的优化减小齿面接触应力和 齿根弯曲应力。
1分析过程
1.1包紧力计算
根据注塑模具中关于抽芯机构的原理,要将产品的螺 纹部分从模具型芯中旋转脱出,则必须先考虑产品的包紧 力,因此要先对其包紧力进行计算。
此处采用经验公式来 计算该产品的抱紧力[4],同时考虑到该产品的复杂程度,将 模型进行简化分成五个部分,分别如图1所示。
材料属 性如表1所示。
1.1.1第一段径向包紧力
第一段可以视为圆筒环,其尺寸为:H=8.5mm;t= 3.5mm;R1=32.65mm;R2=36.15mm。
厚径比为 3.5/36.15< 0.05,为薄壁圆筒。
可以采用经验公式算出塑件对型芯产 生的径向包紧力:
P=2n H t E€t(1)式中:H为塑件高度;
基金项目:本课题获广东清远职业技术学院2016年度精品在线 开放课程项目资助(JK16003 )。
作者简介:黄如周(1984-),男,广东汕头人,塑胶模具工程师,本 科,主要研究方向为塑胶模具、3D打印;张伟雄
(1986-),男,广东梅州人,井师,在读硕士,主要研究
方向为机械工程、模具CAD/CAM。
图1产品塑件零件图
表1产品塑件材料属性
名称参数
弹性模量E(M Pa)
泊松比滋
弹性应变着
1340
0.392
0.0124
t为塑件的壁厚;
E为塑件在脱模温度下的弹性模量;
st为塑件的周向应变,即塑件的瞬时收缩率;
R,为塑件的内半径;
R2为塑件的外半径。
第一段径向包紧力计算得:P1=3104.4N
1.1.2第二段径向包紧力
第二段为带有螺纹的圆筒环,其尺寸为:H=18mm;R,=31.5mm;R2=36mm;螺纹倾角为45。
,简化模型为高度 为H,cos45。
圆筒环。
p_I t t R^HE e
采用经验公式:R2-r\+^(2)
式中:滋为泊松比。
第二段径向包紧力计算得:P2=10263.2N
1.1.3第三段径向包紧力
第三段也视为圆筒环,其尺寸为:H=8.5mm;R,= 29.44mm;R2=36mm;t=7mm;为厚壁圆筒,可以采用经验公 式(2),算出塑件对型芯产生的径向包紧力:P3=4899.1N
1.1.4第四段径向包紧力
第四段为带有筋条的圆筒环,先不考虑筋条作用,其 尺寸为:H=31mm;R1=26.4mm;R2=30.5mm;t=3.75mm。
而筋 条能增加接触面积,提高包紧力,但是筋条能减少成型变 形,故综合考虑,在厚壁圆筒包紧力的基础上乘以1.1,采 用经验公式算出塑件对型芯产生的径向包紧力:4= 10847.4N
1.1.5第五段径向包紧力
第五段也就是底部收缩对型芯产生的径向包紧力,其 经验公式为:
P=2仔RtEe/(1-滋)
(3)
Internal Combustion Engine & Parts• 55 •
式中:R为塑件的底半径;
t为塑件底部的壁厚。
其底部尺寸可以初略测量为t=4.8m m;R=30.5mm;则底部收缩对型芯产生的径向包紧力为:P5=24714.1N 考虑塑件是通过型芯转动来使塑件沿螺纹旋出,从而 实现塑件从模具型芯中脱出。
由于螺纹倾角为45。
,则对
根据具体模型的工况情况、约束和载荷设置,齿轮均 采用Revolute-Ground支撑,在3号齿轮和5号齿轮上施 加大小为328N*m的扭矩,在1号主动轮上施加25。
的转 角。
通过运动学的仿真分析得出1号齿轮上的扭矩,以此 来选取液压马达的参数。
经分析齿轮齿根处的折断为疲劳 折断,所以选择的是平稳运转工况下时1号齿轮的扭矩为
其上部分塑件的脱模力F q作用在螺纹处的受力分析如图 2所示。
FQ=Ff,FQ可被模具板的支撑力所抵消,而F f则增 加了塑件对型芯的包紧力。
图2螺纹部分受力分析
1.1.6脱模力矩计算
根据带螺纹塑件的抽芯原理,螺纹部分的模具型芯要 转动就必须克服塑件抱紧型芯而产生的摩擦阻力,同时还 需要克服大气压对塑件的作用力。
其表达式可以写为:Q=(F-+F3).f+F4(4)
式中:Fi〇n l=Pl+P2+P3+P4+P5;
F3为大气压对侧壁的压力;
F4为大气压对底部的压力;
f为塑件与型芯的摩擦系数,取0.176(已考虑安全系数)。
算得:Q=9804.7N
等效齿轮扭矩为:M=Q*R=326N-m
1.2运动学分析
接着将根据模具上的螺纹抽芯结构需要,对整体齿轮 的传动机构进行运动学仿真,以此来得出主动轮上所需求 的扭矩大小,为液压马达的选取提供数据。
1.2.1建立齿轮机构运动学仿真模型
齿轮机构运动学仿真模型[5」,如图3所示。
图3运动学仿真模型
1.2.2设置具体模型的状态参数442N.m。
1.3静力学分析
最后,通过运动学得出的数据对齿轮进行结构强度的 校核,建立结构的静力学仿真模型如图4所示[6]。
0.00 45.00 90.00 (m m)
图4静力学仿真模型
1.3.1材料参数
分析中所使用材料的力学性能参数如表2所示。
表2材料力学性能参数
材料名称45#钢
密度(kg/m3)7850
弹性模量(G;P a)209
泊松比0.269
屈服极限(M Pa)620
安全系数 1.5〜2
包紧力(N*m)330
1.3.2网格划分
模型网格划分方法:Face Sizing为3mm、Contact Sizing 为 0.5mm、Refinement等级为 3。
1.3.3设置边界条件
在1号主动轮上施加转动副,2号从动轮全约束。
1号主动轮上施加442N•m的转矩,1号和2号齿轮接触为无 摩擦接触。
1.4分析计算结果
图5为模型的变形云图,图6为模型整体的等效应力 云图。
图7和图8分别为1号齿轮和2号齿轮齿根处的弯 曲等效应力。
经过计算,得到在该约束和转矩下,整体模型 的最大应力为383MPa,最大变形为0.03mm。
1.5优化分析
通过等效应力云图可以得知,齿根处的最大应力已经 超过了齿轮的许用应力,因此需要对齿轮进行结构的优 化。
齿轮强度优化一般可以选择强度更高材料、增加重合 度、增加齿厚、增加齿根处倒角半径、在薄弱齿轮某侧加圆 盘结构增强等方法。
现在通过改变齿根圆角半径、齿轮厚度进行优化分 析。
仿真分析结果如图9至图12所示。
其中从图9
可以看
• 56 •内燃机与配件
组合式凸轮轴的技术研究
张光辉;王少辉
(海马汽车有限公司)
摘要:凸轮轴作为发动机配气机构的核心零部件,又是发动机的三大关键摩擦副之一。
应用更先进的凸轮轴,对提升发动机的性 能有着举足轻重的意义。
Abstract:Camshaft as the key component of engine valve train,is also one of three engine friction area.Employing of more advanced camshaft,has enormous significance to advancing performance of engine.
关键词:发动机;组合式凸轮轴
Key words:engine;assembled camshaft
1概述
凸轮轴的作用是:驱动和控制各缸气门的开启和关 闭,使其符合发动机的工作顺序、配气相位和气门开度的 变化规律等要求。
凸轮轴与从动件在高接触应力下循环工 作,由于凸轮轴特殊的工作环境,因此对凸轮轴有着极高 的要求,比如低摩擦性能、抗接触疲劳能力、抗腐蚀性、较高的刚度等。
随着汽油机应用各种先进的技术,如增压直喷,米勒 循环,W L、停缸等,进一步提升发动机升功率、升扭矩,降低油耗及排放。
对凸轮轴也提出了更高的要求,不但保证其性能和可靠性,还希望具备强度高、刚度大、重量轻,灵活性强等特点。
一般的传统凸轮轴无法满足上述要求,因此需要转向组合式凸轮轴,以满足人们的要求。
2组合式凸轮轴的特点
组合式凸轮轴有别于传统的整体式凸轮轴,整体式 凸轮轴是整体铸造或锻造,再进行热处理、粗加工、精加 工、抛光等工艺。
组合式凸轮轴一般是凸轮、端头、信号盘 等单独加工后,按照一定的角度通过过盈配合装配到中 心轴上。
2.1产品的结构优势
图5模型的变形云图 图6模型整体的等效应力云图
■~
8L;
U
图7 1号齿轮齿根处的 图8 2号齿轮齿根处的弯曲等效应力 弯曲等效应力
i J W I T M U
in.
L l
图9材料为738图10圆角半径1.5mm
—
A
m m
|f^
L 图11圆角半径25mm图12齿宽30mm
出,虽然齿根处的等效应力无明显变化,但是738的屈服 极限为827MPa,能够满足许用应力大于弯曲应力。
1.6分析结论
通过以上的分析,可以得出如下的结论:
①选取R-100的液压马达,注塑机液压系统提供的 工作压力不低于5MPa和流量不低于60L/min;②齿轮齿 根处的圆角半径由原本的1mm改为1.5mm,保证齿根处 的等效应力小于310MPa;③要提高齿轮加工的精度和提 高重合度。
2结语
在工程领域中,有限元分析方法应用非常广泛,通过 ANSYS对注塑模中螺纹抽芯所需的齿轮传动结构进行仿 真分析,可以为液压马达选用、齿轮结构优化等方面提供 有用的参考。
不过由于塑件包紧力的求解目前仅能通过经 验公式进行计算,因此有关于包紧力的仿真仍需要深入研究,并且由于材料的S-N曲线没有太多实验数据支撑且 缺少专业的疲劳分析模块,因此在齿轮的疲劳寿命方面还 需要进一步校核。
参考文献:
L1]于永江,白祥义.齿轮失效形式与解决措施解析[Jj,中国新 技术新产品,2016(4 ):44.
[2j龚寄.齿轮失效分析及其故障诊断方法研究[J j.装备制造技 术,2016(8):138-140.
[3j吴艳蕾,张磊.基于A N S Y S的齿轮运动副的有限元结构分 析[Jj.电子测试,2016(5): 126.
[4j宁连旺.A N SY S有限元分析理论与发展[Jj,山西科技,2008 (4):65-67.
[5j李思良.塑件对型芯包紧力和脱模力的计算[Jj.模具工业,1996(11 )32-35.
[6j雒晓兵,苗莉,许可芳,惠振亮.基于A N SY S分析的齿轮设 计[Jj,机械,2016(2 ):
63-66.。