牛顿迭代法

合集下载

牛顿迭代法

牛顿迭代法
建立迭代公式
xn1
xn
xne xn 1 e xn (1 xn )
xn
xn exn 1 xn
取x0=0.5,逐次计算得 x1=0.57102, x2=0.56716, x3=0.56714
1.5 牛顿下山法
通常,牛顿迭代法的收敛性依赖于初始值 x0 的选取,
如果 x0 偏离所求的根 x* 比较远,则牛顿法可能发散。
由定理2.2知,牛顿迭代法在 x* 附近局部收敛。又由 定理2.3知, 迭代公式至少具有二阶收敛速度。
利用泰勒公式
0
f (x*)
f (xk )
f (xk )(x*
xk )
f ( ) (x*
2
xk )2 ,
xk
x*
f f
(xk ) (xk )来自f 2f( )
(xk )
(x*
xk
)2
x*, xk
为了防止迭代发散,我们对牛顿迭代法的迭代过程再附
加一项要求,即具有单调性
f (xk1) f (xk )
满足这项要求的算法称下山法。 将牛顿迭代法与下山法结合起来使用,即在下山
法保证函数值下降的前提下,用牛顿迭代法加快收敛 速度。把这一算法称为牛顿下山法。即
xk 1
xk
f (xk ) f (xk )
xk
f (xk ) f (xk )
x*
f ( ) (x*
2 f (xk )
xk )2
所以
xk 1
x*
f ( )
2 f (xk )
(x*
xk
)2
lim x* xk1 f (x* ) k x* xk 2 2 f (x* )
证毕
1.3 牛顿迭代法的收敛性

研究生数值分析(5)牛顿(Newton)迭代法

研究生数值分析(5)牛顿(Newton)迭代法

z
0.612547 0.641384 0.641186
6 求方程 m重根的Newton法 设 s 是方程 f(x)=0 的 m 重根(m≥2), f(x)
在 s 的某邻域内有m阶连续导数 ,这时
f (s) f (s) f (m1) (s) 0, f (m) (s) 0
由Taylor公式,得
设 f '(x) 0 ,上式解为
x

xk

f (xk ) f ' (xk )
于是方程 f(x)=0的新的近似根xk+1,可由牛顿
迭代公式
xk 1

xk

f (xk ) f ' (xk )
k 0,1, 2,
求出
牛顿迭代公式具有明显的几何意义。 方程 y f (xk ) f '(xk )(x xk ) 是曲线 y=f(x)在点 (xk , f (xk )) 处的切线方程,迭代公式就是切线与x轴 交点的横坐标。因此,牛顿迭代法又称为切线法。
这表明牛顿迭代法用于求单根时至少是二阶收敛的。
(2)若 x* 是方程 f (x) 0 的 m(m 2) 重根,

f (x) (x x*)m q(x)
(q(x*) 0)
此时有
g ' (x*) lim g ' (x) lim
x x*
x x*
f (x) f '' (x) [ f ' (x)]2
k
xk
k
xk
4 0.635498 8 0.640964
5 0.643719 9 0.641285
6 0.640061 10 0.641142

牛顿迭代法

牛顿迭代法
10.4 牛顿迭代法
一 牛顿法及其收敛性
牛顿法是一种线性化方法,其基本思想是将非线性方 程 f ( x) 0逐步归结为某种线性方程来求解. 设已知方程 f ( x) 0 有近似根 xk(假定 f ( xk ) 0), 将函数 f ( x) 在点 xk 展开,有
f ( x) f ( xk ) f ( xk )( x xk ),
x
表7 5 计算结果 k 0 1 2 3 xk 0.5 0.57102 0.56716 0.56714
5
二 牛顿法应用举例 对于给定的正数 C,应用牛顿法解二次方程
x 2 C 0,
可导出求开方值 C 的计算程序
xk 1 1 C ( xk ). 2 xk
(3.5)
这种迭代公式对于任意初值 x0 0 都是收敛的. 事实上,对(3.5)式施行配方手续,易知
10
在(3.7)中取C
1 ,则称为简化牛顿法,这 f ( x0 )
类方法计算量省,但只有线性收敛,其几何意义是用平行 弦与 x 轴交点作为 x *的近似. 如图7-4所示.
图7-4
11
(2)
牛顿下山法.
牛顿法收敛性依赖初值 x0的选取. 如果x0 偏离所求根 x* 较远,则牛顿法可能发散.
xk 1 xk 1 1 C ( xk 2 xk C 1 ( xk 2 xk C )2 ; C )2 .
6
以上两式相除得
xk 1 xk 1 xk C x C k C . C
2
据此反复递推有
xk 1 xk 1 x0 C x C 0 C C .
14
x1 17.9,它不满足条件(3.10).

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。

考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。

函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。

牛顿法利用极小点的必要条件:这就是牛顿迭代法。

迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。

因此使用牛顿法是有问题的。

如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。

这种情况可以通过正则化Hessian矩阵来避免。

常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。

正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。

牛顿迭代法及其应用

牛顿迭代法及其应用

牛顿迭代法及其应用牛顿迭代法是一种求解函数零点的迭代方法,具有快速收敛、精度高等优点,被广泛应用于计算机、数学、物理等领域。

本文将从理论和实际应用两方面介绍牛顿迭代法,并对其应用进行探讨。

一、理论基础牛顿迭代法是通过一点处的切线来逼近函数零点的方法。

设$f(x)$在$x_0$点有一个零点,且其导数$f'(x_0)$存在且不为零,那么该零点可以通过一点$(x_0,f(x_0))$处的切线与$x$轴的交点来逐步逼近。

假设切线的方程为$y=f'(x_0)(x-x_0)+f(x_0)$,则其中$x$轴上的交点为$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$,这是零点的一个更好的近似值。

用$x_1$代替$x_0$,再利用同样的方法得到$x_2$,不断重复这个过程,即可逐步逼近零点。

这个过程可以用下面的公式表示:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$这就是牛顿迭代法的基本公式。

从初始值$x_0$开始迭代,不断利用公式进行逼近,直到找到满足$f(x_n)=0$的解。

二、实际应用牛顿迭代法在实际应用中广泛存在,比如在计算机图形学中,通过牛顿迭代法可以精确计算出圆的周长、面积等参数,也可以实现快速的路径追踪和光线追踪。

在金融领域中,牛顿迭代法可以用来计算隐含波动率,即在期权定价模型中,寻找满足期权定价公式的波动率。

由于这个过程中往往要用到反函数,所以牛顿迭代法可以快速找到隐含波动率。

另外,在机器学习、神经网络中,多次用到牛顿迭代法进行梯度下降,智能化运用牛顿迭代法可以提高计算效率,降低误差。

三、应用探讨牛顿迭代法的应用范围较广,但在实际应用中也存在一些问题。

如何避免迭代过程中出现抖动、越界、阻尼等现象,可以通过设置收敛条件、调整步长等方式进行优化。

此外,当函数的导数存在零点或迭代公式不存在时,牛顿迭代法也会失效。

因此,在选择牛顿迭代法时,需要了解函数特性,根据情况选择适合的迭代方法。

牛顿迭代法获奖课件

牛顿迭代法获奖课件

上一页 下一页 返回
牛顿迭代法旳优缺陷
1、优点:牛顿迭代法具有平方收敛旳速度,所以在迭代 过程中只要迭代几次就会得到很精确旳解。这是牛顿迭代 法比简朴迭代法优越旳地方。 2、缺陷:选定旳初值要接近方程旳解,不然有可能旳不 到收敛旳成果。再者,牛顿迭代法计算量比较大。因每次 迭代除计算函数值外还要计算微商值。
设 f (xk ) 0 ,令其解为 xk1 ,得
xk 1
xk
f (xk ) f (xk )
这称为f(x)=0旳牛顿迭代格式。
(1) 下一页
它相应旳迭代方程为 x x f (x) 显然是f(x)=0旳同解方程, f (x)
故其迭代函数为
(x) x f (x) f (x)
( f (x) 0)
m 1 0 m
此时,Newton 法具有线性敛速。
上一页 下一页 返回
2)修正Newton法求m重根迭代公式
xk 1
xk
m
f (xk ) f (xk )
注:若 x* 是方程 f (x) 0 旳m重根,而 f (m)(x)在 x* 旳
某一邻域内连续,则修正 Newton法是局部收敛旳,并具
有至少二阶旳收敛速度。
f ( x*) hf ( x*) h m1 f (m) ( x*) O(h m )
(m 1)!
1 m h
h m f (m) ( x*) O(h m1 ) m! h m1 f (m) ( x*) O(h m )
(m 1)!
1
m h
h m
(1
O(h))
O( h)
0
(h 0)
所以 (x*) 0 由定理2知至少是二阶收敛
由(1)式知 xk1 是点 (xk , f (xk )) 处 y f (x) 旳切线

牛顿迭代法

牛顿迭代法

有一种迭代方法叫牛顿迭代法,是用于求方程或方程组近似根的一种常用的算法设计方法。

设方程为f(x)=0,用某种数学方法导出等价的形式x(n+1) = g(x(n)) = x (n)–f(x(n))/f‘(x(n)).然后按以下步骤执行:(1) 选一个方程的近似根,赋给变量x1;(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。

例1:已知f(x) = cos(x) - x。

x的初值为3.14159/4,用牛顿法求解方程f(x) =0的近似值,要求精确到10E-6。

算法分析:f(x)的Newton代法构造方程为:x(n+1) = xn - (cos(xn)-xn) / (-sin(xn)-1)。

#include<stdio.h>double F1(double x); //要求解的函数double F2(double x); //要求解的函数的一阶导数函数double Newton(double x0, double e);//通用Newton迭代子程序int main(){double x0 = 3.14159/4;double e = 10E-6;printf("x = %f\n", Newton(x0, e));getchar();return 0;}double F1(double x) //要求解的函数{return cos(x) - x;}double F2(double x) //要求解的函数的一阶导数函数{return -sin(x) - 1;}double Newton(double x0, double e)//通用Newton迭代子程序{double x1;do{x1 = x0;x0 = x1 - F1(x1) / F2(x1);} while (fabs(x0 - x1) > e);return x0; //若返回x0和x1的平均值则更佳}例2:用牛顿迭代法求方程x^2 - 5x + 6 = 0,要求精确到10E-6。

牛顿迭代法

牛顿迭代法

一后逐步向某个位置逼近的方法称为迭代法。 迭代法也称辗转法,是一种不断用变量的旧值递 推新值的过程,跟迭代法相对应的就是直接法(或 称为一次解法) ,即一次性解决问题。迭代算法是用 计算机解决问题的一种基本方法。它利用计算机运 算速度快、适合做重复性操作的特点,让计算机对 一组指令(或一定步骤)重复执行,在每次执行这 组指令(或这些步骤)时,都从变量的原值推出他 的一个新值。 利用迭代法解决问题,需要做好以下三个方面的 工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,至少存在一个 可直接或间接的不断由旧值递推出新值的变量, 这个变量就是迭代变量; 二、建立迭代关系式 所谓的迭代关系式,指如何从变量的前一个值递 推出其下一个值得公式(或关系) 。迭代关系式的 建立是解决迭代问题的关键,通常可以使用递推 或倒推的方法来完成。 三、对迭代过程进行控制 在什么时候结束迭代过程?这时编写迭代程序必
欧几里德算法(辗转相除法)
最经典的迭代算法是欧几里德算法,用于计算两 个整数 a,b 的最大公约数。 其计算原理依赖于下面 的定理: 定理:gcd(a,b)=gcd(b,a mod b) 证明:a 可以表示成 a=kb+r,则 r=a mod b. 假设 d 是 a,b 的一个公约数, 则有 a%d==0,b%d==0, 而 r=a-kb,因此 r%d==0,因此 d 是(b,a mod b)的公约 数 同理,假设 d 是(b,a mod b)的公约数,则 b%d==0, r%d==0, 但是 a=kb+r, 因此 d 也是(a,b)的公约数; 因此(a,b)和(b, a mod b)的公约数是一样的, 其最大 公约数也必然相等,得证。
牛顿迭代法
牛顿迭代法是求方程根的重要方法之一,其最大优 点是在方程 f(x)=0 的单根附近具有平方收敛, 而且该 法还可以用来求方程的重根、 复根, 此时线性收敛, 但是可通过一些方法变成超线性收敛。另外该方法 广泛用于计算机编程中。

牛顿迭代法

牛顿迭代法

4.优缺点 • 优点:收敛速度快,稳定性好,精度高
• 缺点:在重根附近收敛速度会降阶;每次都要计算函
数及其导数值,计算量大。
• 注解:牛顿法是局部收敛的,所以要求初值选在解的 附近,实际计算时,常先用简单迭代法算几步,估计 出一个质量较好的初值!!
5.牛顿迭代法的改进——弦割法
基本思想:牛顿迭代法每一步要计算 f 和 f ,为了避免计算 导数值,现用 f 的差商近似代替微商 f ,从而得到弦割法。
( x) x
1 f ( x*)2 f ( x*) f ( x*) 1 1 | ( x*) | 1 2 n f ( x*)
f ( x) f ( x )
,则
A1: 有局部收敛性,但重数 n 越高,收敛越慢。 Q2: 如何加速重根的收敛? A2: 根的重数已知,可将 f 的重根转化为另一函数的单根。
从而可构造出相应的迭代法格式为
xk 1
f ( xk ) f ( xk ) xk [ f ( xk )]2 f ( xk ) f ( xk )
f ( xk ) f ( xk )
若已知根的重数为 n,可将迭代格式改为,
xk 1 xk n k 0,1, 2,
* 则 ( x ) 0 ,所以上述格式是平方收敛的。
割线 切线 收敛比牛顿迭代法慢,且对 初值要求同样高。 x2 x1 x0
切线斜率


割Hale Waihona Puke 斜率f ( xk )( xk xk 1 ) f ( xk ) f ( xk 1 )

f ( x1 )
f ( x1 ) f ( x0 ) x1 x0
xk 1 xk
需要2个初值 x0 和 x1。

数值分析3-牛顿迭代法

数值分析3-牛顿迭代法

§3 牛顿迭代法Newton Iteration————切线法牛顿迭代法是最著名的方程求根方法。

已经通过各种方式把它推广到解其他更为困难的非线性问题。

【例如】非线性方程组、非线性积分方程和非线性微分方程。

虽然牛顿法对于给定的问题不一定总是最好的方法,但它的简单形式和快的收敛速度常常使得解非线性问题的人优先考虑它。

迭代一般理论告诉我们,构造好的迭代函数可使收敛速度提高。

然而迭代函数的构造方法又各不相同,方法多样。

牛顿法是受几何直观启发,给出构造迭代函数的一条重要途径。

牛顿迭代的基本思想:方程f(x)=0的根,几何意义是曲线y=f(x)与ox轴y=0的交点。

求曲线与y=0的交点没有普遍的公式,但直接与0x 轴的交点容易计算。

用直线近似曲线y=f(x),从而用直线方程的根逐步代替f(x)=0的根。

即把非线性方程逐步线性化。

方法:设x k是f(x)=0的一个近似根,把f(x)在x k处作一阶Taylor 展开,得到))(()()(k k k x x x f x f x f -'+≈ (19)设)(k x f '≠0,由于0)())(()(=≈-'+x f x x x f x f k k k所以求得解记为1+k x ,有牛顿迭代公式:(20) 按牛顿迭代计算称为牛顿迭代法。

牛顿法的几何意义:选初值x k 以后,过))(,(k k x f x p 点,作曲线y=f(x)的切线,其切线方程为))(()()(k k k x x x f x f x f -'+= (21)切线与ox 轴的交点,为1+k x ,则)(/)(1k k k k x f x f x x '-=+(22)牛顿迭代法也称为切线法。

迭代法的收敛性:如果取)(/)()(k k x f x f x x g '-=,则有x=g(x),从而牛顿迭代公式就是)(1k k x g x =+因此就可以由考察g(x)的性质,来讨论迭代法的收敛性及收敛速度。

牛顿迭代法

牛顿迭代法

一 .牛顿迭代法简介1.牛顿迭代法的产生背景牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。

另外该方法广泛用于计算机编程中。

利用牛顿迭代法来解决问题需要做好的工作:(1)确定迭代变量。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

(2)建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

(3)对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

2.牛顿迭代法的概述牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。

牛顿迭代法求解方程

牛顿迭代法求解方程

牛顿迭代法求解方程牛顿迭代法是一种用于求解方程的数值方法。

该方法基于导数的概念,通过不断逼近函数曲线与 x 轴的交点来寻找解。

牛顿迭代法的基本思想是从一个初始点开始,通过计算当前点处函数曲线的导数值,然后将当前点沿着曲线方向移动到与 x 轴交点更接近的位置,反复迭代直到找到一个满足精度要求的解。

在本文中,我们将介绍牛顿迭代法的原理和应用,并通过实例来说明该方法的具体步骤。

一、牛顿迭代法的原理牛顿迭代法的基本原理是利用函数的导数来逼近方程的解。

设f(x) 是一个连续可导的函数,求解 f(x) = 0 的根。

首先取一个初始点 x0,然后通过函数的导数 f'(x) 来逼近曲线与 x 轴的交点。

根据导数的定义,我们可以得到函数在 x0 处的切线方程为:y = f(x0) + f'(x0)(x - x0)令切线与 x 轴的交点为 (x1, 0),可得:f(x0) + f'(x0)(x1 - x0) = 0解得 x1 = x0 - f(x0)/f'(x0)。

将 x1 作为新的初始点,重复上述步骤,直到找到满足精度要求的解。

即:xn+1 = xn - f(xn)/f'(xn)二、牛顿迭代法的步骤牛顿迭代法的步骤如下:1. 确定初始点 x0。

2. 计算函数 f(x) 的导数 f'(x)。

3. 计算 xn+1 = xn - f(xn)/f'(xn)。

4. 判断 |f(xn+1)| 是否小于给定的精度要求。

如果满足要求,则迭代结束,找到近似解xn+1;否则,继续迭代,返回步骤3。

三、牛顿迭代法的应用举例下面通过一个实例来说明牛顿迭代法的具体应用。

假设我们要求解方程 x^2 - 2 = 0 的近似解。

可以将该方程表示为 f(x) = x^2 - 2 = 0。

首先,我们选择一个初始点为 x0 = 1。

然后,计算 f'(x) = 2x。

根据牛顿迭代法的步骤,我们可以得到:x1 = x0 - f(x0)/f'(x0) = 1 - (1^2 - 2)/(2*1) = 1 - (-1)/2 = 1.5将 x1 = 1.5 作为新的初始点,重复上述计算。

三种牛顿迭代法

三种牛顿迭代法

三种牛顿迭代法牛顿迭代法是求解方程的一种常用方法。

它是一种迭代法,基本思想是从一个初始点开始,通过函数的局部线性逼近,求得函数的零点。

然后利用新的零点作为下一次迭代的初始点,直到满足预设的精度要求为止。

三种常用的牛顿迭代法包括:常规牛顿迭代法、改进牛顿迭代法和高效牛顿迭代法。

常规牛顿迭代法是最基本的牛顿迭代法,它通过函数的一阶导数和二阶导数来逼近函数的零点。

具体而言,设$f(x)$是要求解的方程,$x_{k}$是当前的估计解,$f^{prime}(x_{k})$是$f(x)$在$x_{k}$处的一阶导数,$f^{prime prime}(x_{k})$是$f(x)$在$x_{k}$处的二阶导数,则常规牛顿迭代法的迭代公式为:$x_{k+1}=x_{k}-frac{f(x_{k})}{f^{prime}(x_{k})}$ 改进牛顿迭代法是针对常规牛顿迭代法的局限性而提出的。

常规牛顿迭代法在求解某些特定的方程时可能会失效,例如当$f^{prime}(x_{k})$接近于零时,迭代公式会出现除零的情况。

改进牛顿迭代法通过加入一个修正因子来避免这种情况的发生。

具体而言,在计算$x_{k+1}$时,改进牛顿迭代法的迭代公式为:$x_{k+1}=x_{k}-frac{f(x_{k})}{f^{prime}(x_{k})+frac{1}{2}f^ {prime prime}(x_{k})(x_{k+1}-x_{k})}$高效牛顿迭代法是一种优化的牛顿迭代法,它通过使用逆Hessian矩阵来加速迭代收敛。

逆Hessian矩阵是函数$f(x)$在$x_{k}$处的Hessian矩阵的逆矩阵,即$H^{-1}(x_{k})=[f^{prime prime}(x_{k})]^{-1}$,其中$[f^{prime prime}(x_{k})]^{-1}$表示$f(x)$在$x_{k}$处的二阶导数矩阵的逆矩阵。

高效牛顿迭代法的迭代公式为:$x_{k+1}=x_{k}-H^{-1}(x_{k})f(x_{k})$总之,牛顿迭代法是一种重要的求解方程的方法,常规牛顿迭代法、改进牛顿迭代法和高效牛顿迭代法是其中的三种常用方法,每种方法都有其适用范围和优缺点。

牛顿迭代法实验课件

牛顿迭代法实验课件

05
结论与展望
牛顿迭代法的优缺点总结
收敛速度快
牛顿迭代法在初始点接近真实根的情况下具有非常快的收敛速度。
适用于多维问题
可以推广到多维问题,通过引入更多的方程和变量来求解复杂的问题。
牛顿迭代法的优缺点总结
• 适用于非线性问题:能够处理非线性方程 的求解问题,这是许多其他方法无法做到 的。
牛顿迭代法的优缺点总结
初始值影响
初始值对迭代结果有一定影响,但只要在合理范围内,最终都能 收敛到正确解。
结果误差分析
绝对误差
(|x - x_{true}| = 0.00002698)
相对误差
(frac{|x - x_{true}|}{|x_{true}|} = 0.0027%)
误差来源
主要来源于舍入误差和计算过程中的近似处理。
牛顿迭代法实验课件
目录
• 引言 • 牛顿迭代法的基本原理 • 牛顿迭代法的实现步骤 • 实验结果与分析 • 结论与展望
01
引言
牛顿迭代法的定义
牛顿迭代法是一种数值计算方法,通 过迭代的方式求解非线性方程的根。
它基于牛顿定理,即函数在某点的切 线与x轴的交点即为该函数的根。
牛顿迭代法的应用场景
在金融领域的应用
牛顿迭代法可以用于求解金融领 域中的复杂模型和优化问题,例 如资产定价和风险管理。
在工程领域的应用
牛顿迭代法可以用于求解各种工 程领域的优化问题,例如结构分 析和控制系统设计。
感谢您的观看
THANKS
通过改进初始点的选择方法,提 高迭代过程的成功率和收敛速度。
在迭代过程中引入阻尼因子,以 避免迭代过程在鞍点处停滞不前。
根据迭代过程中的误差信息,自 适应地调整步长,以提高收敛速 度和稳定性。

牛顿迭代法

牛顿迭代法

牛顿迭代法一、 牛顿迭代法牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。

二、 迭代公式,...2,1,0,)()(1='-=+k x f x f x x k k k k用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式(主要是第一种):1、设],[)(2b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(20000x x f x x x f x f x f -+-+=ξ略去二次项,得到)(x f 的线性近似式:))((')()(000x x x f x f x f -+≈。

由此得到方程=)(x f 0的近似根(假定≠)('0x f 0),)(')(000x f x f x x -=即可构造出迭代格式(假定≠)('k x f 0):)(')(1k k k k x f x f x x -=+ 公式(1)这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。

2、 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线性化近似函数)(x l =))((')(000x x x f x f -+是曲线y =)(x f 过点))(,(00x f x 的切线而得名的,求)(x f 的零点代之以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图所示,这就是牛顿切线法的几何解释。

实际上,牛顿迭代法也可以从几何意义上推出。

利用牛顿迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有1)()('+-=k k k k x x x f x f ,整理后也能得出牛顿迭代公式:)(')(1k k k k x f x f x x -=+。

牛顿迭代法

牛顿迭代法

2.牛顿迭代法的几何解析
在 x0 处做曲线的切线,切线方程为
y f (x0 ) f (x0 ) f ' (x0 )(x x0 )
令 y 0可得切线与 x 轴的交点坐标
x1 x0
f (x0 ) f ' (x0 )
,这
就是牛顿迭代法的迭代公式。因此,牛顿法又称“切线
法”。
y
y f (x)
n=0;eps=1.0e-5;
x=0.5;
while abs(x-0.625*exp(-x)-0.375*x)>eps
x=0.625*exp(-x)+0.375*x;n=n+1;
end
x,n 结果为0.5671,n=3,说明迭代三次后达到精度要求。
练习5 对练习中方程
,用加快后的迭代格式
x ex
h(x) g(x) xg ' (x) 求x=0.5附近的根,精确到10-5 1 g'(x)
o
x2 x1 x0
x
牛顿迭代法
3.牛顿迭代法的收敛性
计算可得 g'(x)
f (x) f ''(x) [ f ' (x)]2
,设 x* 是 f (x) 0 的单根,
有 f ' (x*) 0 ,f (x*) 0 则
g' (x*)
f (x* ) f '' (x* ) [ f ' (x* )]2
x=x-(x*exp(x)-1)/((x+1)*exp(x)) end 可得迭代数列前6项为1.0000 ,0.6839, 0.5775
0.5671,0.5671,说明迭代实收敛的。 如果取初值为10,相应的MATLAB代码为 clear; x=10.0; for i=1:20

牛顿迭代法算法

牛顿迭代法算法

牛顿迭代法算法
牛顿迭代法,又称牛顿-拉夫逊方法,是一种用来近似求解方程根的迭代算法。

该算法以牛顿的差商公式为基础,通过不断迭代逼近方程的根。

假设我们要求解方程 f(x)=0 的根,其中 f(x) 是一个连续可微的函数。

牛顿迭代法的步骤如下:
1. 选择一个初始近似根 x0;
2. 计算初始点处的函数值 f(x0) 和导数值 f'(x0);
3. 使用牛顿迭代公式 x1 = x0 - f(x0)/f'(x0) 计算下一个近似根;
4. 如果 |x1 - x0| 小于某个给定的精度要求,即达到所需精度,停止迭代并输出结果 x1 作为方程的近似根;
5. 否则,令 x0 = x1,返回步骤 2 继续迭代。

牛顿迭代法的思想是通过逐步改进初始近似根,使其逐渐接近真实根。

算法的收敛性与初始近似根的选择有关,通常需要合理选择初始点以确保算法的稳定性和快速收敛。

该算法被广泛应用于优化、数值分析、物理学等领域,具有较高的收敛速度和准确性。

牛顿迭代法的主要优势是可以求解高阶多项式方程以及非线性方程等复杂问题。

需要注意的是,牛顿迭代法也存在收敛速度慢、可能陷入局部最小值等缺点。

在实际应用中,需要根据具体问题来选择合适的求解方法。

通俗理解牛顿迭代法

通俗理解牛顿迭代法

牛顿迭代法(Newton's method),又称为牛顿-拉夫逊方法(Newton-Raphson method),是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

这种方法的核心思想是利用泰勒级数展开式去近似地代替非线性函数,通过不断迭代,多次修正方程的解,使解不断逼近非线性方程的真实解,最后使原方程的残差平方和达到最小。

具体来说,假设要求解的函数为F(x)=0,我们可以先选取一个初始的近似值x0,然后计算F(x0)和F'(x0)(F'(x)是F(x)的导数)。

根据泰勒级数展开式,F(x)可以近似地表示为F(x0)+F'(x0)*(x-x0)。

令这个近似式等于0,解出x,就得到了一个新的近似值x1。

然后,用x1重复上述过程,得到x2,x3,……,直到收敛到某个值。

这个值就是F(x)=0的一个近似解。

牛顿迭代法的优点是在方程的单根附近具有平方收敛,也就是说,每迭代一次,解的精度大致会提高两倍。

这使得牛顿迭代法在求解高精度解时非常有效。

但是,如果初始值选取不当,或者函数在某些点没有定义(即导数不存在),那么牛顿迭代法可能无法收敛到正确的解,甚至可能发散。

因此,使用牛顿迭代法时需要谨慎选择初始值,并检查函数的定义域和导数是否存在。

此外,牛顿迭代法在计算机编程中也有广泛的应用。

许多编程语言都提供了实现牛顿迭代法的库函数或工具,使得求解非线性方程的近似解变得非常方便。

以上就是对牛顿迭代法的一种通俗理解。

希望这个解释能帮助你更好地理解这个方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿迭代法目录产生背景牛顿迭代公式C语言代码C++代码matlab代码产生背景牛顿迭代公式C语言代码C++代码matlab代码展开编辑本段产生背景牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。

另外该方法广泛用于计算机编程中。

编辑本段牛顿迭代公式设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。

重复以上过程,得r 的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。

把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

牛顿迭代法示意图军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。

但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。

也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A操作),然后A 再前进占领新的位置,B 再跟上……直到占领所有的阵地,前进结束。

像这种两个数一前一后逐步向某个位置逼近的方法称之为迭代法。

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

迭代算法是用计算机解决问题的一种基本方法。

它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代变量。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。

其计算原理依赖于下面的定理:定理:gcd(a, b) = gcd(b, a mod b)证明:a可以表示成a = kb + r,则r = a mod b 。

假设d是a,b的一个公约数,则有 d%a==0, d%b==0,而r = a - kb,因此d%r==0 ,因此d是(b, a mod b)的公约数同理,假设d 是(b, a mod b)的公约数,则 d%b==0 , d%r==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。

其算法用C语言描述为:int Gcd_2(int a, int b)// 欧几里德算法求a, b的最大公约数{if (a<=0 || b<=0) //预防错误return 0;int temp;while (b > 0) //b总是表示较小的那个数,若不是则交换a,b的值{temp = a % b; //迭代关系式a = b; //a是那个胆小鬼,始终跟在b的后面b = temp; //b向前冲锋占领新的位置}return a;}从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b; 根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。

在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。

还有一个很典型的例子是斐波那契(Fibonacci)数列。

斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib(1)=0; fib(2)=1;fib(n)=fib(n-1)+fib(n-2) (当n>2时)。

在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。

int Fib(int n) //斐波那契(Fibonacci)数列{if (n < 1)//预防错误return 0;if (n == 1 || n == 2)//特殊值,无需迭代return 1;int f1 = 1, f2 = 1, fn;//迭代变量int i;for(i=3; i<=n; ++i)//用i的值来限制迭代的次数{fn = f1 + f2; //迭代关系式f1 = f2; //f1和f2迭代前进,其中f2在f1的前面f2 = fn;}return fn;}编辑本段C语言代码double func(double x) //函数{return x*x*x*x-3*x*x*x+1.5*x*x-4.0;}double func1(double x) //导函数{return 4*x*x*x-9*x*x+3*x;}int Newton(double *x,double precision,int maxcyc) //迭代次数{double x1,x0;int k;x0=*x;for(k=0;k<maxcyc;k++){if(func1(x0)==0.0)//若通过初值,函数返回值为0{printf("迭代过程中导数为0!\n");return 0;}x1=x0-func(x0)/func1(x0);//进行牛顿迭代计算if(fabs(x1-x0)<precision || fabs(func(x1))<precision) //达到结束条件{*x=x1; //返回结果return 1;}else //未达到结束条件x0=x1; //准备下一次迭代}printf("迭代次数超过预期!\n"); //迭代次数达到,仍没有达到精度return 0;}int main(){double x,precision;int maxcyc;printf("输入初始迭代值x0:");scanf("%lf",&x);printf("输入最大迭代次数:");scanf("%d",&maxcyc);printf("迭代要求的精度:");scanf("%lf",&precision);if(Newton(&x,precision,maxcyc)==1) //若函数返回值为1printf("该值附近的根为:%lf\n",x);else //若函数返回值为0printf("迭代失败!\n");getch();return 0;}编辑本段C++代码#include<iostream>#include<cmath>using namespace std;int main(){double diedai(int a,int b,int c,int d,double x);int a,b,c,d;double x=10000.0;cout<<"请依次输入方程四个系数:";cin>>a>>b>>c>>d;x=diedai(a,b,c,d,x);cout<<x;return 0;}double diedai(int a,int b,int c,int d,double x){x=x-(a*pow(x,3.0)+b*pow(x,2.0)+c*pow(x,1.0)+d)/(3*a*pow(x,2.0)+2 *b*pow(x,1.0)+c);if(abs(a*x*x*x+b*x*x+c*x+d)<=0.000001)return x;elsereturn diedai(a,b,c,d,x);}编辑本段matlab代码1.定义函数function y=f(x)y=f(x);%函数f(x)的表达式function y=z(x)y=z(x);%函数z(x)的表达式2.主程序x=X;%迭代初值i=0;%迭代次数计算while i<= I;%迭代次数y=x-y(x)/z(x);%牛顿迭代格式if abs(y-x)>ε;%收敛判断x=y;else breakendi=i+1;endfprintf('\n%s%.4f\t%s%d','x=',x,'i=',i) %输出结果。

相关文档
最新文档