高考数学模拟复习试卷试题模拟卷第02节 古典概型00130
高考数学模拟复习试卷试题模拟卷第02节 古典概型5 9

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B.25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4567814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________. 三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型0015 35

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型 5

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )(A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是()A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( )A .15 B. 25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( )A . 34B .78C .49D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( )A .367B .185C .92D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A 25 B 35 C 45 D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655. 其中,正确的说法的个数为 ( )A .1B .2C .3D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 12 3 4 5 23 4 5 6 34 5 6 7 4 5 6 7 814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________.三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练 1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34D .1 2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.783.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a 2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( )A .1-π4B.π4C .1-π8D.与a 的取值有关4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( )A.2-12B.1-22C.2-1D.2- 25.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形AB CD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A .2πB .4πC .6πD .8π2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为( ) A .1718 B .79C .29D .1183.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为.4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .27645. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( ) A .5164π- B .564π C .116π- D .16π 2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)3. (济南市高三3月考模拟考试)如图,长方体ABCD —A1B1C 1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A —A1BD 内的概率为.4. 【北京市丰台区高三一模】设不等式组22100x y y ⎧+-≤⎨≥⎩,表示的平面区域为M ,不等式组201t x t y t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M 内随机取一个点,这个点在N 内的概率的最大值是_________. 5. 若k ∈[-3,3],则k 的值使得过A(1,1)可以作两条直线与圆(x -k)2+y2=2相切的概率等于( )A .12B .13C .23D .34高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型001 5

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )(A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是()A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( )A .15 B. 25 C. 13 D. 16 【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此 2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( )A . 34B .78C .49D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( )A .367B .185C .92D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( )A 25B 35C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655. 其中,正确的说法的个数为 ( )A .1B .2C .3D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356 [答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528. 12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 12 3 4 5 23 4 5 6 34 5 6 7 4 5 6 7 8A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种.14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15. 19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第1课时等差数列的前n项和课后篇巩固探究A组1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设Sn是等差数列{an}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{an}的通项公式为an=2n37,则Sn取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{an},{bn}的前n项和分别为An与Bn,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{an}是等差数列,Sn为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{an}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=2,a1=20,∴S10=10a1+d=0=110.答案:1107.在等差数列{an}中,前n项和为Sn,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶S奇=3015=15,于是d=3.答案:39.若等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{an}的首项a1和公差d;(2)求数列{an}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=2.(2)S10=10×a1+d=10.10.导学号33194010已知数列{an}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为Sn,求Sn的最大值;(3)当Sn是正数时,求n的最大值.解(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得<d<,又d∈Z,∴d=4.(2)∵d<0,∴{an}是递减数列.又a6>0,a7<0,∴当n=6时,Sn取得最大值,即S6=6×23+×(4)=78.(3)Sn=23n+×(4)>0,整理得n(252n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{an}为等差数列,公差d=2,Sn为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11S10=a11=0,a11=a1+10d=a1+10×(2)=0,所以a1=20.答案:B2.(全国1高考)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3②,得(2115)d=24,即6d=24,所以d=4.答案:C3.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{an}的通项公式是an=12n,其前n项和为Sn,则数列的前11项和为()A.45B.50C.55D.66解析:∵Sn=,∴=n,∴的前11项和为(1+2+3+…+11)=66.故选D.答案:D5.已知等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=.解析:设等差数列{an}的公差为d,则an=1+(n1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=.又a4=1+3×,ak=1+(k1)d,由ak+a4=0,得+1+(k1)d=0,将d=代入,可得k=10.答案:106.已知数列{an}为等差数列,其前n项和为Sn,且1+<0.若Sn存在最大值,则满足Sn>0的n的最大值为.解析:因为Sn有最大值,所以数列{an}单调递减,又<1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足Sn>0的n的最大值为19.答案:197.导学号33194012在等差数列{an}中,a1=60,a17=12,求数列{|an|}的前n项和.解数列{an}的公差d==3,∴an=a1+(n1)d=60+(n1)×3=3n63.由an<0得3n63<0,解得n<21.∴数列{an}的前20项是负数,第20项以后的项都为非负数.设Sn,Sn'分别表示数列{an}和{|an|}的前n项和,当n≤20时,Sn'=Sn==n2+n;当n>20时,Sn'=S20+(SnS20)=Sn2S20=60n+×32×n2n+1260.∴数列{|an|}的前n项和Sn'=8.导学号33194013设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.(1)求数列{an}的通项公式及前n项和公式;(2)设数列{bn}的通项公式为bn=,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{an}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以an=1+(n1)×2=2n1,Sn=n×1+×2=n2.(2)由(1)知bn=,所以b1=,b2=,bm=.若b1,b2,bm(m≥3,m∈N)成等差数列,则2b2=b1+bm,所以,即6(1+t)(2m1+t)=(3+t)(2m1+t)+(2m1)(1+t)(3+t),整理得(m3)t2(m+1)t=0,因为t是正整数,所以(m3)t(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型0014 50

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )(A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是()A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( )A .15 B. 25 C. 13 D. 16 【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此 2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( )A . 34B .78C .49D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( )A .367B .185C .92D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( )A 25B 35C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655. 其中,正确的说法的个数为 ( )A .1B .2C .3D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356 [答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528. 12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 12 3 4 5 23 4 5 6 34 5 6 7 4 5 6 7 8A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种.14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15. 19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第01节 算法与程序框图一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【高考天津,理3】阅读右边的程序框图,运行相应的程序,则输出S 的值为( )(A )10- (B )6 (C )14 (D )18 否是开始结束输出2. 【改编题】行下图所示的程序框图,则输出的S 为( )A .10B .12C .20D .30 3. 某程序框图如右图所示,当输出y 值为8-时,则输出x 的值为( )开始4?n >否是1,0n S ==结束S输出2S S n=+1n n =+A. 64B. 32C. 16D.84.【改编题】如图所示的程序框图,输出S 的值是20161,则判断框内应填() A. 2015?n < B. 2014?n ≤ C.2016?n ≤ D. 2015?n ≤5. 【高考湖南卷第6题】执行如图1所示的程序框图,如果输入的]2,2[-∈t ,则输出的S 属于( )(2)]2,6[-- B.]1,5[-- C.]5,4[- D.]6,3[-6.【改编题】执行如图所示的程序框图,输出结果是i =1209x dx ⎰.若{}01,2,3a ∈,则0a 所有可能的取值为( )A .1,2,3B .1C .2D .2,3是否 开始结束1S =1n =1n S S n =⨯+ 1n n =+输出S(3)【山东高考理第11题改编】执行右面的程序框图,若输入的x的值为1,则输出的n的值为().A. 1B. 2C. 3D. 48.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是()A.4i <B.5i <C. 5i ≥D. 6i <9. 【郑州市高中毕业年级第一次质量预测试题】执行如图的程序框图,若输出的78S =,则输入的整数P 的值为( ).A. 1B. 2C. 3D. 410. 【原创题】如图是一个算法的流程图.若输入x 的值为3,则输出y 的值是( )A.12B.12-C.32-D.3-11.【高考湖北卷第13题】设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为()I a,按从大到小排成的三位数记为()D a(例如815a=,则()158I a=,()851D a=).阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=( ).A.495B.594C.693D.81512. 【原创题】执行如图所示的程序框图,输出的a值为______.输入x112y x=-||1y x-<2x y=否是结束开始输出yA .12B .3C .2-D .13- 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.)13. 如图,是一程序框图,则输出结果为K =,S =.(说明,M N =是赋值语句,也可以写成M N ←,或:M N =14. 下图是一个算法的程序框图,最后输出的W =_______.开始a =3,i =1i >511a a a +=- i =i +1结束输出a是否,则输出的S的最大值为15. 【高考四川卷文第6题】执行如图1所示的程序框图,如果输入的,x y R_________16. 【高考山东卷第11题】执行右面的程序框图,若输入的x的值为1,则输出的n的值为.17. 【黄冈市重点中学第二学期高三三月月考】若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于整数k 的条件是 _______________18. 【湖北八校高三第二次联考数学试题】定义某种运算⊗,b a S ⊗=的运算原理如图所示.设)3()0()(x x x x f ⊗-⊗=.则=)3(f ______;()f x 在区间[]3,3-上的最小值为______高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型0011

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学高三模拟试卷试题压轴押题《古典概型》

高考数学高三模拟试卷试题压轴押题《古典概型》1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A. 12B. 13 C. 14D. 16解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为13,故选B.答案:B2.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A. 110B. 310C. 35D. 910解析:“所取的3个球中至少有1个白球”的对立事件是:“所取的3个球都不是白球”,因而所求概率P =1-C33C35=1-110=910.答案:D3.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A. 49B. 13 C. 29D. 19解析:设个位数与十位数分别为y ,x ,则如果两位数之和是奇数,则x ,y 分别为一奇数一偶数:第一类x 为奇数,y 为偶数共有:C15×C15=25; 另一类x 为偶数,y 为奇数共有:C14×C15=20.两类共计45个,其中个位数是0,十位数是奇数的两位数有10,30,50,70,90这5个数,所以个位数是0的概率为:P(A)=545=19.答案:D4.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).解析:若每人都选择两个项目,共有不同的选法C23C23C23=27种,而有两人选择的项目完全相同的选法有C23C23A22=18种,故填23.答案:235.现有某类病毒记作XmYn ,其中正整数m ,n(m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.答案:2063高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学模拟复习试卷试题模拟卷第02节 古典概型001 4

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第18讲 求轨迹方程一、复习目标1、熟悉求曲线方程的两类问题:一是动点变动的根本原因,二是动点变动的约束条件 2、熟练掌握求曲线方程的常用方法:定义法、代入法、待定系数法、参数法等,并能灵活应用。
高考数学模拟复习试卷试题模拟卷第02节 古典概型4 21

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )(A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是()A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( )A .15 B. 25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( )A . 34B .78C .49D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( )A .367B .185C .92D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A 25 B 35 C 45 D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655. 其中,正确的说法的个数为 ( )A .1B .2C .3D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 12 3 4 5 23 4 5 6 34 5 6 7 4 5 6 7 814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________.三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.【热点题型】题型一函数零点的判断与求解【例1】 (1)设f(x)=ex +x -4,则函数f(x)的零点位于区间()A .(-1,0)B .(0,1)C .(1,2)D .(2,3)(2)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【提分秘籍】(1)确定函数的零点所在的区间时,通常利用零点存在性定理,转化为确定区间两端点对应的函数值的符号是否相反.(2)根据函数的零点与相应方程根的关系可知,求函数的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即方程f(x)=g(x)的根.【举一反三】已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x≤1,1+log2x ,x >1,则函数f(x)的零点为() A.12,0 B .-2,0 C.12 D .0题型二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2ex +m -1,g(x)=x +e2x (x >0).(1)若y =g(x)-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根.【提分秘籍】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】(1)函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f(x)=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x≥2,若方程f(x)-a =0有三个不同的实数根,则实数a 的取值范围是()A .(1,3)B .(0,3)C .(0,2)D .(0,1)题型三与二次函数有关的零点问题【例3】是否存在这样的实数a ,使函数f(x)=x2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.【提分秘籍】解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【举一反三】已知f(x)=x2+(a2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.【高考风向标】【高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为.【高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【高考湖南,文14】若函数()|22|x f x b =--有两个零点,则实数b 的取值范围是_____.【高考山东,文10】设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)12(·北京卷)已知函数f(x)=6x -log2x ,在下列区间中,包含f(x)的零点的区间是()A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)(·浙江卷)已知函数f(x)=x3+ax2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则()A .c≤3B .3<c≤6C .6<c≤9D .c >9(·重庆卷)已知函数f(x)=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g(x)=f(x)-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是() A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23 D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23(·福建卷)函数f(x)=⎩⎪⎨⎪⎧x2-2,x≤0,2x -6+ln x ,x >0的零点个数是________.(·湖北卷)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}(·江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.(·江西卷)已知函数f(x)=⎩⎪⎨⎪⎧a·2x ,x≥0,2-x ,x<0(a ∈R).若f[f(-1)]=1,则a =() A.14 B.12 C .1 D .2(·浙江卷)设函数f(x)=⎩⎪⎨⎪⎧x2+2x +2,x≤0,-x2,x >0.若f(f(a))=2,则a =________.(·全国卷)函数f(x)=ax3+3x2+3x(a≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值范围.(·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x2+5x +4|,x≤0,2|x -2|,x >0.若函数y =f(x)-a|x|恰有4个零点,则实数a 的取值范围为________.【高考押题】1.函数f(x)=2x +x3-2在区间(0,2)内的零点个数是 ()A .0B .1C .2D .32.函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.若a <b <c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间 ()A .(a ,b)和(b ,c)内B .(-∞,a)和(a ,b)内C .(b ,c)和(c ,+∞)内D .(-∞,a)和(c ,+∞)内4.若函数f(x)=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是 () A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞ C.⎝⎛⎭⎫-1,15 D .(-∞,-1)5.已知函数f(x)=x +2x ,g(x)=x +ln x ,h(x)=x -x -1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是() A .x2<x1<x3B .x1<x2<x3C .x1<x3<x2D .x3<x2<x16.函数f(x)=x -ln(x +1)-1的零点个数是________.7.函数f(x)=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N)内,则n =________.8.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.9.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围.10.已知关于x 的二次方程x2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
上海市2020〖苏科版〗高三数学复习试卷古典概型2

上海市2020年〖苏科版〗高三数学复习试卷古典概型1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A. 12B. 13C. 14D. 16解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为13,故选B.答案:B2.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A. 110B. 310C. 35D. 910解析:“所取的3个球中至少有1个白球”的对立事件是:“所取的3个球都不是白球”,因而所求概率P =1-C33C35=1-110=910. 答案:D3.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A. 49B. 13C. 29D. 19解析:设个位数与十位数分别为y ,x ,则如果两位数之和是奇数,则x ,y 分别为一奇数一偶数:第一类x 为奇数,y 为偶数共有:C 15×C 15=25;另一类x 为偶数,y 为奇数共有:C 14×C 15=20.两类共计45个,其中个位数是0,十位数是奇数的两位数有10,30,50,70,90这5个数,所以个位数是0的概率为:P (A )=545=19.答案:D4.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).解析:若每人都选择两个项目,共有不同的选法C 23C 23C 23=27种,而有两人选择的项目完全相同的选法有C 23C 23A 2=18种,故填23. 答案:235.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为20.63答案:2063。
高考数学模拟复习试卷试题模拟卷第02节 古典概型 33

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )(A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是()A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( )A .15 B. 25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( )A . 34B .78C .49D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( )A .367B .185C .92D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A 25 B 35 C 45 D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655. 其中,正确的说法的个数为 ( )A .1B .2C .3D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 12 3 4 5 23 4 5 6 34 5 6 7 4 5 6 7 814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________.三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型2 22

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B.25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4567814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________. 三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解导数概念的实际背景. 2.理解导数的几何意义.3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x ,y =x2,y =x3,y =x 的导数. 【热点题型】题型一 利用定义求函数的导数例1、用定义法求函数f(x)=x2-2x -1在x =1处的导数. 【提分秘籍】(1)求函数f(x)的导数步骤:①求函数值的增量Δy =f(x2)-f(x1); ②计算平均变化率Δy Δx =fx2-f x1x2-x1;③计算导数f′(x)=lim Δx→0ΔyΔx .(2)利用定义法求解f′(a),可以先求出函数的导数f′(x),然后令x =a 即可求解,也可直接利用定义求解.【举一反三】(1)函数y =x +1x 在[x ,x +Δx]上的平均变化率ΔyΔx =________;该函数在x =1处的导数是____________________________________.(2)已知f(x)=1x,则f′(1)=________. 题型二导数的运算 例2、求下列函数的导数: (1)y =ex·lnx ; (2)y =x ⎝⎛⎭⎫x2+1x +1x3.【提分秘籍】有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量,提高运算速度,减少差错.【举一反三】(1)f(x)=x(+lnx),若f′(x0)=,则x0等于( ) A .e2B .1 C .ln2D .e(2)若函数f(x)=ax4+bx2+c 满足f′(1)=2,则f′(-1)等于( ) A .-1B .-2 C .2D .0题型三 导数的几何意义例3 已知函数f(x)=x3-4x2+5x -4. (1)求曲线f(x)在点(2,f(2))处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程. 【提分秘籍】利用导数研究曲线的切线问题,一定要熟练掌握以下条件:(1)函数在切点处的导数值也就是切线的斜率.即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上.切线有可能和曲线还有其它的公共点. 【举一反三】在平面直角坐标系xOy 中,若曲线y =ax2+bx (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.(2)已知函数f(x)=x3-3x ,若过点A(0,16)且与曲线y =f(x)相切的直线方程为y =ax +16,则实数a 的值是________.【高考风向标】【高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.【高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为.【高考陕西,文15】函数在其极值点处的切线方程为____________. (·陕西卷)设函数f(x)=ln x +mx ,m ∈R.(1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.(·安徽卷)设函数f(x)=1+(1+a)x -x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性;(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时的x 的值. (·北京卷)已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y =f(x)相切,求t 的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y =f(x)相切?(只需写出结论)(·福建卷)已知函数f(x)=ex -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值; (2)证明:当x >0时,x2<ex ;(3)证明:对任意给定的正数c ,总存在x0,使得当x ∈(x0,+∞)时,恒有x <cex. (·广东卷)曲线y =-5ex +3在点(0,-2)处的切线方程为________. 【高考押题】1.设f(x)=xlnx ,若f′(x0)=2,则x0的值为( ) A .e2B .eC.ln22D .ln22.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+lnx ,则f′(1)等于( ) A .-eB .-1 C .1D .e3.设函数f(x)=g(x)+x2,曲线y =g(x)在点(1,g(1))处的切线方程为y =2x +1,则曲线y =f(x)在点(1,f(1))处的切线的斜率为( )A .4B .-14C .2D .-124.与直线2x -y +4=0平行的抛物线y =x2的切线方程是( ) A .2x -y +3=0B .2x -y -3=0 C .2x -y +1=0D .2x -y -1=05.曲线y =x3在点(1,1)处的切线与x 轴及直线x =1所围成的三角形的面积为( ) A.112B.16C.13D.126.已知函数f(x)的导函数为f′(x),且满足f(x )=3x2+2x·f′(2),则f′(5)=________.7.已知函数y =f(x)及其导函数y =f′(x)的图象如图所示,则曲线y =f(x)在点P 处的切线方程是__________.8.已知曲线y =x3+x -2在点P0处的切线l1平行于直线4x -y -1=0,且点P0在第三象限. (1)求P0的坐标;(2)若直线l ⊥l1,且l 也过切点P0,求直线l 的方程. 9.已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型4 2

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B.25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4567814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________. 三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为( )图1-3A .16+8πB .8+8πC .16+16πD .8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n 项和为Sn ,若Sm -1=-2,Sm =0,Sm +1=3,则m =( )A .3B .4C .5D .615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n 项的最大值记为An ,第n 项之后各项an +1,an +2,…的最小值记为Bn ,dn =An -Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N*,an +4=an),写出d1,d2,d3,d4的值;(2)设d 是非负整数,证明:dn =-d(n =1,2,3,…)的充分必要条件为{an}是公差为d 的等差数列; (3)证明:若a1=2,dn =1(n =1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1. 17.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8 B .Sn 的最小值是S8 C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________. 10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型001 54

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )(A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是()A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( )A .15 B. 25 C. 13 D. 16 【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( )A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此 2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( )A . 34B .78C .49D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( )A .367B .185C .92D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( )A 25B 35C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655. 其中,正确的说法的个数为 ( )A .1B .2C .3D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356 [答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528. 12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 12 3 4 5 23 4 5 6 34 5 6 7 4 5 6 7 8A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种.14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15. 19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第02节 排列与组合一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【惠州市高三第一次调研考试】将甲,乙等5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,则每所大学至少保送1人的不同保送方法数为( )种。
高考数学模拟复习试卷试题模拟卷第02节 古典概型 6

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )343. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87 4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B.25 C. 13 D. 165. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .126.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .597.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .328. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .419. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n ,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .411.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .135612.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4567814.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________.15. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x2+bx +c =0有实根的概率为________. 三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为10354085元为中等偏下收入国家;人均GDP 为408512616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【重点知识梳理】 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a ,b ∈R). (2)b a +ab ≥2(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)a2+b22≥⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大) 【高频考点突破】考点一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.【规律方法】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式探究】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.考点二 利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f(x)=4x -2+14x -5的最大值;(4)已知函数f(x)=4x +ax (x >0,a >0)在x =3时取得最小值,求a 的值.【规律方法】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【变式探究】(1)设a >0,若关于x 的不等式x +ax ≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x(5-2x)的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.【答案】(1)A (2)252 (3)9 考点三 基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【规律方法】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】 首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =12x2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【真题感悟】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2B 、2 C 、22 D 、4 【答案】C2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.【答案】233.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C4.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.【答案】-25.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________.【答案】26.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【答案】C7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.【答案】7+438.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.10 【答案】B9.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.94【答案】C10.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【答案】B【押题专练】1.设非零实数a ,b ,则“a2+b2≥2ab”是“a b +ba ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B .4C.92D .5【答案】C3.若正数x ,y 满足4x2+9y2+3xy =30,则xy 的最大值是( )A.43B.53C .2D.54【答案】C4.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是 ( ) A .3B .4C .5D .6【答案】B5.设x ,y ∈R ,a >1,b >1,若ax =by =3,a +b =23,则1x +1y 的最大值为( )A .2B.32C .1D.12【答案】C6.设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ) A .0B .1C.94D .3【答案】B7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】68.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.9.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)10.函数f(x)=lgx2-x,若f(a)+f(b)=0,则3a+1b的最小值为________.【答案】2+311.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型0015 38

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型0014 3

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.考查函数零点的个数和取值范围;2.利用函数零点求解参数的取值范围;3.利用二分法求方程近似解;4.与实际问题相联系,考查数学应用能力.【重点知识梳理】1.函数的零点(1)定义:如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.(2)变号零点:如果函数图象经过零点时穿过x轴,则称这样的零点为变号零点.(3)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上,至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0. 3.用二分法求函数f(x)零点近似值的步骤第一步,确定区间[a,b],验证f(a)f(b)<0;第二步,求区间(a,b)的中点c1;第三步,计算f(c1):(1)若f(c1)=0,则c1就是函数的零点;(2)若f(a)f(c1)<0,则令b=c1(此时零点x0∈(a,c1));(3)若f(b)f(c1)<0,则令a=c1(此时零点x0∈(c1,b));第四步,判断x0是否满足给定的精确度;否则重复第二、三、四步.【高频考点突破】考点一函数零点的判断例1、判断下列函数在给定区间上是否存在零点.(1)f(x)=x2-3x-18,x∈[1,8];(2)f(x)=log2(x+2)-x,x∈[1,3].【探究提高】求解函数的零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件.【变式探究】函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)【答案】B考点二函数零点个数的判断例2、若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是________.【答案】4【探究提高】对函数零点个数的判断方法:(1)结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;(2)利用函数图象交点个数判断方程根的个数或函数零点个数.【变式探究】函数f(x)=2x+x3-2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3【答案】B考点三二次函数的零点问题例3、已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围;(2)若方程两根均在区间(0,1)内,求m的范围.【探究提高】对二次函数的零点问题,可以采用根与系数的关系和判别式解决;比较复杂的题目,可利用二次函数的性质结合图象寻求条件.【变式探究】关于x的一元二次方程x2-2ax+a+2=0,当a为何实数时:(1)有两不同正根;(2)不同两根在(1,3)之间;(3)有一根大于2,另一根小于2;(4)在(1,3)内有且只有一解.考点四函数零点的应用例4、若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.【变式探究】已知函数y =|x2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.【答案】(0,1)∪(1,4)【真题感悟】【高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为.【答案】12-【高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____. 【答案】02b <<【高考山东,文10】设函数3,1()2,1xx b xf xx-<⎧=⎨≥⎩,若5(())46f f=,则b= ( )(A)1(B)78(C)34(D)12【答案】D(·北京卷)已知函数f(x)=6x-log2x,在下列区间中,包含f(x)的零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)【答案】C(·浙江卷)已知函数f(x)=x3+ax2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则() A .c≤3 B .3<c≤6 C .6<c≤9 D .c >9 【答案】C(·重庆卷)已知函数f(x)=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g(x)=f(x)-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是()A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 【答案】A(·福建卷)函数f(x)=⎩⎪⎨⎪⎧x2-2,x≤0,2x -6+ln x ,x >0的零点个数是________.【答案】2(·湖北卷)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 【答案】D(·江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【答案】.⎝⎛⎭⎫0,12(·江西卷)已知函数f(x)=⎩⎪⎨⎪⎧a·2x ,x≥0,2-x ,x<0(a ∈R).若f[f(-1)]=1,则a =()A.14B.12 C .1 D .2【答案】A(·浙江卷)设函数f(x)=⎩⎪⎨⎪⎧x2+2x +2,x≤0,-x2,x >0.若f(f(a))=2,则a =________.【答案】2(·全国卷)函数f(x)=ax3+3x2+3x(a≠0). (1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值范围.(·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x2+5x +4|,x≤0,2|x -2|,x >0.若函数y =f(x)-a|x|恰有4个零点,则实数a 的取值范围为________.【答案】(1,2)【押题专练】1.方程|x2-2x|=a2+1 (a>0)的解的个数是() A .1B .2C .3D .4 【答案】B∴方程有两解.2.若关于x 的方程x2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 ()A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)【答案】C3.函数f(x)=⎩⎪⎨⎪⎧x2+2x -3,x≤0,-2+ln x ,x>0的零点个数为()A .3B .2C .1D .0【答案】B4.已知三个函数f(x)=2x +x ,g(x)=x -2,h(x)=log2x +x 的零点依次为a ,b ,c ,则() A .a<b<c B .a<c<b C .b<a<cD .c<a<b【答案】B5.设函数f(x)(x ∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x ∈[0,1]时,f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在⎣⎡⎦⎤-12,32上的零点个数为()A .5B .6C .7D .8【答案】B6.函数f(x)=x -cos x 在[0,+∞)内()A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点【答案】B7.已知函数f(x)=log2x -⎝⎛⎭⎫13x ,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值为() A .恒为负 B .等于零 C .恒为正D .不小于零【答案】A8.定义在R 上的奇函数f(x)满足:当x>0时,f(x)=2 014x +log2 014x ,则在R 上,函数f(x)零点的个数为________.【答案】39.已知函数f(x)=x +2x ,g(x)=x +ln x ,h(x)=x -x -1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是______________.【答案】x1<x2<x310.若f(x)=⎩⎪⎨⎪⎧x2-x -1,x≥2或x≤-1,1,-1<x<2,则函数g(x)=f(x)-x 的零点为___________.【答案】1+2或111.已知函数y =f(x) (x ∈R)满足f(-x +2)=f(-x),当x ∈[-1,1]时,f(x)=|x|,则y =f(x)与y =log7x 的交点的个数为________.【答案】612.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x>0,-x2-2x ,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.【答案】(0,1)13.判断函数f(x)=4x +x2-23x3在区间[-1,1]上零点的个数,并说明理由.14.已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.15. (1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷第02节 古典概型0013 30

高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【陕西高考第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】C2. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ) (A )13 (B )12 (C )23 (D )34【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是339⨯=种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P ==,故选A. 3. 先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是() A.81B.83C.85D.87【答案】D4. 【原创题】口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B. 25 C. 13 D. 16【答案】C5. 抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A .13B .14C .16D .12【答案】D【解析】抛掷一枚骰子,共会出现6,5,4,3,2,1共有6中情况,点数不超过4有3,2,1共3种情况,因此2163==P . 6.【改编题】先后抛掷一个质地均匀的骰子两次,其结果记为(a,b),其中a 表示第一次抛掷的结果,b 表示第二次抛掷的结果,则函数32()f x x ax bx c =+++是单调函数的概率为( ) A .34 B .78 C .49 D .59【答案】C【解析】先后抛掷一个质地均匀的骰子两次,其结果有36种,'2()32f x x ax b =++,函数()f x 是单调函数,等价于24120a b -≤,即23a b ≤,当1a =时,有6种;当2a =时,有5种;当3a =时,有4种;当4a =时,有1种,故函数32()f x x ax bx c =+++是单调函数的概率为164369=. 7.【原创题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C8. 在分别标有号码2,3,4,…,10的9张卡片中,随机取出两张卡片,记下它们的标号,则较大标号被较小标号整除的概率是( ) A .367 B .185 C .92 D .41 【答案】C.9. 【安庆二模】在平面直角坐标系中,从下列五个点:()()()()()0,0,2,0,1,1,0,2,2,2A B C D E 中任取三个,这三点能构成三角形的概率是( ) A25 B 35 C 45D 1 【答案】C【解析】从5个点中取3个点,列举得ABC ,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.10.【改编题】 如图3是一个从A →B 的“闯关游戏”,规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n 关时,需要抛掷n 次正四面体,如果这n 次面朝下的数字之和大于2n,则闯关成功,否则称闯关失败. A →→→→……→B,某人按规则进行闯关游戏,下列说法:(1)他闯第一关成功的概率为21;(2)他仅过第一关的概率为316; (3)他在这项游戏中最多能过三关;(4)他连过前两关,第三关失败的概率是25655.其中,正确的说法的个数为 ( ) A .1 B .2 C .3 D .4【答案】D .11.(·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A .1528B .1328C .1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A25A66种,最先和最后交流的论文为非示范学校论文的情况有A23A66种,故所求概率P =1-A25A66+A23A66A88=1528.12.(·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678A .24对B .30对C .48对D .60对[答案] C解法2:间接法.正方体的面对角线共有12条,从中任取2条有C212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C212-6-12=48对.二、填空题13. 某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案] 72[解析] 依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种. 14.【改编题】投掷两颗骰子,得到其向上的点数分别为n m ,,设),(n m a =,则满足5<a 的概率为___________. 【答案】133615. 由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案] 72[解析] 首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.16.(·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【答案】19 36三、解答题17. 【高考福建卷第20题】根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085元为中等偏下收入国家;人均GDP为408512616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.18.(·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数; (2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析; ①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)=315=15.19. 【广州市普通高中毕业班综合测试一】已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第04节离散型随机变量及分布列一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A.ξ=4 B.ξ=5 C.ξ=6 D.ξ≤52.已知随机变量X的分布列为:P(X=k)=12k,k=1,2,…,则P(2<X≤4)等于( )A.316B.14C.116D.5163.已知随机变量X的概率分布列如下表:X12345678910P 23232233234235236237238239m则P(X=A.239B.2310C.139D.13104. 体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p 的取值范围是()A.(0,712) B.(712,1)C.(0,12) D.(12,1)5. 某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,这2人中成绩在90分以上(含90分)的人数为ξ,则ξ的数学期望为()A.13B.12 C.23D.346. 在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是()A .P(X =2)B .P(X ≤2)C .P(X =4)D .P(X ≤4)7. 设随机变量X 的概率分布列如下表所示: X 0 1 2 Pa1316F(x)=P(X ≤x),则当x 的取值范围是[1,2)时,F(x)等于()A.13B.16C.12D.568. 如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,则X 的均值为()E X = A.126125 B.65 C.168125 D.75二、填空题9. 已知某一随机变量X 的分布列如下: X 3 b8 P0.20.5 a且()6E X =,则a =__________;b =__________. 10. 设随机变量ξ的概率分布列为()1cP k k ξ==+(k =0,1,2,3),则(2)P ξ==. =EX.X0 1 2 3 p 0.1 0.3 0.4 0.2 三、解答题12. (·福州模拟)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?13.(·贵州黔东南月考)有甲、乙、丙、丁、戊五位工人参加技能竞赛培训.现分别从甲、乙两人在培训期间参加的若干次预赛成绩中随机抽取6次,用茎叶图表示这两组数据如图所示.甲 乙 9 8 7 5 4 1 8 0 3 5 5 392 5(1)现要从甲、乙两人中选派一人参加技能竞赛,从平均成绩及发挥稳定性角度考虑,你认为派哪位工人参加合适?请说明理由.(2)若将频率视为概率,对甲工人在今后3次的竞赛成绩进行预测,记这3次成绩中高于80分的次数为X ,求X 的分布列及期望E(X).14. (广州市荔湾区高三调研测试、理、19)某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:b a ,的值;(1)求表中的(2)若以上表频率作为概率,且每天的销售量相互独立.求:① 5天中该种商品恰好有2天的销售量为1.5吨的概率;②已知每吨该商品的销售利润为2千元,ξ表示该种商品两天销售利润的和(单位:千元)求ξ的分布列和期望. 15. 【上饶市高三第二次高考模拟考试】2月21日,《中共中央关于全面深化改革若干重大问题的决定》明确:坚持计划生育的基本国策,启动实施一方是独生子女的夫妇可生育两个孩子的政策.为了解某地区城镇居民和农村居民对“单独两孩”的看法,某媒体在该地区选择了3600人调查,就是否赞成“单独两孩”的问题,调查统计的结果如下表:赞成 反对 无所谓农村居民 2100人 120人 y 人 城镇居民600人x 人z 人日销售量(吨) 1 1.5 2 频数 10 2515频率0.2a b态 度 调查人群已知在全体样本中随机抽取1人,抽到持“反对”态度的人的概率为0.05.(2)现在分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(3)在持“反对”态度的人中,用分层抽样的方法抽取6人,按每组3人分成两组进行深入交流,求第一组中农村居民人数ξ的分布列和数学期望.16. 【咸阳市高考模拟考试试题(一)】 本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为2141,;两小时以上且不超过三小时还车的概率分别为4121,;两人租车时间都不会超过四小时.(Ⅰ)求出甲、乙两人所付租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望ξE .17.【新余市高三第二次模拟考试数学】某网络营销部门为了统计某市网友11月11日在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图(1)):若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2. (1)试确定x ,y ,p ,q 的值;(2)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.设ξ为选取的3人中“网购达人”的人数,求ξ的分布列和数学期望.18.【高考山东卷第18题】乒乓球台面被球网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B,乙被划分为两个不相交的区域,C D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为12,在D上的概率为13;对落点在B上的来球,小明回球的落点在C上的概率为15,在D上的概率为35.假设共有两次来球且落在,A B上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和 的分布列与数学期望.19.【长安一中度高三第一学期第三次教学质量检测】一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:买饭时间(分)12345频率0.10.40.30.10.1从第一个学生开始买饭时计时.(Ⅰ)估计第三个学生恰好等待4分钟开始买饭的概率;(Ⅱ)X表示至第2分钟末已买完饭的人数,求X的分布列及数学期望20.【邯郸市高三上学期第二次模拟考试】(本小题满分12分)某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:统计信息汽车行驶路线在不堵车的情况下到达城市乙所需时间(天)在堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1231101.6公路214120.8(I)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为ξ(单位:万元),求ξ的分布列和数学期望(ξE;)(II)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?(注:毛收入=销售商支付给牛奶厂的费用-运费)21.【高考山东,理19】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5-分;若能被10整除,得1分.整除,参加者得0分;若能被5整除,但不能被10整除,得1(I)写出所有个位数字是5的“三位递增数” ;(II)若甲参加活动,求甲得分X的分布列和数学期望EX.22. 【高考安徽,理17】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望). 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。