第三章 多元线性回归模型案例及作业汇总
多元线性回归模型(6)
![多元线性回归模型(6)](https://img.taocdn.com/s3/m/9e777519da38376baf1faee8.png)
样本,可表示为
Y1 1 2 X 21 3 X31 ... k X k1 u1 Y2 1 2 X 22 3 X32 ... k X k2 u2
Yn 1 2 X 2n 3 X3n ... k X kn un
11
用矩阵表示
Y1 1
即 X可X逆
假定6:正态性假定 ui ~ N(0,σ2)
15
第二节 多元线性回归模型的估计
本节基本内容:
● 普通最小二乘法(OLS) ● OLS估计式的性质 ● OLS估计的分布性质
● 随机扰动项方差 的估2 计
● 回归系数的区间估计
16
一、普通最小二乘法(OLS)
最小二乘原则
剩余平方和最小: min ei2 (Yi -Yˆi)2
1 X 22
X kiei
X
k1
Xk2
1 e1
0
X
2n
e2
=
XБайду номын сангаас
e
=
0
X
kn
en
0
X
e
因为样本回归函数为 Y = Xβˆ + e
两边乘 X有 :
X Y = X Xβˆ + X e
因为 Xe,= 0则正规方程为:
X Xβˆ = X Y
19
OLS估计式
由正规方程 多元回归中 二元回归中
或取固定值的矩阵
2.无偏特性:
E(βˆk ) βk
21
3. 最小方差特性
在 βk所有的线性无偏估计中,OLS估计 β具ˆk 有
最小方差
结论:在古典假定下,多元线性回归的 OLS估计 式是最佳线性无偏估计式(BLUE)
3 多元线性回归模型(经典模型,举一反三)
![3 多元线性回归模型(经典模型,举一反三)](https://img.taocdn.com/s3/m/1a773b0403d8ce2f01662301.png)
样本回归函数的矩阵表达:
ˆ ˆ Y Xβ
或
e1 e e 2 e n
ˆ Y Xβ e
其中:
ˆ 0 ˆ ˆ 1 β ˆ k
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各 X之间互不相关(无多重共线性)。
表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,X j每变化1个单位时,Y的 均值E(Y)的变化; 或者说j给出了X j的单位变化对Y均值的 “直接”或“净”(不含其他变量)影响。
其中
Y Xβ μ
总体回归模型n个随机方程的矩阵表达式为:
1 1 X 1
五、样本容量问题
⒈ 最小样本容量 所谓“最小样本容量”,即从最小二乘原理 和最大或然原理出发,欲得到参数估计量,不管 其质量如何,所要求的样本容量的下限。 样本最小容量必须不少于模型中解释变量 的数目(包括常数项),即 n ≥ k+1
因为,无多重共线性要求:秩(X)=k+1
可求得: ( X X) 于是:
1
0.0003 0.7226 0.0003 1.35 E 07
103 .172 0.7770
ˆ 1 0.7226 0.0003 15674 ˆ β ˆ 2 0.0003 1.35 E 07 39648400
Yi 0 1 X 1i 2 X 2 i k X ki i
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
多元线性回归模型案例
![多元线性回归模型案例](https://img.taocdn.com/s3/m/4bf1052ab94ae45c3b3567ec102de2bd9705de7d.png)
多元线性回归模型案例多元线性回归是统计学中常用的一种回归分析方法,它可以用来研究多个自变量与因变量之间的关系。
在实际应用中,多元线性回归模型可以帮助我们理解不同自变量对因变量的影响程度,从而进行预测和决策。
下面,我们将通过一个实际案例来介绍多元线性回归模型的应用。
案例背景:某电商公司希望了解其产品销售额与广告投入、季节因素和竞争对手销售额之间的关系,以便更好地制定营销策略和预测销售额。
数据收集:为了分析这一问题,我们收集了一段时间内的产品销售额、广告投入、季节因素和竞争对手销售额的数据。
这些数据将作为我们多元线性回归模型的输入变量。
模型建立:我们将建立一个多元线性回归模型,以产品销售额作为因变量,广告投入、季节因素和竞争对手销售额作为自变量。
通过对数据进行拟合和参数估计,我们可以得到一个多元线性回归方程,从而揭示不同自变量对产品销售额的影响。
模型分析:通过对模型的分析,我们可以得出以下结论:1. 广告投入对产品销售额有显著影响,广告投入越大,产品销售额越高。
2. 季节因素也对产品销售额有一定影响,不同季节的销售额存在差异。
3. 竞争对手销售额对产品销售额也有一定影响,竞争对手销售额越大,产品销售额越低。
模型预测:基于建立的多元线性回归模型,我们可以进行产品销售额的预测。
通过输入不同的广告投入、季节因素和竞争对手销售额,我们可以预测出相应的产品销售额,从而为公司的营销决策提供参考。
结论:通过以上分析,我们可以得出多元线性回归模型在分析产品销售额与广告投入、季节因素和竞争对手销售额之间关系时的应用。
这种模型不仅可以帮助我们理解不同因素对产品销售额的影响,还可以进行销售额的预测,为公司的决策提供支持。
总结:多元线性回归模型在实际应用中具有重要意义,它可以帮助我们理解复杂的变量关系,并进行有效的预测和决策。
在使用多元线性回归模型时,我们需要注意数据的选择和模型的建立,以确保模型的准确性和可靠性。
通过以上案例,我们对多元线性回归模型的应用有了更深入的理解,希望这对您有所帮助。
3多元线性回归
![3多元线性回归](https://img.taocdn.com/s3/m/6337c7d4700abb68a982fb5b.png)
数据,以国际旅游外汇收入为因变量 y ,建立
多元回归方程:
Coefficients(a)
Unstandardized Coefficients Standardized Coefficients
95% Confidence Interval for B
B
Std. Error
Beta
t Sig. Lower Bound Upper Bound
求上式的极大值,等价于对 (y X β )(y X β ) 求极小值,到此与OLSE完全相同,即
βˆ=(XX)-1Xy
26
误差项方差 2 的MLE为
ˆL2
1SSE1(ee) nn
这是 2 的有偏估计,但它满足一致性, 在大样本的情况下,是 2 的渐进无偏 估计量。
27
以上方程组经整理后,得到用矩阵形式表示的 正归方程组
X(y-Xβˆ)0
得
XXβˆ =Xy
当 (X X )-1 存在时,即得回归参数的最小二乘
估计为
βˆ=(XX)-1Xy
19
回归值与残差
称
y ˆiˆ0ˆ1 x i1ˆ2 x i2ˆp x ip
为观测值
y
的回归拟合值,简称回归值;
参数的最小二乘法(例题分析)
【例3.1】国际旅游外汇收入是国民经济发展的重要 组成部分,影响一个国家或地区旅游收入的因素包括 自然、文化、社会、经济、交通等多方面的因素,本 例研究第三产业对旅游外汇收入的影响。第三产业由
12个组成部分,分别是 x 1 农林牧渔服务业, x 2 地质 勘探水利管理业,x 3 交通运输仓储和邮电通信业, x 4 批发零售贸易和餐饮业, x 5 金融保险业, x 6 房地产业, x 7 社会服务业,x 8 卫生体育和社会福利业, x 9 教育文 化艺术和广播,x 1 0 科学研究和综合艺术, x 1 1 党政机关, x 1 2 其他行业。选取2019年我国31个省、市、自治区的
第三章 多元线性回归模型案例
![第三章 多元线性回归模型案例](https://img.taocdn.com/s3/m/92907763453610661fd9f405.png)
第三章 多元线性回归模型案例一、邹式检验(突变点检验、稳定性检验) 1.突变点检验1985—2002年中国家用汽车拥有量(t y ,万辆)与城镇居民家庭人均可支配收入(t x ,元),数据见表3.1。
表3.1 中国家用汽车拥有量(t y )与城镇居民家庭人均可支配收入(t x )数据年份 t y (万辆)t x (元)年份 t y (万辆)t x (元)1985 28.49 739.1 1994 205.42 3496.2 1986 34.71 899.6 1995 249.96 4283 1987 42.29 1002.2 1996 289.67 4838.9 1988 60.42 1181.4 1997 358.36 5160.3 1989 73.12 1375.7 1998 423.65 5425.1 1990 81.62 1510.2 1999 533.88 5854 1991 96.04 1700.6 2000 625.33 6280 1992 118.2 2026.6 2001 770.78 6859.6 1993155.772577.42002968.987702.8下图是关于t y 和t x 的散点图:从上图可以看出,1996年是一个突变点,当城镇居民家庭人均可支配收入突破4838.9元之后,城镇居民家庭购买家用汽车的能力大大提高。
现在用邹突变点检验法检验1996年是不是一个突变点。
H 0:两个子样本(1985—1995年,1996—2002年)相对应的模型回归参数相等 H 1:备择假设是两个子样本对应的回归参数不等。
在1985—2002年样本范围内做回归。
在回归结果中作如下步骤:输入突变点:得到如下验证结果:由相伴概率可以知道,拒绝原假设,即两个样本(1985—1995年,1996—2002年)的回归参数不相等。
所以,1996年是突变点。
2.稳定性检验以表3.1为例,在用1985—1999年数据建立的模型基础上,检验当把2000—2002年数据加入样本后,模型的回归参数时候出现显著性变化。
多元线性回归模型(习题与解答)
![多元线性回归模型(习题与解答)](https://img.taocdn.com/s3/m/e5bb7b4a6f1aff00bfd51e3f.png)
多元线性回归模型(习题与解答)第三章多元线性回归模型一、习题(一)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规方程组4)无偏性5)一致性6)参数估计量的置信区间7)被解释变量预测值的置信区间8)受约束回归9)无约束回归10)参数稳定性检验3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)i i i X Yεββ++=3102)i i i X Yεββ++=log103)i i i X Yεββ++=log log104)i i i X Yεβββ++=)(2105)i ii X Yεββ+=106)i i i X Yεββ+−+=)1(1107)i i i i X X Yεβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3-6.请说明区间估计的含义。
(二)基本证明与问答类题型3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y+++++=ββββL22110,n i,,2,1L =的正规方程组,及其推导过程。
3-8.对于多元线性回归模型,证明:(1)∑=0i e(2)0)ˆˆˆ(ˆ110=+++=∑∑iki k i i i e x x e yβββL3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么?3-10.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?3-11.设有模型:u x x y+++=22110βββ,试在下列条件下:(1)121=+ββ(2)21ββ=分别求出1β和2β的最小二乘估计量。
第三章 多元线性回归模型
![第三章 多元线性回归模型](https://img.taocdn.com/s3/m/6caba27a5acfa1c7aa00ccee.png)
其中:n-k-1为残差平方和的自由度,n-1为总体平 方和的自由度。
检验) 三、方程的显著性检验(F检验 方程的显著性检验 检验
方程的显著性检验, 方程的显著性检验,旨在对模型中被解释变 量与解释变量之间的线性关系在总体上 在总体上是否显著 量与解释变量之间的线性关系在总体上是否显著 成立作出推断。 成立作出推断。 即检验模型
写成矩阵形式: 写成矩阵形式:
Y = Xb + µ
其中
Y1 Y2 Y = M Yn
1 1 X = M 1 X 11 X 12 M X 1n X 21 X 22 M X 2n L L L X k1 X k2 M X kn n × ( k +1 )
回归系数的显著性检验( 检验 检验) 第五节 回归系数的显著性检验(t检验)
方程的总体线性 总体线性关系显著≠每个解释变量 总体线性 ≠每个解释变量对被 解释变量的影响都是显著的 因此,必须对每个解释变量进行显著性检验, 以决定是否作为解释变量被保留在模型中。 检验完成的。 这一检验是由对变量的 t 检验完成的。
或
1 x ′x → Q n
其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量 的离差为元素组成的n×k阶矩阵
x11 L x k1 x= M L M x 1n L x kn
假设6,回归模型的设定是正确的。
第二节 参数的最小二乘估计
一、回归参数的最小二乘估计 二、随机项µ的方差的估计量 随机项 的方差的估计量
( )
( )
( )
= E ( X ′X
)
多元线性回归模型的案例讲解
![多元线性回归模型的案例讲解](https://img.taocdn.com/s3/m/8710852ef4335a8102d276a20029bd64783e62d6.png)
多元线性回归模型的案例讲解案例:房价预测在房地产市场中,了解各种因素对房屋价格的影响是非常重要的。
多元线性回归模型是一种用于预测房屋价格的常用方法。
在这个案例中,我们将使用多个特征来预测房屋的价格,例如卧室数量、浴室数量、房屋面积、地段等。
1.数据收集与预处理为了构建一个准确的多元线性回归模型,我们需要收集足够的数据。
我们可以从多个渠道收集房屋销售数据,例如房地产公司的数据库或者在线平台。
数据集应包括房屋的各种特征,例如卧室数量、浴室数量、房屋面积、地段等,以及每个房屋的实际销售价格。
在数据收集过程中,我们还需要对数据进行预处理。
这包括处理缺失值、异常值和重复值,以及进行特征工程,例如归一化或标准化数值特征,将类别特征转换为二进制变量等。
2.模型构建在数据预处理完成后,我们可以开始构建多元线性回归模型。
多元线性回归模型的基本方程可以表示为:Y=β0+β1X1+β2X2+……+βnXn其中,Y表示房屋价格,X1、X2、……、Xn表示各种特征,β0、β1、β2、……、βn表示回归系数。
在建模过程中,我们需要选择合适的特征来构建模型。
可以通过统计分析或者领域知识来确定哪些特征对房价具有显著影响。
3.模型评估与验证构建多元线性回归模型后,我们需要对模型进行评估和验证。
最常用的评估指标是均方误差(Mean Squared Error)和决定系数(R-squared)。
通过计算预测值与实际值之间的误差平方和来计算均方误差。
决定系数可以衡量模型对观测值的解释程度,取值范围为0到1,越接近1表示模型越好。
4.模型应用完成模型评估与验证后,我们可以将模型应用于新的数据进行房价预测。
通过将新数据的各个特征代入模型方程,可以得到预测的房价。
除了房价预测,多元线性回归模型还可以用于其他房地产市场相关问题的分析,例如预测租金、评估土地价格等。
总结:多元线性回归模型可以在房地产市场的房价预测中发挥重要作用。
它可以利用多个特征来解释房价的变化,并提供准确的价格预测。
3 多元线性回归模型
![3 多元线性回归模型](https://img.taocdn.com/s3/m/aa79716fcaaedd3382c4d308.png)
经济问题的复杂性
几乎所有的经济问题,影响因素都不止一个。 例如:房地产价格的影响因素 收入水平、地价、建筑成本、地段、预期、政策因素、 贷款利率、性别比、丈母娘需求、别的投资渠道是否 顺畅等等。 再如:某只股票的价格 所属行业、盈利水平、知名度、国家政策、交易费率、 发行量、银行存款利率、国家整体发展情况、重大人 事变动等等。
总体回归函数:
E(Y) = β + βX + βX + ...+ β X 0 1 1 2 2 k k
或
E(Yi ) = β + βX + βX + ...+ β X 0 1 1i 2 2i k ki
E(Y1 ) = β + βX +β X + ...+ β X 0 1 11 2 21 k k1 + βX +β X + ...+ β X E(Y2 ) = β 0 1 12 2 22 k k2 E(Y ) = β + βX + β X + ...+ β X n 0 1 1n 2 2n k kn
Y1 Y 2 令 Y = Y N
1X 11X 21 X k 1 1X 12 X 22 X k 2 X β= 1X X X 1n 2n kn
β 0 β 1 β k
1 E(Y1 ) 总体回归模型: 2 E (Y2 ) Y = Xβ + = E(Y) = 总体回归函数: E(Y ) n N E(Y) = Xβ
样本回归模型:
复习多元线性回归模型案例
![复习多元线性回归模型案例](https://img.taocdn.com/s3/m/1da5524017fc700abb68a98271fe910ef12daeb3.png)
复习多元线性回归模型案例多元线性回归是统计学中的一种分析方法,用于研究自变量对因变量的影响关系。
在多元线性回归中,有多个自变量同时对因变量进行解释。
为了更好地理解多元线性回归模型,我将通过一个具体案例来进行复习。
假设我们想研究房屋的销售价格与多个因素之间的关系。
这些因素可能包括房屋的面积、卧室数量、浴室数量以及附近学校的评分等。
我们可以使用多元线性回归模型来分析这些因素对房屋价格的影响。
首先,我们需要收集相关数据。
假设我们在一个地区随机选择了100间房屋,并记录了它们的面积、卧室数量、浴室数量以及附近学校的评分。
我们还记录了这些房屋的销售价格。
这些数据将用于建立多元线性回归模型。
接下来,我们将进行数据预处理。
首先,我们需要检查数据是否有缺失值。
如果有缺失值,我们需要进行适当的处理,例如用平均值或中位数来填充缺失值。
然后,我们需要对数据进行标准化处理,以确保各个变量具有相似的尺度。
这样做可以避免一些变量对模型的影响过大。
接下来,我们可以建立多元线性回归模型。
回归模型的一般形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中Y表示因变量(房屋销售价格),X1、X2等表示自变量(房屋面积、卧室数量、浴室数量等),β0、β1、β2等表示回归系数,ε表示误差项。
在建立模型之前,我们可以进行变量的选择,以排除一些无关变量。
常用的变量选择方法包括逐步回归、前向选择和后向选择等。
选择自变量的方法将根据不同的研究目的而有所不同。
一旦模型建立完成,我们需要进行模型诊断来评估模型的拟合程度。
常用的诊断方法包括残差分析、Durbin-Watson检验等。
如果模型拟合不好,我们需要进一步调整模型,例如尝试添加交互项或非线性项等。
最后,我们可以使用建立好的多元线性回归模型进行预测或推断。
我们可以根据模型中的回归系数来解释自变量对因变量的影响。
例如,如果回归系数β1为正,则表示房屋面积的增加与销售价格的增加呈正相关。
多元线性回归模型案例
![多元线性回归模型案例](https://img.taocdn.com/s3/m/181dafc6a1116c175f0e7cd184254b35effd1a43.png)
多元线性回归模型案例多元线性回归模型是一种用于分析多个自变量和一个因变量之间关系的统计方法。
它可以帮助我们理解不同自变量对因变量的影响程度,以及它们之间的相互关系。
在本文中,我们将通过一个实际案例来演示多元线性回归模型的应用。
假设我们想要研究某个地区的房屋价格与房屋面积、房间数量和地理位置之间的关系。
我们收集了一些数据,包括不同房屋的面积、房间数量、地理位置和售价。
我们希望利用这些数据建立一个多元线性回归模型,以预测房屋价格。
首先,我们需要对数据进行预处理。
这包括检查数据是否存在缺失值、异常值或离群点。
如果发现这些问题,我们需要进行相应的处理,例如删除缺失值、调整异常值或使用合适的方法进行离群点处理。
在数据预处理完成后,我们可以开始建立多元线性回归模型。
建立多元线性回归模型的第一步是选择自变量。
在本例中,我们选择房屋面积、房间数量和地理位置作为自变量,售价作为因变量。
接下来,我们需要检验自变量之间是否存在多重共线性。
如果存在多重共线性,我们需要进行相应的处理,例如删除一些自变量或使用主成分分析等方法进行处理。
一旦确定了自变量,我们可以利用最小二乘法来估计回归系数。
最小二乘法是一种常用的估计方法,它可以帮助我们找到使得观测数据和模型预测值之间残差平方和最小的回归系数。
通过最小二乘法,我们可以得到每个自变量的回归系数,从而建立多元线性回归模型。
建立好多元线性回归模型后,我们需要对模型进行检验。
这包括检验模型的拟合优度、残差的正态性和独立性等。
如果模型通过了检验,我们就可以利用该模型进行预测和推断。
例如,我们可以利用模型来预测某个房屋的售价,或者利用模型来推断不同自变量对售价的影响程度。
在实际应用中,多元线性回归模型可以帮助我们理解复杂的数据关系,进行预测和推断。
然而,我们也需要注意模型的局限性和假设条件。
例如,多元线性回归模型假设自变量和因变量之间是线性关系,如果实际情况并非如此,我们需要考虑使用其他模型进行分析。
第三章 多元线性回归案例分析
![第三章 多元线性回归案例分析](https://img.taocdn.com/s3/m/fa905e6b783e0912a2162acc.png)
多元回归现行回归习题分析【例3.2】中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制改革的深化和经济的快速增长,中国的财政收支状况发生很大变化,中央和地方的税收收入1978年为519.28亿元,到2002年已增长到17636.45亿元,25年间增长了33倍,平均每年增长%。
为了研究影响中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984-1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收增长速度的影响不是非常大。
因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了全面反映中国税收增长的全貌,选择包括中央和地方税收的“国家财政收入”中的“各项税收”(简称“税收收入”)作为被解释变量,以反映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于财税体制的改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑税制改革对税收增长的影响。
所以解释变量设定为可观测的“国内生产总值”、“财政支出”、“商品零售物价指数”等变量。
多元线性回归(习题答案)
![多元线性回归(习题答案)](https://img.taocdn.com/s3/m/fe5d9af4f705cc1755270992.png)
第3章练习题参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)(1) 从经济意义上考察估计模型的合理性。
(2) 在5%显著性水平上,分别检验参数21,ββ的显著性。
(3) 在5%显著性水平上,检验模型的整体显著性。
3.1参考解答:由模型估计结果可看出:旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。
平 均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。
取0.05α=,查表得0.025t (313) 2.048-=因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。
取0.05α=,查表得0.05(1,)(2,28) 3.34F k n k F α--==由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。
3.2根据下列数据试估计偏回归系数、标准误差,以及可决系数与修正的可决系数:3.2参考解答:由已知,偏回归系数21221222221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑274778.346280.0004250.9004796.00084855.096280.0004796.000⨯-⨯=⨯- 0.726594= 22111232221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑24250.90084855.09674778.3464796.00084855.096280.0004796.000⨯-⨯=⨯- 2.73628=12132ˆˆˆY X X βββ=-+ 367.6930.726594402.760 2.736288.0=-⨯-⨯ 53.1598=可决系数 213222ˆˆi i i iiy x y x R yββ+=∑∑∑0.72659474778.346 2.736284250.966042.269⨯+⨯=0.998832=修正的可决系数2211(1)n R R n k-=--- 1511(10.998832)153-=--- 0.998637=标准误差 由于 2∑i e =21RSSR TSS=- 即22(1)ieR TSS =-∑(10.998832)66042.269=-⨯ 77.1374= F 统计量2211n k R F k R -=--=1530.9988323110.998832---=5130.986标准误差22ˆie n kσ=-∑77.1374153=-6.4281=所以标准误差ˆ 2.5354σ=3.3参考解答:(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2)估计模型参数,结果为Dependent Variable: Y Method: Least Squares Date: 10/20/13 Time: 18:32 Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob. C -50.01638 49.46026 -1.011244 0.3279 X 0.086450 0.029363 2.944186 0.0101 T52.370315.202167 10.067020.0000 R-squared0.951235 Mean dependent var 755.1222 Adjusted R-squared 0.944732 S.D. dependent var 258.7206 S.E. of regression60.82273 Akaike info criterion11.20482Sum squared resid 55491.07 Schwarz criterion 11.35321 Log likelihood -97.84334 Hannan-Quinn criter. 11.22528 F-statistic 146.2974 Durbin-Watson stat 2.605783 Prob(F-statistic)0.000000即 ˆ50.01640.086552.3703i i iY X T =-++ (49.46026)(0.02936) (5.20217)t= (-1.011244) (2.944186) (10.06702) R 2=0.951235 944732.02=R F=146.2974(3)检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,(户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α)可判断户主受教育年数对家庭书刊消费支出确实有显著影响;同理可以判断,家庭月平均收入对家庭书刊消费支出的影响也是显著的。
第三章 多元线性回归模型案例及作业
![第三章 多元线性回归模型案例及作业](https://img.taocdn.com/s3/m/c479c1f02cc58bd63186bd43.png)
1. 表1列出了中国2000年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y ,资产合计K 及职工人数L 。
序号 工业总产值Y/亿元资产合计K/亿元职工人数L/万人序号 工业总产值Y/亿元资产合计K/亿元职工人数L/万人1 3722.700 3078.220 113.0000 17 812.7000 1118.810 43.000002 1442.520 1684.430 67.00000 18 1899.700 2052.160 61.000003 1752.370 2742.770 84.00000 19 3692.850 6113.110 240.00004 1451.290 1973.820 27.00000 20 4732.900 9228.250 222.00005 5149.300 5917.010 327.0000 21 2180.230 2866.650 80.000006 2291.160 1758.770 120.0000 22 2539.760 2545.630 96.000007 1345.170 939.1000 58.00000 23 3046.950 4787.900 222.00008 656.7700 694.9400 31.00000 24 2192.630 3255.290 163.00009 370.1800 363.4800 16.00000 25 5364.830 8129.680 244.0000 10 1590.360 2511.990 66.00000 26 4834.680 5260.200 145.0000 11 616.7100 973.7300 58.00000 27 7549.580 7518.790 138.0000 12 617.9400 516.0100 28.00000 28 867.9100 984.5200 46.00000 13 4429.190 3785.910 61.00000 29 4611.390 18626.94 218.0000 14 5749.020 8688.030 254.0000 30 170.3000 610.9100 19.00000 15 1781.370 2798.900 83.00000 31325.5300 1523.190 45.00000161243.070 1808.440 33.00000设定模型为:Y AK L e αβμ=(1) 利用上述资料,进行回归分析;(2) 回答:中国2000年的制造业总体呈现规模报酬不变状态吗? 将模型进行双对数变换如下:ln ln ln ln Y A K L αβμ=+++1)进行回归分析:得到如下回归结果:于是,样本回归方程为:ˆ=++Y K Lln 1.1540.609ln0.361ln(1.59) (3.45) (1.79)20.8099,0.7963,59.66===R R F从回归结果可以看出,模型的拟合度较好,在显著性水平0.1的条件下,各项系数均通过了t检验。
多元线性回归模型案例
![多元线性回归模型案例](https://img.taocdn.com/s3/m/9c1bd907b207e87101f69e3143323968011cf42c.png)
多元线性回归模型案例多元线性回归是一种常见的统计分析方法,用于建立一个因变量与多个自变量之间的关系模型。
该模型可以帮助我们理解自变量对因变量的影响,并用于预测新数据的因变量取值。
本文将介绍一个实际案例,说明如何使用多元线性回归模型进行分析。
假设我们是一家电商公司,想要探究哪些因素会对在线销售额产生影响。
为了实现这一目标,我们收集了一年内的销售数据,并选取了以下变量作为自变量:1.广告费用:对于每个月,我们记录了投入到在线广告的费用。
2.促销活动:我们将每种促销活动的销售额记录成一个二进制变量,代表该促销活动是否进行。
3.季节性:我们记录了每个月的季节性变量,例如,一年中的第一个季度为1,第二个季度为2,以此类推。
同时,我们将每月的销售额作为因变量。
基于这些数据,我们将应用多元线性回归模型来分析这些自变量对销售额的影响。
首先,我们需要进行数据预处理。
这包括处理缺失值,检查异常值,并将分类变量进行独热编码转换。
我们还可以计算自变量之间的相关性,以了解它们是否具有高度相关性。
如果有,我们可能需要进行变量转换或删除一些自变量。
接下来,我们可以使用多元线性回归模型来建立销售额与自变量之间的关系。
模型可以表示如下:销售额=β₀+β₁×广告费用+β₂×促销活动+β₃×季节性+ɛ其中,β₀,β₁,β₂,β₃是回归系数,ɛ是误差项。
我们的目标是估计这些回归系数,以便预测新数据的销售额。
为了估计这些回归系数,我们可以使用最小二乘法。
最小二乘法的核心思想是最小化残差平方和,即模型预测值与实际值之间的差异。
通过最小化这个差异,我们可以找到使模型最拟合数据的回归系数。
在我们的案例中,我们可以使用各种统计软件或编程语言(如R或Python)来实现多元线性回归,并计算回归系数的估计值。
这些软件和语言通常具有内置的回归函数,只需提供数据和自变量就可以进行回归分析。
一旦我们获得了估计的回归系数,我们可以进行模型的解释和推断。
第三章 多元回归模型
![第三章 多元回归模型](https://img.taocdn.com/s3/m/4839517165ce050877321303.png)
r0i,12i1i1k
r r r 0i,12i1i1k 1 0k ,12k 1 ik ,12i1i1k 1
1 r02k,12k1
1
r2
ik ,12i1i1k
1
问题:在多元回归中 r12(i1)(i1)k ,0 是越大越好,
还是越小越好?
17
模型显著性检验(F检验): F统计量
核心思想:残差平方和最小准则
min ei2 min yi yˆi 2
min yi ˆ0 ˆ1x1i ˆ2x2i ˆk xki 2
求解原理
ei2
ˆ j
0
结论
j 0,1,2,, k
ˆ X ' X 1 X 'Y
8
例子
经过研究,发现家庭书刊消费水平受家庭 收入及户主教育年数的影响。现对某地区 的家庭进行抽样调查,得到的样本数据如 表所示,其中 y 表示家庭书刊消费水平
其中,n k 1为 ei2 的自由度,n 1 为 yi y2
的自由度
引入修正的样本决定系数R 2的作用:
用自由度调整后,可以消除拟合优度评价中解释变量多 少对决定系数计算的影响
对于包含的解释变量个数不同的模型,可以用调整后的 决定系数直接比较它们的拟合优度的高低,但不能用原 来未调整的决定系数来比较
零阶偏相关系数、一阶偏相关系数、k 1 阶偏相关系数
r01 为零阶偏相关系数、 r02,1 称为一阶偏相关系数、 r01,23 称
为二阶偏相关系数、r01,234 称为三阶偏相关系数,依此类推
16
偏相关系数:一般公式
一般地,在研究多个变量的偏相关系数时,因变量 y
与解释变量 xi i 1,2,, k 的k 1 阶偏相关系数时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 表1列出了中国2000年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y ,资产合计K 及职工人数L 。
序号 工业总产值Y/亿元资产合计K/亿元职工人数L/万人序号 工业总产值Y/亿元资产合计K/亿元职工人数L/万人1 3722.700 3078.220 113.0000 17 812.7000 1118.810 43.000002 1442.520 1684.430 67.00000 18 1899.700 2052.160 61.000003 1752.370 2742.770 84.00000 19 3692.850 6113.110 240.00004 1451.290 1973.820 27.00000 20 4732.900 9228.250 222.00005 5149.300 5917.010 327.0000 21 2180.230 2866.650 80.000006 2291.160 1758.770 120.0000 22 2539.760 2545.630 96.000007 1345.170 939.1000 58.00000 23 3046.950 4787.900 222.00008 656.7700 694.9400 31.00000 24 2192.630 3255.290 163.00009 370.1800 363.4800 16.00000 25 5364.830 8129.680 244.0000 10 1590.360 2511.990 66.00000 26 4834.680 5260.200 145.0000 11 616.7100 973.7300 58.00000 27 7549.580 7518.790 138.0000 12 617.9400 516.0100 28.00000 28 867.9100 984.5200 46.00000 13 4429.190 3785.910 61.00000 29 4611.390 18626.94 218.0000 14 5749.020 8688.030 254.0000 30 170.3000 610.9100 19.00000 15 1781.370 2798.900 83.00000 31325.5300 1523.190 45.00000161243.070 1808.440 33.00000设定模型为:Y AK L e αβμ=(1) 利用上述资料,进行回归分析;(2) 回答:中国2000年的制造业总体呈现规模报酬不变状态吗? 将模型进行双对数变换如下:ln ln ln ln Y A K L αβμ=+++1)进行回归分析:得到如下回归结果:于是,样本回归方程为:ˆY K L=++ln 1.1540.609ln0.361ln(1.59) (3.45) (1.79)20.8099,0.7963,59.66===R R F从回归结果可以看出,模型的拟合度较好,在显著性水平0.1的条件下,各项系数均通过了t检验。
从F检验可以看出,方程对Y的解释程度较少。
R=表明,工业总产值对数值的79.6%的变化可以由资产合计对数与职工0.7963的对数值的变化来解释,但仍有20.4%的变化是由其他因素的变化影响的。
从上述回归结果看,ˆˆ0.971αβ+=≈,即资产与劳动的产出弹性之和近似为1,表明中国制造业在2000年基本呈现规模报酬不变的状态。
2. 表3.3列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。
年份 Y/千克X/元 P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)年份 Y/千克 X/元 P 1/(元/千克) P 2/(元/千克)P 3/(元/千克)1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 22586.64 14.10 22.16 1990 4.04 768 3.867.32 10.61 2002 5.29 24787.0416.8223.261991 4.03 8433.986.7810.48(1) 求出该地区关于家庭鸡肉消费需求的如下模型:01213243ln ln ln ln ln Y X P P P u βββββ=+++++(2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。
先做回归分析,过程如下:输出结果如下:所以,回归方程为:123ln 0.73150.3463ln 0.5021ln 0.1469ln 0.0872ln Y X P P P =-+-++(-2.463) (4.182) (-4.569) (1.483) (0.873)由上述回归结果可以知道,鸡肉消费需求受家庭收入水平和鸡肉价格的影响,而牛肉价格和猪肉价格对鸡肉消费需求的影响并不显著。
验证猪肉价格和鸡肉价格是否有影响,可以通过赤池准则(AIC )和施瓦茨准则(SC)。
若AIC值或SC值减少了,就应该去掉该解释变量。
去掉猪肉价格P2与牛肉价格P3重新进行回归分析,结果如下:Variable Coefficient Std. Error t-Statistic Prob.C -1.125797 0.088420 -12.73237 0.0000LOG(X) 0.451547 0.024554 18.38966 0.0000LOG(P1) -0.372735 0.063104 -5.906668 0.0000R-squared 0.980287 Mean dependent var 1.361301Adjusted R-squared 0.978316 S.D. dependent var 0.187659S.E. of regression 0.027634 Akaike info criterion -4.218445Sum squared resid 0.015273 Schwarz criterion -4.070337Log likelihood 51.51212 F-statistic 497.2843Durbin-Watson stat 1.877706 Prob(F-statistic) 0.000000通过比较可以看出,AIC值和SC值都变小了,所以应该去掉猪肉价格P2与牛肉价格P3这两个解释变量。
所以该地区猪肉与牛肉价格确实对家庭的鸡肉消费不产生显著影响。
3、某硫酸厂生产的硫酸的透明度指标一直达不到优质要求,经分析透明度低与硫酸中金属杂质的含量太高有关。
影响透明度的主要金属杂质是铁、钙、铅、镁等。
通过正交试验的方法发现铁是影响硫酸透明度的最主要原因。
测量了47组样本值,数据见表3.4。
表3.4 硫酸透明度y与铁杂质含量x数据序数X Y 序数X Y1 31 190 25 60 502 32 190 26 60 413 34 180 27 61 524 35 140 28 63 345 36 150 29 64 406 37 120 30 65 257 39 110 31 69 308 40 81 32 74 209 42 100 33 74 4010 42 80 34 76 2511 43 110 35 79 3012 43 80 36 85 2513 48 68 37 87 1614 49 80 38 89 1615 50 50 39 99 2016 52 70 40 76 2017 52 50 41 100 2018 53 60 42 100 2019 54 44 43 110 1520 54 54 44 110 1521 56 48 45 122 2722 56 50 46 154 2023 58 56 47 210 2024 58 52硫酸透明度y与铁杂质含量的散点图如下所以应该建立非线性回归模型。
1.通过线性化的方式估计非线性模型。
(1)建立倒数模型,在Equation Specification(方程设定)框中输入得到输出结果为所以倒数表达式为:=-y x1/0.069 2.37(1/)(18.57) (-11.95)20.76,143, 1.095===R F DW(2)建立指数函数方程设定为:得到输出结果为:所以指数表达式为:=+y xln 1.99104.5(1/)(22) (21.6)20.91,468.38, 1.71R F DW===把表达式还原为指数形式:ln ln(7.33)104.5(1/)y x=+即1104.5()7.33x y e=可决系数也由0.76提高到0.91,可见拟合为指数函数比倒数函数更好。
2.直接估计非线性回归模型直接估计的方程设定如下图所示:得到输出结果为:对应的非线性估计结果是:1100.1()=y e8.2965xR=(11) (29.4) 20.96可见可决系数由0.91提高到0.96,则直接估计结果比线性化之后估计更好。