最短路径问题
最短路径问题介绍
最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。
在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。
通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。
最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。
图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。
在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。
最短路径即是在图中找到一条路径,使得该路径上的边权和最小。
在解决最短路径问题的过程中,存在着多种算法可以应用。
最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。
Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。
该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。
除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。
例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。
Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。
一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。
在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。
利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。
最短路径问题
A
B
4、如图所示,M、N是△ABC边AB与AC上 两点,在BC边上求作一点P,使△PMN的周 长最小。
A
M
B
P
M ’
N C
本节课你有什么收获?
①学习了利用轴对称解决最短路径问题 ②感悟和体会转化的思想
补偿提高
如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径.
A'
M
N
M′ a b
N′
B
∴AM+MN+BN=AA′+A′B, AM′+M′N′+BN′=AA′+A′N′+BN′.
在△A′N′B中,由线段公理知A′N′+BN′ >A′B,
∴AM′ +M′N′ +BN′ > AM+MN+BN.
总结归纳:
在解决最短路径问题时,我们 通常利用轴对称、平移等变换,把 较复杂的问题转化为容易解决的问 题,从而作出最短路径的选择。
新课引入
我们把研究关于“两点之间,线 段最短” “垂线段最短”等问题, 称它们为最短路径问题.最短路径问 题在现实生活中经常碰到,今天我们 就通过几个实际问题,具体体会如何 运用所学知识选择最短路径.
第十三章 轴对称
13.4课题学习 最短路径问题
问题1 相传,古希腊亚历山大城里有一位久负盛名 的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
参考右图,利用“两点之间,线段最短”可以解决.
解:
A
A'
M
a
b
N
B
如图,沿垂直于河岸的方向平移A到A′,使AA′等 于河宽,连接A′B交河岸于点N,在点N处造桥MN,此 时路径AM+MN+BN最短.
最短路径问题 课件
知识点1:两点在直线异侧时的最短路径问题 【例1】 如图1-13-30-1,在直线l上找一点P,使得 PA+PB的和最小.
解:答图13-30-1,点P即为所求.
知识点2:两点在直线同侧时的最短路径问题 【例2】 如图1-13-30-3,已知直线l和l外两点A,B, 点A,B在l同侧,求作一点P,使点P在直线l上,并且 使PA+PB最短.
解:如答图13-30-6,作点A的对称点A′, 连接A′B,与直线l相交于点C,连接AC, 点C即为所求.
6. 如图1-13-30-9,正方形网格中每个小正方形边 长都是1.在直线l上找一点P,使PB+PC的值最小.
略.
7. 如图1-13-30-10,在平面直角坐标系中,点 A(4,4),B(2,-4).在y轴上求作一点P,使 PA+PB的值最小.(不写作法,保留作图痕迹)
略.
8. 如图1-13-30-11,∠XOY内有一点P,请在射线OX上 找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.
解:如答图13-30-7,作点P关于OX对称的点 P1,关于OY对称的点P2,连接P1P2,交OX, OY于点M,N,则M,N两点即为所求.
9. 如图1-13-30-12,在△ABC中,AB=AC,AD是BC边 上的高,P是AB边上的一点,请在高AD上找一点E, 使得△PEB的周长最短.
解:作图略, 作点A关于直线l的对称点A′, 连接A′B与直线l交于点P, 则P点即为所求.
4. 如图1-13-30-7,直线l旁有两点A,B,在直线上 找一点CA,B两点的距离相等.
解:如答图13-30-5,点C,点D即为所求.
5. 如图1-13-30-8,l为某河流的南岸线,一天傍晚 某牧童在A处放牛,欲将牛牵到河边饮水后再回到家 B处,牧童想以最短的路程回家.请你在找中画出牛 饮水C的位置.
最短路径问题及其变形
最短路径问题及其变形
最短路径问题是指给定一个图和起点、终点,求出起点到终点的路径中具有最小权重和的路径的问题。
可以通过一些经典算法来解决,如Dijkstra算法、Bellman-Ford算法和Floyd-Warshall算法。
最短路径问题的变形可以有很多种,下面介绍几个常见的变形:
1. 单源最短路径问题:给定一个图和一个起点,求出起点到图中所有其他节点的最短路径。
这个问题可以通过Dijkstra算法
或Bellman-Ford算法求解。
2. 多源最短路径问题:给定一个图和多个起点,求出每个起点到图中所有其他节点的最短路径。
这个问题可以通过多次运行Dijkstra算法或Floyd-Warshall算法求解。
3. 含有负权边的最短路径问题:给定一个图,其中可能存在负权边,求出起点到终点的最短路径。
如果图中不存在负权回路,可以使用Bellman-Ford算法求解,如果存在负权回路,则无
法找到最短路径。
4. 最长路径问题:与最短路径问题相反,求出起点到终点的路径中具有最大权重和的路径。
可以通过将图中的权重取反来将最长路径问题转化为最短路径问题求解。
5. 限制路径中经过的节点或边数的最短路径问题:给定一个图和一个限制条件,如经过的节点数或经过的边数等,求出满足
限制条件的最短路径。
可以通过修改Dijkstra算法或Floyd-Warshall算法,增加限制条件来求解。
以上仅为最短路径问题的一些常见变形,实际问题可能还有其他的变形。
解决这些变形问题的关键是根据具体情况修改或选择合适的算法,以及定义适当的权重和限制条件。
最短路径问题
最短路径问题【基础知识】最短路径问题是一个经典问题,旨在寻找图中两点之间的最短路径,具体有以下几种:1. 确定起点的最短路径问题——即已知起始点,求最短路径;2. 确定终点的最短路径问题;3. 确定起点终点的最短路径问题;4. 全局最短路径问题。
这些问题涉及知识有“两点之间线段最短”、“垂线段最短”、“三角形三边之和大于第三边”、“轴对称”、“平移旋转”等。
问题图形在直线l上求一点P,使得PA+PB值最小在直线l上求一点P,使得PA+PB值最小(将军饮马问题)在直线l1、l2上分别求点M、N,使得∆PMN的周长最小直线m//n,在m、n上分别求点M、N,使MN⊥m,且AM+MN+BN的值最小在直线l上求两点M、N(M在左),使MN=a,并且AM+MN+BN的值最小在直线l1、l2上分别求点M、N,使得四边形PQMN的周长最小在直线l1上求点A,在l2上求点B,使PA+PB最小点A、B分别为直线l1、l2上定点,在l1、l2上分别求点N、M,使AM+MN+NB在直线l上求一点P,使|PA−PB|的值最小在直线l上求一点P,使|PA−PB|的值最大在直线l上求一点P,使|PA−PB|的值最大若∆ABC中每一个内角都小于120°,在∆ABC内求一点P,使得PA+PB+PC的值最小)如图,在△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD+√55BD 的最小值是 .如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC =1,BD =2,点P 为弧AB 上一动点,求的最小值.。
最短路径问题
A
O
N
3. 两定两动型最值
例:在∠MON的内部有点A和点B,在OM 上找一点C,在ON上找一点D,使得四边形 ABCD周长最短.
M
A
B
O
N
例:(造桥选址)将军每日需骑马从军营出发,去 河岸对侧的瞭望台观察敌情,已知河流的宽度为30 米,请问,在何地修浮桥,可使得将军每日的行程 最短?
A
C
D
B
4. 垂线段最短型
最短路径问题
1.两定一动型:两定点到一动 点的距离和最小
原理:两点之间线段最短。
例:在定直线l上找一个动点C,使动点C到两 个定点A与B的距离之和最小, 即CA+CB的和最小.
B A
l
2.两动一定型 例:在∠MON的内部有一点A,在OM上找 一点B,在ON上找一点C,使得△BAC周长 最短.
M
A
D
E
B
C
3.正方形ABCD的边长为8,M在DC上,且 DM=2,N是AC上的一动点,DN+MN的最小值 为————
课堂小结
通过本节课的学习,
你有哪些收获 ?作业CD NhomakorabeaA
B
典型例题
1.如图,在等边△ABC中,AB = 6,AD⊥BC, E是AC上的一点,M是AD上的一点,且AE = 2, 求EM+EC的最小值
A
A
E M
E
M
H
B
D
CB
D
C
2.正方形ABCD的面积为12, ABE是等边三角 形,点E在正方形ABCD内,在对角线AC上有一 点P,使PD+PE的和最小,则这个最小值是
例1:在∠MON的内部有一点A,在OM上找一点 B,在ON上找一点C,使得AB+BC最短.
最短路径问题 ppt课件
12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)
最短路径的十二个基本问题
两点之间线段最短. PA+PB 最小值为 A B'.
原理
分别作点 P 关于两直 线的对称点 P'和 P'', 在直线 l1 、l2 上分别求 连 P'P'',与两直线交 点 M、N,使△PMN 的 点即为 M,N. 周长最小.
两点之间线段最短. PM+MN+PN 的最小值为 线段 P'P''的长.
【十二个基本问题】
【问题 1】
作法
图形
原理
连 AB,与 l 交点即为
P.
在直线 l 上求一点 P,
使 PA+PB 值最小.
【问题 2】“将军饮马”
作法
作 B 关于 l 的对称点
B'连 A B',与 l 交点
在直线 l 上求一点 P,
即为 P.
使 PA+PB 值最小.
【问题 3】
作法
图形 图形
两点之间线段最短. PA+PB 最小值为 AB.
原理
将点 A 向下平移 MN 的
长度单位得 A',连 A'
B,交 n 于点 N,过 N 作
直线 m ∥ n ,在 m 、n , NM⊥ m 于 M.
上分别求点 M、N,使
MN⊥ m ,且 AM+MN+BN
的值最小.
【问题 6】
作法
图形
将点 A 向右平移 a 个
长度单位得 A',作 A'
关于 l 的对称点 A'',连 在直线 l 上求两点 M、N
对称点 B',连 A'B' l2 上一定点,在 l2 上求 交l2 于 M,交 l1 于 N.
点 M,在 l1 上求点 N,
使 AM+MN+NB 的 值 最
小.
运筹学最短路径问题
运筹学最短路径问题
在运筹学中,最短路径问题是指寻找图中两个节点之间的最短路径。
最短路径可以通过一系列边连接起来,使得路径上的累计权值总和最小。
最短路径问题是运筹学中的经典问题,有广泛的应用领域,如交通网络规划、物流路径优化等。
常见的最短路径算法包括迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法是用于解决单源最短路径问题的一种算法。
它从起点开始,通过不断更新节点的最短路径估计值和前驱节点,逐步扩展到其他节点,直到找到目标节点或所有节点都被处理。
弗洛伊德算法是用于解决全源最短路径问题的一种算法。
它通过动态规划的方式,对所有节点之间的最短路径进行逐步计算和更新,最终得到所有节点之间的最短路径。
除了迪杰斯特拉算法和弗洛伊德算法,还有其他一些算法可以用于解决最短路径问题,如贝尔曼-福特算法和A*算法等。
总之,最短路径问题在运筹学中具有重要的实际应用价值,可以通过不同的算法来求解。
这些算法在实践中可以根据具体的问题特点和需求选择合适的算法进行求解。
最短路径12种类型例题
最短路径12种类型例题最短路径问题是图论中的一个重要问题。
它通常指从一个点到另一个点的最短距离或最短路径。
解决此类问题需要选择一个恰当的算法和数据结构。
本文将介绍12种最短路径类型的例题,并逐步解决它们。
1.单源最短路径单源最短路径指从一个源点到其他所有点的最短距离。
使用Dijkstra算法或Bellman-Ford算法来解决。
2.最短路径树最短路径树是从一个源点到所有其他节点的最短路径构成的一棵树。
使用Dijkstra算法或Bellman-Ford算法来解决。
3.多源最短路径多源最短路径指从所有源点到所有其他点的最短距离。
使用Floyd-Warshall算法来解决。
4.任意两点之间的最短路径任意两点之间的最短路径指从一个点出发,到达另一个点的最短距离。
使用Johnson算法来解决。
5.负权边的最短路径负权边的最短路径指当图中存在负权边时,求取从一个源点到其他所有节点的最短距离。
使用Bellman-Ford算法来解决。
6.负权环的最短路径负权环的最短路径指当图中存在负权环时,求取从一个源点到其他所有节点的最短距离。
使用Bellman-Ford算法来解决。
7.非全源点的最短路径非全源点的最短路径指从集合S中的任意一个节点到集合T中的任意一个节点的最短距离。
使用Dijkstra算法和A*算法来解决。
8.带优先级的最短路径带优先级的最短路径指在一张具有边权和点权的图中,到达终点时要满足某些特殊条件,如使路径上没有超过限定时间的边。
使用A*算法来解决。
9.带障碍的最短路径带障碍的最短路径指在一张具有障碍物的图中,找到穿过障碍物的最短路径。
使用A*算法来解决。
10.可走斜向的最短路径可走斜向的最短路径指在一个八方向图中,找到从起点到终点的最短路径。
使用A*算法来解决。
11.带环的最短路径带环的最短路径指在一个含有环的图中,找到从起点到终点的最短路径。
使用Bellman-Ford算法来解决。
12.非最短路径非最短路径是指除最短路径以外的路径。
《最短路径问题》课件
A A1
符合条件的路径,并标明桥的位置.
ll12
l3 B1 l4 B
课堂小结
最
短
A∙
路 径
造桥选址问题
M
问
A′
a b
题
N
∙B
即AM+NB+MN的值最小.
M′ a M
b
N′
N
∙B
新知探究 跟踪训练
如图,从A地到B地要经过一条小河(河的两岸平行), 现要在河上建一座桥(桥垂直于河的两岸),应如何 选择桥的位置才能使从A地到B地的路程最短?
A
B
解:(1)如图,过点A作AC垂直于河岸,且使得AC的 长等于河宽; (2)连接BC,与河岸GH相交于点N,且过点N作 MN⊥EF于点M,则MN即为所建桥的位置. A
点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.此
时问题转化为,当点N在直线b的什么位置时,A′N+ NB的值最小.A∙ M
a
A′
b
N
∙B
如图,连接A′,B,线段A′B最短.因此,线段A′B与直线 b的交点即为所求的点N的位置,即在此处造桥MN,所 得路径AMNB是最短的.
A∙ M
《最短路径问题》
知识回顾
1.两点一线型.
如图,点A,B分别是直线l异侧的两个点,在直线l上找
一点C,使得AC+BC的值最小,此时点C就是线段AB与
直线l的交点.
A
C
l
B
1.两点一线型.
如图,点A,B是直线l同侧的两
B
点,在直线l上找一点C使得
A
AC+BC的值最小,这时先作点B
行程问题7大经典题型
行程问题7大经典题型行程问题是在现代计算机科学中研究的重要研究领域之一,也称为旅行商问题。
根据具体的应用,行程问题可分为七类经典题型:一、最短路径问题最短路径问题是指使行程开销最小化的最优路径问题,即在有权网(即有距离弧权值的有向图)中求出从起点到终点的最短路径问题。
最短路径问题的特点是将多条路径的值做比较,选择最优的路径。
最短路径问题的解法一般有迪杰斯特拉算法和贝尔曼-福德算法。
二、最小生成树问题最小生成树问题是指在连通图中求最小代价覆盖图(最小生成树)的问题。
求最小生成树也可以用迪杰斯特拉算法、贝尔曼-福德算法、克鲁斯卡尔算法等求解。
三、拓扑排序问题拓扑排序问题是指要解决有向图中的局部拓扑排序问题,让用户能够处理有向图的排序操作。
例如,拓扑排序可以用来求解项目管理中的生产流程排序,求解最长路径问题,用来求解运输问题。
某些拓扑排序问题常用拓扑排序法来解决,它的优点是举例简单,容易解决,但是在处理较大的网络可能不太方便。
四、负责度限制约束最小生成树问题负责度限制约束最小生成树问题是指当有负责度限制或边限制时,求出最小生成树的问题。
负责度限制最小生成树问题与最小生成树问题相似,但限制要求不同,使其可以求最小生成树但不需要所有节点出现。
解决负责度限制最小生成树问题的常见算法有Prim,Kruskal算法,单源最短路径算法等。
五、旅行商问题旅行商问题是指将一个实体从一个位置出发,访问所有位置,最后返回原位置,要尽可能使得整个行程之和最小的问题。
旅行商问题与最短路径问题之间存在着一定的联系,但是它更加复杂,可能有多个路径都是最优的,旅行商问题最优解的求解方法有穷举法、贪心法、遗传算法等。
六、交通网络问题交通网络问题是指涉及多晶体的旅行问题,在该问题中,客户的行程将跨越多个晶体构成的网络,以最小的费用或最短的时间从起点到终点运输物品或人员。
交通网络问题可以使用模拟退火法、遗传算法、混合算法等解决。
七、联通子图覆盖问题联通子图覆盖问题是指求解一个图G是否存在一个联通子图T,满足T中所有顶点和G中的全部顶点是相同的,最小顶点覆盖问题是联通子图覆盖问题的一个特殊情况,该问题的解法一般有贪心法和回溯法。
最短路径问题
最短路径问题
2.3.1最短路径的定义
最短路径问题是运动规划的一个主要的课题。
运动规划问题由二部分组成,分别是最短路径和轨迹规划,其中路径问题归结起来就是连接起点和终点的一条曲线,而与之相匹配的路径规划问题就是形成这样一种路径的策略。
最短路径问题在生活生产的方方面面都会遇到,已经在很多领域都有着充分的运用。
比如现在中国最前端的领域就有涉及,比如:机器人在行动的时候必须做到自主无碰;无人机在飞行的时候必须做到避障突防;巡航导弹在飞行的时候必须做到躲避雷达的范围性探知;在我们的现实生活之中有:全球定位系统导航;各个城市内部不同的道路网规划等。
2.3.2最短路径的一般步骤
最短路径问题总结起来一般有下面三个步骤:
(1)环境建模。
其中,环境建模可以说是最短路径的一个不容忽视的一步,环境建模的目的是建立在实际上可以让计算机来操作进一步来最短路径的环境模型,也就是把现实之中的物理空间转化成算法从而可以形成抽象空间,实现相互间的映射。
(2)路径搜索。
路径搜索就是在环境模型已经完成了之后,运用之前已经建立好的算法,进而去寻找一条最优的的路径,使得我们所建立目标函数能够获得我们所期望的最优值。
(3)路径平滑。
通过之前已经建立好的算法,找到的最优的的路径在实际情况之中,并不一定实际上可行路径,需要后期继续作进一步处理,并且进行平滑的操作,才能使之前找到的最优的的路径成为一条在现实之中可以行走的路径。
最短路径问题课件
·
l
A
·
B′
C
C′
追问4 证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么?
运用新知
练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径.
追问2 利用线段公理解决问题我们遇到了什么障碍呢?如何解决?
新课推进
M
解:如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
A
B
C
P
Q
山
河岸
大桥
新课推进
问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)
B
A
新课推进
追问1 如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
B
A
l
新知探究
精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马”。你能将这个问题抽象为数学问题吗?
B
A
l
新知探究
追问1 这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
B
最短路径问题和解法
最短路径问题和解法最短路径问题是计算一个图中从一个源点到目标点的最短路径问题,是图论中的重要问题之一。
该问题的解法可以划分为两种:单源最短路径问题和全源最短路径问题。
一、单源最短路径问题单源最短路径问题是指从一个源点出发,计算该源点到其他所有点的最短路径的问题。
解法有两种:Dijkstra算法和Bellman-Ford算法。
1. Dijkstra算法Dijkstra算法是一种贪心算法,每次将到源点距离最短的点加入已求出最短路径的点集。
虽然Dijkstra算法只适用于边权值均为正的带权有向图或者无向图,但是它的时间复杂度相比Bellman-Ford算法更优秀,为O(n^2)。
2. Bellman-Ford算法Bellman-Ford算法是一种较为通用的算法,不需要图的属性满足任何特殊要求,但是时间复杂度为O(n^3),不适用于大规模的图。
算法原理是进行n次松弛操作,查找从源点到其他点的最短路径,其中进行松弛的过程是比较消耗时间的。
二、全源最短路径问题全源最短路径问题是指求解所有点之间的最短路径问题。
解法有两种:Floyd算法和Johnson算法。
3. Floyd算法Floyd算法是一种动态规划算法,算法将所有点对之间的最短路径逐步推进,通过枚举中间点,得到更加精细的状态转移方程和最短路径。
时间复杂度为O(n^3),因此带来的计算负担较大。
4. Johnson算法Johnson算法目前是解决稠密图最短路径问题的最好算法之一。
Johnson算法先通过引入虚拟点,将原图转化为一个没有负权边的新图,再对新图使用Dijkstra算法进行求解。
该算法的时间复杂度为O(mnlogn),其中m为边的条数,n为点的个数。
综上所述,最短路径问题是图论中的重要问题之一。
对于单源最短路径问题,Dijkstra算法和Bellman-Ford算法是常用的解法;全源最短路径问题,Floyd算法和Johnson算法是较为常用的解法。
最短路径问题
最短路径问题最短路径问题是图论中一个重要的研究领域,即求解两个节点之间的最短路径。
在实际生活中,最短路径问题有着广泛的应用,例如导航系统、交通规划以及网络通信等领域。
本文将介绍最短路径问题的定义、常见算法以及应用实例。
一、定义最短路径问题可以用来求解从一个节点到另一个节点的最短路径。
在图论中,最短路径通常指的是路径上的边的权重之和最小。
图可以由节点和边组成,边可以有权重,表示两个节点之间的距离或成本。
最短路径问题的目标是找到两个节点之间的路径,使得路径上的边的权重之和最小。
二、算法1. Dijkstra算法Dijkstra算法是解决最短路径问题的经典算法之一。
该算法采用贪心策略,逐步确定起点到其他节点的最短路径。
具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,所有其他节点的距离为无穷大。
(2)选择一个未被访问过的节点,标记为当前节点。
(3)对于当前节点的所有邻居节点,更新其距离为当前节点距离加上边的权重,并更新最短路径。
(4)继续选择未被访问过的节点中最短路径最小的节点,标记为当前节点,重复步骤(3)。
(5)重复步骤(3)和(4),直到所有节点都被访问过。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的数量。
2. Bellman-Ford算法Bellman-Ford算法是另一种解决最短路径问题的算法。
与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。
该算法通过迭代更新距离数组,逐步确定最短路径。
具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,其他节点的距离为无穷大。
(2)对于图中的每条边,重复以下步骤:a. 从边的起点到终点的距离是否可以通过起点到起点的距离加上边的权重来达到更小值。
b. 如果是,则更新终点的距离为该更小值。
(3)重复步骤(2)|V|-1次,其中V为节点的数量。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的数量,E为边的数量。
最短路径问题(珍藏版)
最短路径问题(珍藏版)【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】【问题1】作法图形原理在直线l上求一点P ,使PA +PB 值最小.连AB ,与l 交点即为P .两点之间线段最短.PA +PB 最小值为AB .【问题2】“将军饮马”作法图形原理在直线l 上求一点P ,使PA +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短.PA +PB 最小值为A B '.【问题3】作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短.PM +MN +PN 的最小值为线段P 'P ''的长.【问题4】作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短.四边形PQMN 周长的最小值为线段P 'P ''的长.直线m∥n,在m、n上分别求点M、N,使MNm,且AM+MN+BN值最小.【问题6】图形在直线l上求两点M、N(MN=,并使在左),使a+MN+NB的值最小.【问题7】图形上求点A,在2l上求1B,使PA+AB值最小.【问题8】图形为1l上一定点,B为2l上一定点,在2l上求点M,在1l上求点N,使AM+MN+NB的值最小.【问题9】图形在直线l上求一点P,使P A-的值最小.PB【问题10】作法图形原理在直线l上求一点P,使PBP A-的值最大.作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.PBP A-≤AB.PBP A-的最大值=AB.【问题11】作法图形原理在直线l上求一点P,使PBP A-的值最大.作B关于l的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.PBP A-≤AB'.PBP A-最大值=AB'.【问题12】“费马点”作法图形原理△ABC中每一内角都小于120°,在△ABC内求一点P,使PA+PB+PC值最小.所求点为“费马点”,即满足∠APB=∠BPC=∠APC=120°.以AB、AC为边向外作等边△ABD、△ACE,连CD、BE相交于P,点P即为所求.两点之间线段最短.PA+PB+PC最小值=CD.【精品练习】1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.B.C.3D2.如图,在边长为2的菱形ABCD中,∠ABC=60°,若将△ACD绕点A旋转,当AC′、AD′分别与BC、CD 交于点E、F,则△CEF的周长的最小值为()A.2B.32C.32+D.4A DEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为()A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是.5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合),且ED =AE ,则线段AE 的取值范围是.6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______.8.已知A(2,4)、B(4,2).C在y轴上,D在x轴上,则四边形ABCD的周长最小值为,此时C、D两点的坐标分别为.9.已知A(1,1)、B(4,2).(1)P为x轴上一动点,求PA+PB的最小值和此时P点的坐标;P A 的值最大时P点的坐标;(2)P为x轴上一动点,求PB(3)CD为x轴上一条动线段,D在C点右边且CD=1,求当AC+CD+DB的最小值和此时C点的坐标;10.点C为∠AOB内一点.(1)在OA求作点D,OB上求作点E,使△CDE的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值和此时∠DCE的度数.11.(1)如图①,△ABD和△ACE均为等边三角形,BE、CE交于F,连AF,求证:AF+BF+CF=CD;(2)在△ABC中,∠ABC=30°,AB=6,BC=8,∠A,∠C均小于120°,求作一点P,使PA+PB+PC的值最小,试求出最小值并说明理由.。
最短路径问题
最短路径问题陈道蓄 南京大学计算机系在道路网络中确定起点到终点的最短路径,可以抽象为一个有向图模型。
图中每个节点表示一个“路口”,对任意节点u,v,存在uv-边当且仅当从u到v有“路段”直接相连(当中没有其他路口)。
也可以建立无向图模型,则任一条边对应于双向可通行的路段。
其实这样的模型并不限于道路交通问题,从本专栏前面的文章中读者已经看到许多与交通运输无关的问题都可以抽象为图模型,“最短路径”在不同应用中可能背景意义不同,但确定最短路是大量基于图模型的应用问题求解中的一个基本环节。
● 用广度优先搜索(BFS)算法求解先来考虑有向图模型上一种最简单的情况:假设每个路段长度均为1,那么,从u到v最短路的长度即为所有uv-路中包含的边数的最小值,也称为从u到v的距离。
设想房间的角上有个水龙头,其所在位置是房间地面最高点。
地面高度向房内其他地方极其平缓地均匀下降,将龙头开到适当大小,水会在地面以扇形缓缓漫开。
如果像动画片一样间隔固定时间段记录漫水区域的边界,看到的将是一道道大致平行的弧形曲线,它们反映了边界上的点与水龙头位置的大致距离。
在图中遍历所有节点常用算法包括“深度优先(DFS)”与“广度优先(BFS)”。
本专栏在前面讨论走迷宫和调度问题时,都采用了深度优先算法。
从上面的比喻很容易想到:考虑点与点的距离时该采用广度优先算法。
事实上,在本专栏在前面讨论图的连通性时,简单地用到了广度优先(尽管我们没有提到这个名词)。
图1给出一个简单的例子,指定a为起点,则广度优先搜索生成的BFS树可能如图1中右图所示。
右边结果图中每个节点名称旁标的数字表示从起点a到该点最短路的长度。
在广度优先搜索过程中,距离a较远的节点被发现的时间一定晚于较近的节点。
这个例子显示了广度优先搜索过程与最短路径的关联。
由此在每条边长度均为1的假设下,我们可以用广度优先算法解最短路问题。
为了体现前面的比喻中漫水区前缘均匀推进,算法用队列Q放置当前已经“看见”并等待处理的顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
l
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
你能要自己的语言重新描述一下问题吗?
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
C
你能要自己的语言重新描述一下问题吗? C是l上一个动点, 当点C在l的什么位置时,AC+BC最小?
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
探究 相传,古希腊亚历山大里亚城里有一位久负盛名的学者, 名叫海伦.有一天,一位将军专程拜访海伦,求教一个百 思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地 .到河边什么地方饮马可使他所走的路线全程最短?
A
B
l
将军饮马问题
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题” 你能将这个问题抽象为数学问题吗?
拓广探索
如图,牧马人从A地出发,先到草地边某一处牧马,再 到河边饮马,然后回到B处,请画出最短路径 .
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
探究
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
能不能把点在同侧的问题转化 为点在异侧的问题呢? 提示:将点B“移”到l 的另一侧 B′处,得满足直线l 上的任意一 点C,都保持CB 与CB′的长度相 等 你.想到怎么做了吗?
如图,A、B两地在一条河 的两岸,现要在河上建一座 桥MN,桥造在何处才能使 从A到B的路径AMNB最短 ?(假设河的两岸是平行的 直线,桥要与河垂直)
你能把这个问题抽象成一 个数学问题吗?
抽象
可以把河的两岸看成两条平行线a和b, N为直线b上的一个动点,MN 垂直于直线b,交直线a于点M, 当点N在直线b的什么位置时,AM+MN+NB最小?
复习巩固
如图,在△ABC 中,∠ABC =50°,∠ACB =80°,延长 CB至D,使DB =BA,延长BC 至E,使CE =CA,连接 AD,AE .求∠D,∠E,∠DAE 的度数 .
复习巩固 如图,AD =BC,AC=BD,求证:△EAB 是等腰三角形 .
复习巩固
综合应用
试确定如图所示的正多边形的对称轴的条数,一般地 ,一个正n边形有多少条对称轴?
如图,在直角三角形BCD中,若点M、N分别是线段BD、BC 上的两个动点,请在图上找到CM+MN最小时,M,N点的位 置提.示:试一试对称.
答案:作点C关于BD的对称点C ’ ,然后过C’作BC的垂线,交BD 于M,交BC于N.
总结
这节课我们学到了什么? 将军饮马问题
条件特点 简称为:两定一动
直线同侧的两个定点和直线上一个动点
分析
这又是求线段和最小的问题 ,你能想到什么呢?
能变成这种基 本类型就好了
AM,MN,NB这三条线段的长度都会变化吗? 只有AM和NB会变,MN是不变的. 所以当AM+NB最小时,AM+MN+NB最小.
思考
怎么把这个问题转化为基本类型呢?
将AM沿着垂直于河岸的方向 平移一个河宽的距离到A'N.
现在就变成基本类型了.
最短路径问题
制作人:睿科知识云
知识回顾 如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近 ?你的理由是什么?
选第②条 两点之间,线段最短
两点在一条直线异侧 已知:如图,A,B在直线L的两侧,在l上求一点P ,使得PA+PB最小.
这是为什么呢? 两点之间,线段最短
连接AB,线段AB与直线l的交点P ,就是所求.
提示2:分别作A点关于OM, ON的对称点.
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 答.案:分别作点A关于OM ,ON的对称点A′,A″;连 接A′,A″,分别交OM, ON于点B、点C,则点B、 点C即为所求.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M ,同时向 A,B 两个居民小区送电 . (1) 如果居民小区 A,B 在主干线 l 的两旁,如图(1)所示 ,那么分支点 M 在什么地方时总线路最短?在图上标注位置, 并说明理由.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M
将军饮马问题的变式
如图,牧区内有一家牧民,点A处有一个马厩,点B处是他的家 , 是草地的边沿, 是一条笔直的河流 . 每天,牧民要从马厩 牵出马来,先去草地上让马吃草,再到河边饮马,然后回到家B 处 . 请在图上画出牧民行走的最短路线 ( 保留作痕迹 ) .
将军饮马问题的变式 如图,已知∠AOB,P是∠AOB内部的一个定点,点E、F分别 是OA、OB上的动点, (1)要使得△PEF的周长最小,试在图上确定点E、F的位 置 ; (2)若OP=4,要使得△PEF的周长为4,则∠AOB=_____°.
AC ′+BC ′= AC ′+B ′C ′, ∵ AC ′+B ′C ′>AB ′, ∴ AC ′+BC ′> AC +BC, 即AC+BC最短.
归纳总结
将军饮马问题
条件特点 简称为:两定一动 直线同侧的两个定点和直线上一个动点 问题特点 求线段和最小 求解思路 利用轴对称,化折为直 求解原理 两点之间,线段最短
问题特点 求线段和最小
求解思路 利用轴对称,化折为直
求解原理 两点之间,线段最短
总结 条件特点
这节课我们还学到了什么? 造桥选址问题
平行间的垂线段的端点到两侧定点的距离之和
问题特点 求线段和最小
求解思路 利用平移,转移线段
求解原理 两点之间,线段最短
美术字与轴对称
利用轴对称设计图案
利用轴对称设计图案
归纳总结 条件特点
造桥选址问题
平行间的垂线段的端点到两侧定点的距离之和
问题特点 求线段和最小
求解思路 利用平移,转移线段
求解原理 两点之间,线段最短
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 . 提示1:利用轴对称,化折为直.
综合应用
如图,从图形Ι 到图形Ⅱ是进行了平移还是轴对称?如果 是轴对称,找出对称轴;如果是平移,是怎样平移?
综合应用
如图,AD是△ABC 的角平分线,DE,DF 分别是△ABD 和△ACD的高 . 求证:AD 垂直平分EF .
综合应用
如图,在等边三角形 ABC 的三边上,分别取点D,E,F ,使AD =BE =CF . 求证△DEF 是等边三角形 .
怎么确定取最小时的N点呢?
你能证明这个结论吗?
连接A’B,与直线b的交点就 是所求.
证明 证明:如图,在直线b上取一个不与N重合的点N’,作 M’N’⊥a于点M’,连接AM’,BN’,A’N’. 由平移的性质可知, AM’=A’N’,AM=A’N ∵A’N’+N’B>A’B ∴AM’+N’B>AM+NB ∴AM’+N’B>AM+NB ∴AM’+M’N’+N’B>AM+MN+NB
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
作点B 关于直线l 的对称点B ′;
B’
你能证明此时 AC+BC最短吗?
连接AB ′,与直线l 相交于点C 则点.C 即为所求.
证明 证明此时AC+CB 最短
证明:如图,在直线l 上任 取一点C ′(与点C 不重合) ,连接AC ′,BC ′,B ′C ′. 由轴对称的性质知, BC =B ′C,BC ′=B ′C ′. ∴AC +BC= AC +B ′C = AB ′,
,同时向 A,B 两个居民小区送电 .
(2) 如果居民小区 A,B 在主干线 l 的同旁,如图(2) 所示
,那么分支点 M 在什么地方时总线路最短?在图上标注位置,
并说明理由 .
作A的对称
点可以吗
?
B’
练习
如图,P,Q是△ABC的边AB,AC上的两定点,在BC上求 作一点M,使△PMQ的周长最短.
提示:这本质上是“两定一动 ” 求线段和最小的将军饮马问题 .
练习 如图,一个旅游船从大桥AB的P 处前往山脚下的Q 处接游客,然 后将游客送往河岸BC上,再返回P 处,请画出旅游船的最短路径 . 提示1:先把问题抽象为数学问题.
提示2:这本质上是“两定一动” 求线段和最小的将军饮马问题.
造桥选址问题
拓广探索
在纸上画五个点,使任意三个点组成的三角形都 是等腰三角形 . 这五个点应该怎样画?
拓广探索
如图,△ABC 是等边三角形,BD 是中线,延长BC 至 E,使CE =CD . 求证DB =DE .
拓广探索
如图,△ABC 是等腰三角形,AC =BC,△BDC 和△ACE 分别为等边三角形,AE 与BD 相较于F,连接CF 并延长 ,交AB 于点G . 求证:G 为AB 的中点 .
答案:(2)30°.
角内一点出发的折线
如图,点A是∠MON 内的一点,在射线OM 上作点 P,使 PA与点P 到射线ON 的距离之和最小 .
提示:试一试对称.
答案:作点A关于OM 的对
称点A’,然后过A’作ON
的垂线,交OM 于P,交ON
于Q.