《概率论与数理统计课件》随机变量序列的收敛性

合集下载

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

是直线上的连续函数,试证:
证:若 g(x)是 m 次多项式函数,即 下证一般情况,对任意的 又选取 N1 充分大,使当
,则由上一题知有
,取 M 充分大,使有
时,有
,于是有
对取定的 M,因为 g(x)是连续函数,所以可以用多项式函数去逼近 g(x),并且在任意
有限区间上还可以是一致的,因而存在 m 次多项式
,于是有
,因为
,故存在充分
由 的任意性知,当
时,有
结论得证.
6.设 D(x)为退化分布: 试问下列分布函数列的极限函数是否仍是分布函数?(其中 n=1,2,…)
(1)
(2)
(3)
解:(1)因为此时的极限函数为
性质: lim F x=0 ,所以不是分布函数. x-
,不满足分布函数的基本
4 / 42
圣才电子书

故当
时,

成立,进一步由
可得
,所以又有
1 / 42
圣才电子书

成立.
十万种考研考证电子书、题库视频学习平 台
(2)先证明
对任意的
,取 M 足够大(譬如
),使有
成立,对取定的 M,存在 N,当 n>N 时,有
这时有
从而有
由 的任意性知
,同理可证
由上面(1)得

成立.
3.如果
3 / 42
圣才电子书

十万种考研考证电子书、题库视频学习
证:先证充分性,令
,则

故 f(x)是 x 的严格单调增函数,因而对任意的
,有
于是对任意的
,当
时,有参见 2.3 第 12 题.
充分性得证.

概率论四种收敛性25页PPT

概率论四种收敛性25页PPT
解 令X表示在夜晚同时开着的灯数目, 则X服从n=10000,p=0.7的二项分布,这时
E(X)np7000, D (X)npq2100.
由车贝晓夫不等式可得:
P {6800X7200} P {|X7000|200}12 21 00 00 20.95.
例2:已知正常男性成人血液中 ,每一毫升白细 胞数平均是7300,标准差是700 . 利用切比雪夫不 等式估计每毫升白细胞数在5200~9400之间的概 率.
1( 700 )2 1 1 8
2100
99
即估计每毫升白细胞数在5200~9400之间的概率不 小于8/9 .
例3:在每次试验中,事件A发生的概率为 0.75, 利 用车贝晓夫不等式求:n需要多么大时,才能使得在 n次独立重复试验中, 事件A出现的频率在0.74~0.76之 间的概率至少为0.90?
解:设每毫升白细胞数为X 依题意,E(X)=7300,D(X)=7002
所求为 P(5200 X 9400) P(5200X 9400)
= P(-2100 X-E(X) 2100)
= P{ |X-E(X)| 2100}
由车贝晓夫不等式
P{ |X-E(X)| 2100}
1
D( X ) (2100)2
= P{ |X-E(X)| <0.01n}
在车贝晓夫不等式中取 0.01n,则
P(0.74X0.76)= P{ |X-E(X)| <0.01n} n
1
D(X) (0.01n)2
1
0.187n5 0.000n12
1 1875 n
依题意,取 118750.9 n
解得
n 187518750
10.9
即n 取18750时,可以使得在n次独立重复试验中, 事件A出现的频率在0.74~0.76之间的概率至少为0.90 .

随机变量的几种收敛及其相互关系

随机变量的几种收敛及其相互关系

论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。

概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。

主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。

给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。

本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。

关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。

AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is asequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship. This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows: 1. Convergence of random variables the concept of theory; 2. the convergence of several random variables between; From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: 41 几种收敛性定义 42 依概率收敛与依分布收敛的关系 53 r阶收敛与几乎处处收敛的关系 114 依概率收敛与r阶收敛的关系 135 几乎处处收敛与依概率收敛和依分布收敛的关系 17总结 19四种收敛性 19四种收敛蕴涵关系 19致谢 21参考文献 22引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b

1 / 167
圣才电子书

十万种考研考证电子书、题库视频学习平台
P
X n Yn a b

P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果

深入理解概率与统计的收敛性判定存在问题

深入理解概率与统计的收敛性判定存在问题

深入理解概率与统计的收敛性判定存在问题概率与统计是数学中重要的分支领域,它们在各个学科和实际应用中发挥着重要作用。

然而,我们需要认识到,概率与统计的收敛性判定在实践中存在着一些问题。

本文将深入探讨概率与统计的收敛性判定问题,并讨论其影响和可能的解决方案。

一、概率与统计的收敛性在概率论和数理统计中,收敛性是一个关键概念。

它指的是随机变量序列在某种意义下逐渐接近一个固定的随机变量。

概率论中的收敛性理论有多种形式,比如依概率收敛、几乎必然收敛和分布收敛等。

统计学中的收敛性则包含极限定理和一致收敛性等概念。

这些收敛性概念对于推断和估计都起着至关重要的作用。

二、收敛性判定存在问题然而,我们在深入研究概率与统计的收敛性判定时,不难发现存在着一些问题。

首先,收敛性判定常常依赖于对样本空间和概率分布的假设。

当样本空间和概率分布具有一定的特殊性时,收敛性判定才能成立。

但在实际问题中,我们往往无法准确地确定样本空间和概率分布的具体形式,这就给收敛性判定带来了困难。

其次,收敛性判定需要对大样本进行推断,但在实际应用中,我们常常只能获得有限的样本。

这就导致了收敛性判定的结果可能不够准确和可靠。

特别是在极端情况下,如样本量较小或者数据存在较大的噪声时,收敛性判定往往会出现较大的误差。

此外,由于实际问题的复杂性,概率与统计的收敛性判定往往需要考虑多个变量之间的关系。

这就给收敛性判定带来了更高的难度。

当变量之间存在复杂的非线性关系时,我们很难准确地判断其收敛性。

这种情况下,常规的收敛性判定方法可能不再适用。

三、可能的解决方案虽然概率与统计的收敛性判定存在问题,但我们仍然可以通过一些方法来提高判定的准确性和可靠性。

首先,我们可以采用更加灵活和有弹性的收敛性判定方法,以适应复杂问题的需求。

例如,可以结合现代机器学习方法和数据挖掘技术,利用大数据的力量来推断和估计。

其次,我们可以加强对样本空间和概率分布的研究,以提高收敛性判定的基础。

§4.3随机变量序列的两种收敛性

§4.3随机变量序列的两种收敛性

n
再令x ' x F ( x 0) lim Fn ( x )
n
8
同理可证: 当 x " x时,F ( x ") limFn ( x ),
n
再令x " x, F ( x 0) limFn ( x ) .
n
即有 F ( x 0) lim Fn ( x ) lim Fn ( x ) F ( x 0) . n
0, x c; 有 Fn (c / 2) F (c / 2) 1, F ( x ) 1 , x c . Fn (c ) F (c ) = 0 .
从而 P ( X n c ) (n ) 0
且 Fn ( x ) F ( x ) , 所以当 n 时,
n
若x是F ( x )的连续点,
则 Fn ( x ) F ( x ), 即X n X .
W L
TH2表明:依概率收敛是弱收敛的充分不必要条件,
由弱收敛不能得出依概率收敛。见下面的例子。
9
例2 设X
X P
1 1 2
1 1 2
令 Xn X ,
L
当然有 X n X . 则 X n 与X 同分布,
P P P X n a ,Yn b X n Yn a b; P P X n Yn a b , X n Yn a b(b 0). 证明: ( X n Yn ) (a b ) X n a Yn b ( X n Yn ) (a b ) X n a Yn b 2 2
0 P X Y

《概率论与数理统计课件》随机变量序列的收敛性

《概率论与数理统计课件》随机变量序列的收敛性
20
P
定理 4.3.3 若 C 为常数,则 X n C 的充
L
要条件是 X n C .
21
证明:
必要性已由定理 4.3.2 给出,下证充分性.
记随机变量 X n 的分布函数为 Fn x .而常数 X C
(退化分布)的分布函数为
F
x

0 1
xC . xC
22
所以对于任意的 0 ,有
Fn x收敛到一个极限分布函数 Fx 是有实际意义的.现在的 问题是,如何定义分布函数序列 Fn x的收敛性?很自然,由 于 Fn x是实变量函数序列,我们的一个猜想是:对所有的 x , 要求 Fn x F x, n .这就是数学分析中的点点收敛.然
下面的定理说明了依概率收敛是一种比按分布收敛更 强的收敛性.
11
P
L
定理 4.3.2 如果 X n X ,则必有 X n X .
12
证明:
设随机变量 X n 的分布函数为 Fn x , n 1, 2, 3, ;
随机变量
X
的分布函数为
F x .为证
Xn
L
X
,只须证明:
对所有的 x ,有
写出随机变量 Yn

n k 1
Xk 2k
的特征函数n t ;⑶

明:当 n 时,随机变量序列Yn依分布收敛于随机变量Y .
33Leabharlann 解:⑴ 由于随机变量Y 服从区间 1, 1 上的均匀分布,因
此 Y 的特征函数为
t eit eit cost i sin t cost i sin t sin t .
(因为 x x 0).所以有
再令 x x ,得

《概率论四种收敛性》PPT课件

《概率论四种收敛性》PPT课件
任意实数和随机变量y若对设随机变量序列依概率收敛于随机变量y简记为的绝对误差小于任意小的正数的概率将随着n增大而愈来愈大直至趋于1精选ppt18五r阶收敛lim特别的有1阶收敛又称为平均收敛2阶收敛又称为均方收敛
第三章 3.1四种收敛性
1
主要内容
车贝晓夫不等式 几乎处处收敛 依概率收敛 依分布收敛 r-阶收敛
X
E(X)
2)
D(X)
2
2 22
1 2
23
证明:已知Xi (i 1, 2, , n)相互独立,且方差有限
证明lim
P
n
1 n
n i 1
Xi
1 n
n i 1
E( Xi )
1
证明:设随机变量Z
X
1 n
n i 1
Xi ,
1 n
1
n
1n
E(Z)
E(X )
E( n
i 1
Xi )
n
E(
的期望的偏差不小于 的概率的估计式 .
如取 3
P{|
X
E( X ) |
3 }
2 9 2
0.111
可见,对任给的分布,只要期望和方差 2存在,
则 r.v X取值偏离E(X)超过 3 的概率小于0.111 .
6
车贝晓夫不等式的用途:
(1)证明大数定律;(2)估计事件的概率。
车贝晓夫不等式只利用随机变量的数学期望及方差就可对的 概率分布进行估计。
( x E( X ))2dF( x)
xE( X )
2dF( x) xE( X )
2P X E(X)
从而P(
X
E( X )
)
D( X )

概率论课件 第4章第2讲随机变量序列的两种收敛性

概率论课件  第4章第2讲随机变量序列的两种收敛性
证明:因f ( x, y)在点(a, b)连续, 故对 >0
0,当( x a)2 ( y b)2 2时有
| f ( x, y) f (a, b) |
于是 {| f (k ,k ) f (a, b) | } {( a)2 ( b)2 2 }
辛钦k 1n Nhomakorabeak
a | } 1
证明: {n } 同分布, 它们有相同的特征函数, 这个相同的特征函数记为 (t )
1 n 记 n k n k 1
a E ( k )
(0)
i
(t ) (0) (0)t o(t ) 1 iat o(t )
的分布函数Fn ( x) F ( x).
显然有 lim Fn ( x) F ( x)
n
L Xn Y
但对任意的0<ε<2,恒有
P{| n | } P{2 | | } 1
即不可能有{n }依概率收敛于
所以:依分布收敛依概率收敛不真
定理:随机变量序列依概率收敛于常数C 的充要条件是依分布收敛于常数C 证明:必要性已证,下面只证充分性
§4.2 随机变量序列的两种收敛性 上一节我们由大数定理可得,在贝努里试验中, 事件发生的频率稳定于概率,即
lim P{
n
n
n
P } 1
自然想到的是, 随机变量序列是否依 这种方式能稳定于一个随机变量呢 ?
这就是我们要讲的依概率收敛问题.
1
依概率收敛 定义:设{ n }是随机变量序列,若存在随机 变量 (或常数),对于任意ε>0,有
x x
令y x, z x,由x为F ( x)的连续点, 有

《概率论与数理统计课件》 随机变量序列的收敛性(精选)PPT共27页

《概率论与数理统计课件》 随机变量序列的收敛性(精选)PPT共27页

END
《概率论与数理统计课件》 随机变量序 列的收敛性(精选)
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n

但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,

lim
n→
P{
n
n

p

概率与数理统计 5.2 随机变量的收敛性与强大的数定律.ppt

概率与数理统计 5.2 随机变量的收敛性与强大的数定律.ppt
§5.2 随机变量的收敛性与强大数定律
一、概率收敛与分布收敛
Def.
1.
设随机变量序列{X
}
n n1
与随机变量X


0, lim n
P{|
Xn

X
|
}

0
则称随机变量序列
{
X
n
} n 1
依概率收敛于X,记作
P
Xn X
例 1. 设 X ,{Xn} 均为退化分布的随机变量,且
P( X 0) 1, P{X n 1/ n} 1, n 1, 2,L
P{|Xn-c|}= P{Xn c+ }+P{Xnc - }
=1-Fn(c+ -0)+ Fn(c-)
1-1+0=0
定理4. (连续性定理)分布函数列{Fn(x)}弱收敛于 分布函数{F(x)}的充分必要条件为:
{Fn(x)}的特征函数列 n (t) 收敛于F(x)的特征函数 (t).
N 1 nN
:|
Xn ()

X
()
|
1}} k

0


P{ I U { :| Xn () X () | }} 0, 0 N 1 nN

N
P{ U { :| Xn () X () | }} 0, 0
nN
概率的上连续性
N
P{Xn+Yn x} P{Xn x-c+}+P{|Yn-c|>} (1)
P{Xn+Yn x} P{Xn+Yn x,|Yn-c| } P{Xn x-c-,|Yn-c| }
P{Xn x-c-}- P{Xn x-c-,|Yn-c| >}

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(大数定律与中心极限定理)【圣才出品

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(大数定律与中心极限定理)【圣才出品

设{Xn}是独立同分布的随机变量序列,且 E(Xi)=μ,Var(Xi)=σ2>0 存在,若记
Y n
X1 X2 X n n n
,则对任意实数 y,有
lim
n
P(Yn
y)
(
y)
1 2
y t2 e 2dt
2.棣莫弗—拉普拉斯中心极限定理 设 n 重伯努利试验中,事件 A 在每次试验中出现的概率为 p(0<p<1),记 Sn 为 n
3 / 53
圣才电子书 十万种考研考证电子书、题库视频学习平台

Var(Xi)≤c,i=1,2,…,则{Xn}服从大数定律,即对任意的ε>0,,nlim P(
Sn n
p
)
1
成立。
(2)马尔可夫大数定律
对随机变量序列{Xn},若
1 n2
Var (
n i1
Xi)
0
,成立,则{Xn}服从大数定律,即对任意
即 X n Yn P X Y 成立。
(2)先证
X
2 n
P
X
2
,∀ε>0,δ>0,取
M
足够大(譬如ε/M≤1),使有
P{|X|
>(M-1)/2}<δ成立,对于选择的 M,∃N,当 n>N 时,有
P{|Xn-X|≥1}≤P{|Xn-X|≥ε/M}<δ
此时
P{| X n X | M } P{| X n X | | 2X | M } P({| X n X | | 2X | M } I {| X n X | 1}) P({| X n X | | 2X | M }I | X n X | 1) P{| 2X | M 1} P{| X n X | 1} 2
U P( X
Y)

概率论与数理统计课件:极限定理

概率论与数理统计课件:极限定理
n
n
n k 1
1 n
P
即 X k

n k 1
极限定理
首页 返回 退出
1 n
1 n
1 n
证: E ( X k ) E ( X k )
n k 1
n k 1
n k 1
1 n
1
D( X k ) 2
n k 1
n
n
1
1 2
2
D ( X k ) 2 n
极限定理
第一节 大数定律
第二节 中心极限定理
极限定理
首页 返回 退出
第一节 大数定律
一、问题的背景
二、随机变量序列的收敛性
三、常用的大数定律
极限定理
首页 返回 退出2
§5.1
大数定律
5.1.1 问题的背景
在实践中,人们发现,在随机现象的大量重复
出现中,往往呈现出必然的规律性. 即,要从随机现
象中去寻求规律,应该在相同的条件下观察大量重
就会得到

σ= −

~ ,


即独立同分布随机变量的算术平均近似地服从正态
分布,这是大样本统计推断的理论基础。
极限定理
首页 返回 退出
例2 已知某高校的在校学生数服从泊松分布,期望
为100.现开设一门公共选修课,按规定,选课人数超过
120人(含120人)就需分两个班授课,否则就一个班上

=1−
24

=0.0228
24

= 0.9772 = 2

∴ =12
84 − 72
60 − 72
60 ≤ ≤ 84 =

概率论与数理统计4-2 随机变量序列的收敛性

概率论与数理统计4-2 随机变量序列的收敛性

则P(

2 n

)
=P{( n n )(k M)} +P{( n n )(k M)}
P( 2 >M-1)+P( n 1)<2
P( n
(由例4.3给出例证,请大家看书!)
定理4.5 随机变量序列n P P c, (c为常数)
的充分必要条件是
Fn (x) W F (x)
这里的F
(x)是

c的分布函数,即
F(x)=
1,x>c 0,x
c
证明:下证充分性. 0,有
Pn c P(n c ). P(n c )
则对x x x, 有
F( x)

lim
n
Fn
(x)

lnimFn
(x)

F
(
x)
令x x, x x,得
F(
x-0)

lim
n
Fn
(
x)

lnimFn
(
x)

F
(
x+0)
若x是F(x)的连续点,则lim n
Fn
(x)

F
(x)
注:这个定理的逆命题不成立。
1 Fn (c ) Fn (c 0)
11 0 0, n
斯鲁茨定理:设{1n },{ 2n },...{ kn }是k个
随机变量序列,且in P ai , (i 1, 2...)
又R(x ,x 1
2
...xk
)是k元变量的有理函数,
如果F(x)的每一x,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fn x P Xn X x x
精选ppt
14
P
由于 X n X ,所以当 n 时,有
P Xn X x x 0,
(因为 x x 0).所以有
再令 x x ,得
Fx lim Fn x. n
Fx 0 lim Fn x n
精选ppt
15
同理可证,当 x x 时,有
lnimFn x Fx. 再令 x x ,得 lnimFn x Fx 0 .
果 Fx 是 连 续 函 数 , 则 对 于 任 意 的 x , 有
lim
n
Fn
x
F
x
,此时分布函数序列
Fn
x
点点
收敛于分布函数 Fx.
精选ppt
10
在上述定义中,对分布函数序列 Fn x称为弱收敛,而 对其随机变量序列 X n。则称为按分布收敛,这是在两
种不同的场合给出的两个不同的名称,但是本质含义是一
精选ppt
20
P
定理 4.3.3 若 C 为常数,则 X n C 的充
L
要条件是 X n C .
精选ppt
21
证明:
必要性已由定理 4.3.2 给出,下证充分性.
记随机变量 X n 的分布函数为 Fn x .而常数 X C
(退化分布)的分布函数为
F
x
0 1
xC . xC
精选ppt
22
所以对于任意的 0 ,有
g x
0 1
x0 . x0
但是 gx 并不是分布函数.本例告诉我们,要求分布函
数序列 Fn x点点收敛于一个分布函数 Fx 是有些太
苛刻了.
精选ppt
7
再仔细分析本例,我们发现 x 0 恰好是分
布函数 Fx的间断点,而除了这个间断点外,
分 布 函 数 序 列 Fn x 都 是 收 敛 于 分 布 函 数
精选ppt
18
但是对于任意的 0 2 ,由于
P Xn X P2 X 1,

lim P
n
Xn X 0 ,这表明 X n 并不依
概率收敛于 X .
精选ppt
19
以上的例子说明,一般按分布收敛与依概 率收敛是不等价的.而下面的定理则说明: 当极限随机变量为常数(服从退化分布)时, 按分布收敛与依概率收敛是等价的.
(4.3.2)
则称分布函数序列 Fn x弱收敛于分布函数 Fx,记作
W
Fn x Fx n .
(4.3.3)
此时也称随机变量序列 X n依分布收敛于随机变量 X ,记作
L
Xn X ,
n 精选ppt .
(4.3.4)9
注:以上定义的“弱收敛”是自然的,因为它
比在每一点上都收敛的要求的确“弱”了些.如
第二节 随机变量序列的收敛性
精选ppt
1
定义 4.3.1 设X n是一个随机变量序列,X 是一个随机
变量,如果对于任意的 0 ,有
lim P
n
Xn X
0,
(4.3.1)
则称随机变量序列 X n依概率收敛于随机变量 X ,记作
P
Xn X ,
n .
精选ppt
2
注:依概率收敛的等价命题:
而遗憾的是,这样的要求有些太严格了.
精选ppt
4
例 4.3.1 设 X n 服从如下的退化分布:
P
X
n
1
n
1,
n 1, 2, .
这样的 X n n 1, 2, 3, 组成了一个随机变量序列
X n.记 Fn x为随机变量 X n 的分布函数,则有
Fn
x
0
1
x 1 n.
x 1
n
精选ppt
5
样的,都要求在 Fx的连续点上有(4.3.2)式.
下面的定理说明了依概率收敛是一种比按分布收敛更 强的收敛性.
精选ppt
11
P
L
定理 4.3.2 如果 X n X ,则必有 X n X .
精选ppt
12
证明:
设随机变量 X n 的分布函数为 Fn x , n 1, 2, 3, ;
L
随机变量 X 的分布函数为 Fx.为证 Xn X ,只须证明:
由于
xn
1 n
是函数
Fn x的跳跃型间断点,所以当 n
时,间断点
xn
1 n
0
x0
.那么,分布函数序列 Fn x是否会收敛于分布函

F
x
0 1
x0 . x0
但是我们看到,对于任意的
n

Fn
0
0
,所以
lim
n
Fn
0
0
,然而
F0 1,所以,
lim
n
Fn
0
0 1
精选ppt
F
0

6
这表明,分布函数序列Fn x并不点点收敛于分布函数 Fx.事实上,分布函数序列Fn x点点收敛于 gx :
设 X n是一个随机变量序列, X 是一个随机变量,如果
对于任意的 0 ,有
lim P
n
Xn X 1,
则称随机变量序列 X n依概率收敛于随机变量 X .
精选ppt
3
我们知道任何一个随机变量都有分布函数,而且分布函数全 面地描述了随机变量的统计规律.因此讨论一个分布函数序列
Fn x收敛到一个极限分布函数 Fx 是有实际意义的.现在的 问题是,如何定义分布函数序列 Fn x的收敛性?很自然,由 于 Fn x是实变量函数序列,我们的一个猜想是:对所有的 x , 要求 Fn x F x, n .这就是数学分析中的点点收敛.然
因此定理得证.
精选ppt
16
L
注:本定理的逆命题不成立,即如果 X n X ,
P
不能推出 X n X .见下例.
精选ppt
17
例 4.3.2 设随机变量 X 的分布列为
PX 1 1 , X 1 1 .
2
2
再令 X n X ,n 1, 2, 3, .则随机变量 X n 与
L
随机变量 X 有相同的分布函数,因此 X n X .
对所有的 x ,有
F
x
0
lim
n
Fn
x
lnimFn
x
F
x
0.
因为如果上式成立,则当 x 是分布函数 Fx 的连续点时,有
Fx 0 Fx 0.因此有
Fn
x
W
精选pFpt
x

13
首先令 x x ,则由
X x X x, X n x X x, X n x
Xn x Xn X x x 得 Fx PX x PXn x P Xn X x x
P Xn C P Xn C P Xn C
ቤተ መጻሕፍቲ ባይዱ
P
Xn
C
2
P
Xn
C
1
Fn
C
2
Fn C

由于 x C 与 x C 都是分布函数 Fx的连续点,并且由
Fx 的 . 因 此 我 们 可 以 将 分 布 函 数 序 列
Fn x收敛于分布函数 Fx 的定义修改成为
如下定义:
精选ppt
8
定义 4.3.2 设 X n是一个随机变量序列, X 是一个随机变
量, Fn x是 X n 的分布函数, Fx 是 X 的分布函数,如果对于
Fx任意连续点 x ,有
nli m Fn x Fx,
相关文档
最新文档