岩石地球化学
地球化学演化与岩石地球化学特征研究
地球化学演化与岩石地球化学特征研究地球化学是研究地球与其组成部分之间的相互作用和相互关系的科学分支。
地球化学包括地球周围的大气、水体、地壳和内部的物质组成及其演化过程的研究。
地球物质的演化过程离不开地球化学的研究。
地球化学演化研究的是地球物质在地质时间尺度上的演化过程,即地球从形成到现在的物质变化。
地球形成之初,是一个炽热的球体,随着时间的推移,地球逐渐冷却。
这个演化过程中,地球物质发生了种种变化,如地壳的分化、地球大气和水体的形成等。
地球化学演化研究的就是这些变化的机理和规律。
岩石地球化学特征研究的是岩石成分和结构的地球化学特征。
岩石是地壳的主要组成部分,通过研究岩石的地球化学特征可以了解地壳的组成和演化过程。
岩石地球化学特征的研究对象包括岩石中的元素和同位素组成、矿物的结构和成分等。
通过研究这些特征,可以了解岩石形成的环境和演化的过程,从而推断地壳的演化历史和岩石圈的动力学过程。
地球化学演化和岩石地球化学特征研究对于认识地球的演化历史和了解地球系统的运行机制具有重要意义。
通过研究地球化学演化,可以了解地球的形成和演化过程,揭示地球系统的基本规律。
而通过研究岩石地球化学特征,可以了解地壳的组成和演化过程,从而为认识岩石圈的动力学过程提供了有效的手段。
总之,地球化学演化与岩石地球化学特征研究是地球科学中重要的研究领域,它们为我们了解地球的演化历史和认识地球系统的运行机制提供了重要的科学依据。
只有通过深入研究这些问题,才能更好地保护和利用地球资源,促进人类社会的可持续发展。
岩类学、岩石地球化学、实验岩石学
岩类学、岩石地球化学、实验岩石学下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!岩类学(Petrology)。
岩类学是地质学的一个重要分支,研究地球上的岩石的成因、组成、结构、变质过程和变质岩的形成原因等。
《岩石地球化学》PPT课件
h
51
a. 硅碱图 b. AFM c. FeO*/MgO 对SiO2
~ 30岛弧和大陆弧的1946个 分析数据,主要是火山岩
Data compiled by Terry Plank (Plank
and Sci.
LLeatnt.g, m90u,i3r,4199-38780).Earthh
Planet.
??
现代大洋玄武岩可以按照产出的构造环境分为5类
1 MORB (Mid-Ocean Ridge Basalts),洋壳上部的主体,包括 熔岩和岩墙,并代表大洋辉长岩的初始岩浆。
2 BABB (Back-Arc Basin Basalts),形成于弧后扩张脊。弧后 盆地宽度60-1000km。
3 OPB (Ocean Plateau Basalts),发育于大洋板内环境,形成 范围巨大的、厚的海底熔岩堆积。
h
21
大陆地壳的流变学结构
h
22
大陆地壳的成分结构
h
23
大陆上地壳的组成
h
24
大陆下地壳的主元素组成
h
25
典型地壳的稀土元素组成
h
26
问题一
大陆下地壳的主元素、微量元素和同位素组成特征
h
27
第三章 地壳和上地幔的主要构成岩类及其地球化学
3、上地壳主要岩类的地球化学特征
h
28
第四章 地壳和上地幔的主要构成岩类及其地球化学
44
岛弧岩浆活动
岛弧岩浆活动的时空变化
1) 岛弧火山岩存在成分极性,从俯冲带向岛弧方向,依次 出现拉斑玄武岩浆系列、钙碱性岩浆系列和碱性岩浆系列
2) 岛弧岩浆岩的岩石类型多样,主元素有较大的变化范围。
岩石地球化学数据解释
主要标准矿物组合:Or :正长石 Ab :钠长石 An :钙长石 Q :石英En :辉石 Hy :紫苏辉石C :刚玉 Mt :磁铁矿A/CNK=Al 2O 3/CaO+Na 2O+K 2OA/CNK 数值: >1.1,S 型花岗岩,过铝的<1.1,I 型花岗岩里特曼指数σ: σ<1.8,钙性的1.8<σ<3.3,钙碱性的3.3<σ<9,碱钙性的Σ>9,碱性的钙碱率A.R ,(适用于42%<SiO 2<70%的岩石),SiO2相同时,数值越大越碱性NK/A=Na 2O+K 2O/Al 2O 3NK/A 数值: NK/A <0.9,钙碱性0.9<NK/A <1,偏碱性1≤NK/A ,偏碱性分异指数DI :数值越大表明岩浆分异演化越彻底,酸性程度越高数值越小表明岩浆分异演化程度低,基性程度相对高一般数值:固结指数SI :岩浆分异程度高,SI 就越小,岩石酸性程度高岩浆分异程度差,SI 就越大,岩石基性程度高一般数值:长英指数FL 与镁铁指数MF :岩浆分离结晶作用程度高,镁铁指数就大,长英指数也大 岩浆分离结晶作用程度低,镁铁指数就小,长英指数也小 一般长英指数和镁铁指数的数值在50—100,绝对小于100稀土重量ΣREE:一般几百都是偏低,上千就高。
轻重稀土比值ΣCe/ΣY:一次热事件的早期单元,比值较大,轻稀土越富集随着岩浆演化到晚期单元,比值减小,(La/Yb)N:(Ce/Yb)N:反映轻稀土的分馏程度,比值越大,轻稀土分馏越明显,富集程度越高。
数值一般和1比较(Sm/Eu)N:反映重稀土的分馏程度,比值越小,重稀土分馏越明显,富集程度越高。
数值一般和1比较元素铕值δEu::δEu>0.7,基性岩浆分异的花岗岩,成因与板块有关0.3<δEu<0.7,分布最广泛,地壳经不同程度的部分熔融形成δEu<0.3,岩浆演化晚期的偏碱性花岗岩,一个超单元的最后一、二个单元,由完全的分异结晶作用形成δEu一般都是亏损微量元素数据解释元素含量数值对比,和地壳丰度值特征参数:Nb*,Sr*,P*,Ti*,Zr*,数值小于1就亏损,大于1,就富集,与投图一致。
地球化学 岩石地球化学 年代地球化学
地球化学岩石地球化学年代地球化学地球化学岩石地球化学年代地球化学,这可是个大家伙啊!咱们今天就来聊聊这个神秘的话题,看看它到底是个啥东西,又是如何影响咱们的生活呢?咱们得了解什么是地球化学。
简单来说,地球化学就是研究地球内部的物质成分、结构和变化规律的科学。
而岩石地球化学则是研究岩石这种固体地球物质的地球化学性质。
至于年代地球化学嘛,它就是研究地球上不同时期的岩石中所含有的各种元素和化合物的种类和含量,从而推断出那个时期的地质历史。
这些地球化学知识对我们的生活有什么影响呢?其实可大了去了!比如说,咱们吃的水果蔬菜、喝的水、呼吸的空气,都是由地球上的岩石经过漫长的岁月形成的。
所以说,地球化学知识可以帮助咱们更好地了解咱们所生活的这个星球,从而更好地保护它。
咱们来看看地球化学岩石地球化学年代地球化学的一些有趣的例子。
咱们知道地球上有很多种不同的岩石吗?比如说花岗岩、玄武岩、石灰岩等等。
这些岩石的成分和性质都各不相同,它们都是在不同的地质时期形成的。
比如说,花岗岩主要是由石英、长石和云母等矿物质组成,形成于地壳的结晶作用时期;而玄武岩则是由火山喷发时喷出的熔融岩浆冷却凝固而成的,形成于地壳的深成作用时期。
再比如说,咱们知道地球上有很多古老的岩石吗?这些岩石中的元素和化合物可以告诉我们很多关于地球历史的信息。
比如说,通过分析古代岩石中的同位素比例,科学家们可以推测出当时的气候、环境和生物演化情况。
这对于研究地球的演化历程和生命的起源都有着重要的意义。
咱们来说说年代地球化学的一些有趣的现象。
你知道吗?地球上有很多非常古老的岩石,它们的年龄甚至比太阳系还要古老!这些古老的岩石中往往含有一些非常稀有的元素和化合物,比如铱、钌等等。
这些元素在地球上是非常罕见的,因为它们通常只存在于极端条件下。
所以说,通过研究这些古老的岩石中的元素和化合物,科学家们可以更好地了解地球上的元素循环和物质迁移规律。
地球化学岩石地球化学年代地球化学是一个非常有趣且充满挑战性的领域。
岩石地球化学一些原理
花岗岩研究一、花岗岩的系列划分根据花岗岩化学成分划分为准铝(metaluminous)、过铝(peraluminous)和过碱性nous)和亚碱性(peralkaline)的成分分类。
由于花岗岩通常具有较高的Si02含量,一般岩浆岩中的拉斑、钙碱性和碱性系列的划分在花岗岩研究中并不经常被采用。
所以花岗岩的系列划分时只用投K2O-SiO2 和ANK-ACNK就可以了。
碱性-钙碱性-高钾钙碱性和准铝质-过铝质这些系列的划分,是因为通过大量数据证明,这些划分对岩石成因等方面有一些指示意义。
例如:钙碱性花岗岩石是岛弧岩浆活动产物,碱性和过碱性与板内背景有关,过铝质花岗岩石(ACNK要大于1.1)是沉积岩深熔作用形成,尤其是大陆碰撞时期。
二、花岗岩的成因分类MlSAMlsA(即M、I、S和A型)是目前最常用的花岗岩成因分类方案。
其英文分别是I(infraerustal或igneous)、s(supraerustal或sedimentary)、A(alkaline,anorogenie 和anhydrous)和M(mantle derived)。
分类依据:花岗岩的岩浆源区性质划分,及火成岩、沉积岩、碱性岩和有地幔参与成分的源区。
A型特征及成因A型:岩石学和实验岩石学(Clemensetal.,1986;patino Douce,1997)证据表明,A型花岗岩形成温度高,而且部分A型花岗岩形成压力还很低(即较浅部的中上地壳)。
因此,正常的I或者S型花岗岩经分异作用是形成不了A型花岗岩的。
A型花岗岩都表现出低Sr、Eu和富集Nb、Zr等元素的特点,反映其源区存在斜长石的残留(形成的压力较低),因此它也不可能是慢源岩浆分异而来(在极端情况下,慢源岩浆的强烈结晶分异可能会产生有限的低Sr、Eu的碱性岩石,但此时应与大规模的镁铁质岩石伴生),或来源于镁铁质源岩的部分熔融。
A型花岗岩的最重要之处是,如果浅部地壳能够发生高温部分熔融,显然暗示其深部存在热异常,而这大多只会在拉张情况下出现。
岩石地球化学
岩石地球化学
岩石地球化学是地质学、地球化学、放射性地球化学和应用勘查测量等领域的一个重要学科。
它是计算地壳和地幔的化学成分、岩石的原始地球化学和地球重编程的定量研究,其
目的是探索地球内部结构和发展过程以及未来地球重编程可能性。
岩石地球化学是研究地球演化过程和岩石重新构造过程的基本手段。
它分析了岩石中的元素、化合物及其组成比例,以识别岩石的特征及历史特征,并根据现实和理论推断出岩石
演化和重新构造的动力机制。
这是计算、分析和解释岩石演化的主要任务,是理解过去的
岩石学运动机制的基础,为岩石地球化学的应用和未来研究提供重要依据。
岩石地球化学的研究基于地球物理和地球化学、放射性地球化学、杂质物质和有机地球化
学等学科的基础上进行,綜合考虑了地球内部复杂的物质配置,并探究岩石中元素及化合
物的原始比例及未来演变情况。
例如,岩石地球化学研究实验室收集了沉积岩、和碰和火
山岩等岩石样品,经过大量的化学、临床和放射性质系测量,分析了岩石样品的元素成分
及其组成比例;同时,为了更好地理解地壳和地幔的化学成分及其变化特征,岩石地球化
学实验室还收集了大量的火山岩样品,用以进行高能和半导体光谱分析,实现高分辨率的变化成分分析。
由岩石地球化学研究可以获得大量关于地壳和地幔演化及重新构造过程的有用信息,其研
究结果有助于地球内部角质物质演变的计算和地质危险性评估,并为未来可能的地壳重编
程和研究提供重要的科学指导和依据。
因此,岩石地球化学研究是痛定思痛,为未来研究、预测和评价地壳演化过程、地质危险性及未来地壳重编程提供重要技术手段及重要信息。
《岩石地球化学》课件
3
分析测试
通过化学分析、同位素测量等方法,获得岩石样品的化学组成和同位素比值。
岩石地球化学在地质学中的应用
岩石演化
通过岩石地球化学分析,揭示地壳岩石的形成 和演化过程。
油气勘探
岩石地球化学可用于指导油气勘探,判断勘Biblioteka 区域的油气藏条件。矿产勘探
岩石地球化学可用于找矿预测和矿产资源勘探。
环境研究
通过岩石地球化学研究,了解环境中的污染物 来源、分布和迁移规律。
2 资源勘探
岩石地球化学对矿产资源勘探具有重要意义,可以指导找矿工作,提高勘探效率和发现 新的矿产资源。
3 环境保护
通过研究岩石地球化学,可以了解地质环境和地球系统的演化过程,为环境保护和可持 续发展提供科学依据。
岩石地球化学的研究内容
元素地球化学
研究岩石中化学元 素的含量、分布和 变化规律。
同位素地球 化学
岩石地球化学的发展与前景
1 多学科交叉
岩石地球化学将与地质 学、矿物学、环境科学 等学科交叉发展,拓展 研究领域。
2 新技术应用
利用新的仪器设备和分 析技术,提高岩石地球 化学研究的精确性和效 率。
3 资源与环境
岩石地球化学将为资源 勘探和环境保护提供更 多的科学依据。
总结与展望
岩石地球化学是一门重要的地学学科,通过对岩石的化学成分和同位素组成进行研究,可以揭示地球的 演化历史、资源勘探和环境变化等问题,为可持续发展提供科学支持。
研究岩石中同位素 体系的组成和变化, 揭示地球演化过程。
矿物地球化学
研究地球内矿物的 成因、特征和分布 规律。
示踪地球化学
利用特定元素或同 位素示踪地质过程、 环境变化等。
岩石地球化学的方法和技术
岩石地球化学计算
岩石地球化学计算1. TFe2O3=FeO+0.9Fe2O3FeOT(wt.%)=FeO(wt.%)+Fe2O3(wt.%)*0.8998=FeO(wt.%)+Fe2O3(wt.%)*(71.844/(159.6882/2))2. LOI 烧失量3. Mg#=100*(MgO/40.3044)/(MgO/40.3044+FeOT/71.844)FeOm71.85 ;MgOm40.31上述是分别测试分析了FeO和Fe2O3的计算方法,如果是测试的全铁,也可以近似计算。
通常说的高Mg,是指岩石具有较高的MgO含量,如火山岩中的高镁安山岩(通常情况下,异常高的MgO含量指示着可能有地幔物质参与,如俯冲带地幔楔或者软流圈熔体上涌等等)。
Mg#(镁指数)也可以定量的表示岩石中的Mg含量高低。
Mg#通常用于镁铁质岩石,可以粗略指示地幔岩石的部分熔融程度,高Mg#的地幔橄榄岩可能经历了更高程度的部分熔融,常在92-93左右,而原始地幔会相对富集,Mg#较低,在88-89左右。
4. 里特曼组合指数δ或里特曼指数δ=(K2O+Na2O)2/(SiO2-43)(wt%)δ<3.3 者称为钙碱性岩,δ=3.3-9 者为碱性岩,δ>9 者为过碱性岩。
5.A/NK = Al2O3/102/(Na2O/62+K2O/94)6.A/CNK = Al2O3/102/(CaO/56+Na2O/62+K2O/94)7.全碱ALK = Na2O+K2O8.AKI = (Na2O/62+K2O/94)/Al2O3*1029.AR = (Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O)10.固结指数(SI) =MgO×100/(MgO+FeO+F2O3+Na2O+K2O) (Wt%)11.阳离子R1-R2图(岩石氧化物wt%总量不用换算成100%)R1=(4Si-11(Na+K)-2(Fe+Ti)*1000R2=(6Ca+2Mg+Al)*100012.(La/Sm)N对δEu的双变量斜边图解认识Eu异常。
岩石地球化学与元素迁移过程
岩石地球化学与元素迁移过程岩石地球化学是地球科学的重要分支之一,涉及研究地球内、地球表层以及与环境之间的物质循环和元素迁移过程。
了解岩石地球化学和元素迁移的过程可以帮助我们更好地理解地球的构造和演化,以及影响环境和人类生活的因素。
一、岩石地球化学的基本概念和原理岩石地球化学是研究地球中各种岩石和矿物中元素的分布、形态及其与地球动力学和环境的相互关系的科学研究领域。
它探讨了地球化学元素的形成、迁移和转换规律,以及岩石与矿物中元素含量和分布的控制因素。
地球地壳是岩石地球化学研究的重点区域。
地壳是地球最外部的固态岩石层,由不同的岩石和矿物组成。
地壳中的元素主要来源于地球内部的岩浆活动和地表的生物活动,它们通过不同的物理、化学和生物过程在地壳中发生迁移和转化。
二、元素迁移过程的类型和机制元素迁移是指元素在地球体系中由一个位置或相中转移到另一个位置或相的现象。
元素迁移的类型包括溶解迁移、扩散迁移、迁移圈和迁移通道等。
1. 溶解迁移溶解迁移是指溶解态的元素在地下水或地表水中随着水流的运动而迁移。
水是地球上一种普遍存在的溶剂,在接触各种岩石和矿物时,会溶解其中的一些化学元素。
通过地下水和地表水的流动,这些溶解的元素可以在地壳中迁移,进而影响到其他环境和生物。
2. 扩散迁移扩散迁移是指元素在地球体系中由高浓度区域向低浓度区域扩散的现象。
当两个区域之间存在浓度差时,元素会沿着浓度梯度扩散,直到达到平衡状态。
扩散的速率受到岩石和矿物的孔隙度、多孔介质的连通性、温度和压力等因素的影响。
3. 迁移圈和迁移通道迁移圈是指某一特定地域范围内的元素迁移共同体系。
在迁移圈中,元素可以通过不同的迁移通道进行迁移。
迁移通道可以是地下水流通的通道,也可以是岩石缝隙中固体物质的迁移通道。
通过研究迁移圈和迁移通道的特征和机制,可以更好地理解元素在地球体系中的迁移过程。
三、岩石地球化学与环境和人类活动的关系岩石地球化学和元素迁移过程对环境和人类活动有重要影响。
岩石地球化学研究中的元素地球化学
岩石地球化学研究中的元素地球化学岩石地球化学是地球科学的重要分支之一,它研究的是地球内部的物质组成和性质。
在这个学科中,元素地球化学是探究岩石中元素含量、分布和演化的核心内容。
通过对不同岩石中元素的研究,我们可以揭示地球的起源和演化过程,理解地质背景下地球中元素的循环和转化规律,甚至与资源勘探和环境保护等方面有着密切的联系。
元素地球化学研究的核心在于分析和解释岩石中元素的地球化学特征。
首先,利用现代仪器设备,通过样品制备和分析技术,我们可以测定岩石中各种元素的含量。
这些分析数据可以进一步用于追踪元素的来源和通量以及物质的迁移和转化过程。
例如,对于岩浆岩和构造变形带中岩浆中的不同元素含量和分布特征的研究,可以反映出地幔和地壳物质之间的相互作用以及地球内部的物质循环。
第二,在元素地球化学研究中,我们还需要关注岩石中元素的地球化学赋存状态。
元素地球化学赋存状态的研究可以提供有关元素在岩石中的结构化学和物理化学性质的信息。
例如,岩石中的元素分为可溶解元素和不可溶解元素。
可溶解元素一般以阴离子或阳离子的形式存在于岩石矿物之间,而不可溶解元素则主要以晶体内部或晶间隙的形式存在。
通过分析不同元素的分配和富集模式,我们可以了解岩石中元素的偏好富集特征,如铁、硫、氧、硅等元素在岩石中的赋存形态,这对于研究岩石形成和演化过程具有重要意义。
另外,元素地球化学研究还可以揭示不同岩石类型和岩石区域的地球化学特征和演化规律。
通过对不同岩石类型中元素地球化学特征的分析,我们可以判断岩石的来源和形成环境。
例如,岩浆岩和沉积岩之间的地球化学特征差异可以反映出它们的形成过程和岩石圈演化历史。
此外,元素地球化学研究还可以提供岩石地球化学地层学和岩石地球化学探矿的依据。
通过分析不同岩石区域元素的分布特征和富集规律,我们可以追踪矿源和寻找矿产资源。
在岩石地球化学研究中,我们还需要了解元素的地球化学循环和转化过程。
地球化学循环是指元素在地球各层圈系统中的迁移、转化和聚集过程。
岩石地球化学数据处理及图解相关问题讲解
岩石地球化学数据处理及图解相关问题讲解岩石地球化学作为一个较为复杂的学科,是由地球化学、岩石学和地质学三个理论领域综合而成的重要学科。
它研究块状岩石的成因及岩石体中物质的元素组成及其空间分布规律,从而了解地球内部深弹幕室元素组成种类、分布与物质交换的空间时空变化规律,进而探讨地球圈层的结构及演化机制。
岩石地球化学数据处理是岩石地球化学研究过程中的重要环节,是从岩石样品中提取元素组成、放射性百分比及其空间分布规律等数据,并对其进行计算和分析,以获得有用信息的一系列操作。
常见的数据处理步骤有:原始数据及数据预处理、数据分析及图解处理、统计学处理、数据可视化等。
原始数据及数据预处理是岩石地球化学研究的基础,需要进行收集、归类和检验。
收集的数据可以通过室内实验、实地测量、采样分析等方法获得,并通过图表等形式记录,比如手绘地质图、实验室分析结果表等。
在进行数据预处理之前,需要对原始数据进行检验,检查数据准确性、完整性和一致性,以保证数据质量。
数据分析及图解处理是岩石地球化学研究过程中最重要的部分,它涉及多种数据分析方法,如多元统计分析、化学物理计算分析和地球物理数据处理等,其中最常用的是多元统计分析、地球物理数据处理以及图解(如块体结构图、图解概念图等)。
多元统计分析方法,可以从岩石地球化学数据中提取出统计特征参数,用以表征地质构造特征和来源、物质分布特征、岩性特征等;地球物理数据处理,可以提取出有用的图形数据,如深度曲线、垂向曲线和三维曲线等,从而进行地质构造的空间分析;而图解处理,则可以提取出岩石结构的空间关系,从而进行岩石结构的研究与分析。
统计学处理是岩石地球化学研究中常用的数据处理方法,它是基于多元统计分析等方法,从原始数据中提取出统计学参数,并对其进行排序、计算和分析,以及因子分析等复杂方法,进而深入挖掘出更多有用的信息。
数据可视化是岩石地球化学研究最后一步,是将处理好的数据转换为可视的形式。
通常会采用熟悉的可视化手段,如K-map法、气泡图、多变量图、柱状图和线图等,其中,K-map法是对岩石地球化学研究常用的可视化技术,它可以将复杂的数据及其空间空间关联转换为容易理解的K-map图形。
矿物岩石地球化学
矿物岩石地球化学
矿物岩石地球化学是地球化学中的一个分支领域,主要研究地球
上各种矿物、岩石及其形成过程中的化学元素、物质组成和分布规律。
在地球化学体系中,矿物岩石地球化学是与大地构造、矿床和资
源勘探等领域有密切联系的一部分。
岩石是地球上最基本的构成要素
之一,它们对地球物质的运行和生命的演化有着巨大的影响。
因此,
矿物岩石地球化学的研究对于地球科学的发展和人类社会的发展都有
着非常重要的作用。
矿物岩石地球化学的研究内容非常广泛,主要包括以下几个方面:
1.矿物的物质组成和分类:矿物是地壳中的基本构成单元,它们
的组成和分类对于地球化学的研究具有重要的意义。
2.岩石的成因和分类:岩石是地壳中的各种矿物集合体,其成因
和分类对于岩石学和矿床学的研究至关重要。
3.元素分布和循环:在地球化学中,元素是最基本的研究对象之一,矿物岩石地球化学通过研究元素的分布和循化规律,揭示了地球
物质的成因和演化历史。
4.地球化学勘探:矿物岩石地球化学研究的成果可应用于矿产资
源勘探中,地球化学勘探技术可以通过对地表、地下、大气的化学分析,找出地下矿床的位置。
总之,矿物岩石地球化学是一门重要的地学科学,其对于地球物
质的认识和资源的开发有着重要的贡献。
未来,矿物岩石地球化学还
将继续深入研究和探索,在地球科学研究和资源勘探中发挥更加重要
的作用。
弧后盆地岩石地球化学
弧后盆地岩石地球化学引言:地球化学是研究地球上元素的分布、循环和相互作用的科学。
而弧后盆地岩石地球化学则是地球化学的一个分支,主要研究弧后盆地中岩石的组成、形成机制以及地质演化过程中的地球化学变化。
本文将对弧后盆地岩石地球化学进行详细探讨。
一、弧后盆地的概念弧后盆地是指在造山运动中,弧前的造山带向弧后的拆山区转变时形成的地质构造和地貌单元。
弧后盆地通常位于弧前造山带的后方,是由于地壳的伸展和拆裂形成的。
在弧后盆地中,岩石地球化学的变化是一种重要的研究内容。
二、弧后盆地岩石地球化学特征1. 元素组成:弧后盆地中的岩石通常富含铝、钙、钠、钾等元素,同时富集了稀土元素、铜、铅、锌等金属元素。
2. 同位素比值:弧后盆地中的岩石同位素比值常常显示出明显的变化,比如氧同位素比值的变化可以反映岩石的形成温度和变质程度。
3. 矿物组成:弧后盆地中的岩石通常富含斜长石、角闪石、绿帘石等矿物,这些矿物的组成和含量可以反映岩石的成因和演化过程。
4. 地球化学演化:弧后盆地中的岩石在地质演化过程中经历了多次岩浆活动和变质作用,因此地球化学特征会随着时间的推移而发生变化。
三、弧后盆地岩石地球化学的研究方法1. 野外调查:通过野外地质调查,收集样品并进行野外分析,获得岩石的地球化学特征。
2. 实验室分析:利用光学显微镜、电子探针、质谱仪等设备,对采集的岩石样品进行地球化学分析,获取元素含量、同位素比值等数据。
3. 数值模拟:通过建立数学模型和计算机模拟,模拟岩石的形成过程和地球化学演化过程,从而揭示岩石地球化学的规律。
四、弧后盆地岩石地球化学的意义1. 研究弧后盆地岩石地球化学可以揭示地壳的演化历史,了解地球内部的物质循环和元素分布规律。
2. 弧后盆地岩石地球化学研究对于资源勘探和环境保护具有重要意义,可以指导矿产资源的开发和利用,以及环境污染的防治。
3. 弧后盆地岩石地球化学的研究还有助于预测地震、火山喷发等自然灾害,提高社会的灾害应对能力。
岩石地球化学
Eu,称为铕异常值。在球粒陨石标准化图上, Eu的位置往 往落在由Sm和Gd限定的趋势线之外,这种偏离就是铕异常。 如果EuCN比SmCN和GdCN值都高,称为铕正异常,反之则负 异常。
此外,花岗岩中,钾长石 /斜长石比例> 0.6~0.7(对古老花 岗岩而言)或> 1.2~1.6(对年青花岗岩 )的岩石,往往呈 -Eu, 反之则是无或弱的 -Eu。
La/YbN(Yb值易准确测定)比值指示REE 配分曲线斜率,有时也用La/LuN和Ce/YbN表 示(La、Ce和Yb、Lu分别为轻、重REE代 表)。该比值>1,曲线向右倾,富LREE,一 般见于酸性岩;该值~1,曲线近于水平,属球 粒陨石型,如大洋拉斑玄武岩、科马提岩;< 1,曲线左倾,见于石榴石二辉橄榄岩、橄榄岩 质科马提岩和受交代、强分异的富HREE的浅 色花岗岩。
1
低钾
( 低钾 拉 斑系 列
0 40 45 50 55 60 65 70 75 80
SiO 22wt%
4、对于亚碱性系列的岩石,可进一步利用 K2O- SiO2 图解将 岩石系列划分为低钾拉斑玄武系列、钙碱性系列、高钾钙碱性 系列和钾玄岩系列。
5、此外,还可以进一步依据Ab-An-Or图解 和Na2O-K2O图解进一步进行分类和系列划分。
4、Peacock碱钙指数计算 5、Rittmann组合指数计算:= (wt%K2O + wt%Na2O)2/( wt%SiO2 – 43),并投图(李特曼组合 指数图解)识别岩石的碱性程度。 6、Wright碱度率计算:A.R=(wt%Al2O3 + wtêO+(wt%Na2O+ wt%K2O))/(wt%Al2O3 + wtêO – ( wt%Na2O+ wt%K2O)),并投图(Wright碱 度指数图解)识别岩石的碱性程度。注意:当wt%(SiO2) >50%,2.5>wt%(K2O)/ wt%(Na2O) >1时,用2 wt%(Na2O)代替总碱。 7、K60(SiO2=60%时的K2O%)计算,作SiO2与K2O 的拟合曲线,得曲线方程为K2O= a+ bSiO2,令 SiO2=60wt%,则得到K60。
岩石地球化学课件赵志丹
推荐软件和参考书
1.
计算CIPW的软件,Norm3
2.
Geokit, 路远发编写
3.
A TEXTURAL ATLAS OF MINERALS IN THIN SECTION, 软件, 编写者为Daniel J. Schulze,
University of Toronto.
4.
霞石正 长岩响岩类
花 岗 岩 -流 纹 岩 类
SiO2
< 45 %
45-53 %
53-66 %
> 66 %
<3.3 3.3-9 >9 <3.3 3.3-9
>9 <3.3 3.3-9
Na2O+K2O <3.5
>3.5 平均3.6 平均4.6 平均7 平均5.5
平均9
平 均 14
平 均 6-8
(N2O aK2O2)
代表性岩浆岩的化学成分
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O H2O+
Total
橄榄岩 42.26 0.63 4.23 3.61 6.58 0.41 31.24 5.05 0.49 0.34 3.91
98.75
玄武岩 49.20 1.84 15.74 3.79 7.13 0.20 6.73 9.47 2.91 1.10 0.95
玄武岩
花岗闪长岩
花岗岩
SiO2饱和度与矿物共生组合的关系
(1) SiO2过饱和——SiO2很多(过多),除形成硅酸盐矿物外,还有剩余—石英, Q就 是过饱和矿物,含有Q的岩石,就是SiO2过饱和岩石。
SiO2过饱和岩石
岩石地球化学找矿
二、热液矿床原生晕
• (一)热液矿床的形成 1、成矿热液 热液温度:50~400℃,最高达500~600℃
热液来源:岩浆成因、大质来源:岩浆分异、围岩
2、成矿动力学因素
①渗滤作用(主要方式) ②扩散作用
热液中元素的迁移,很少是由渗透过程或扩散过程单独 起作用,而是相互结合,同时发生的。 沿裂隙流动的热液,在热液流动的方向上,往往以渗透 作用为主,垂直裂隙的方向上,往往以扩散作用为主。
3、成矿元素析出机制
• 元素沉淀机制:主要是由于热液与围岩的 化学反应(复分解、中和、水解)和成矿 环境(温度、压力、 ph、Eh)物理化学条 件的改变,使原来在溶液中稳定的络合物 发生分解而沉淀。 • 此外,围岩的矿物颗粒表面、层理面、解 理面、解理面对对成矿元素的吸附作用, 也会成晕的因素之一。
注:热液矿床的岩石地球化学异常均简称热液矿床原生晕。 各类矿床的岩石地球化学异常是原生地球化学异常或原生晕的同义语
• (二)岩石地球化学异常的在地球化学异 常中占有的特殊地位 (1)各类矿床的岩石地球化学异常最全面地 保留了成矿时的地球化学信息。 (2)岩石地球化学异常是各种类型次生地球 化学异常物质来源的组成部分,各类次生 地球化学异常,都是原生矿体及其岩石地 球化学异常的派生产物。 (3)当前陆地上的找矿工作的发展趋势是寻 找厚覆盖地区隐伏矿和浅覆盖区及开采矿 山深部的盲矿。
• 轴向分带——沿矿体 轴向,即沿矿液运移 向的元素分带,由渗 滤作用造成。 • 横向分带——垂直于 矿体轴面方向上的分 带,由扩散作用造成。 • 纵向分带——顺矿体 走向所反映的元素分 带。
六、岩石地球化学找矿应用
(1)检查、验证水系沉积物异常、圈定找矿 目标 (2)判断剥蚀程度,寻找盲矿体 (3)指导勘探工程 (4)利用多建造晕或叠加晕预测深部矿体
岩石地球化学..
制作REE配分曲线图解时,为消除其原子序数的奇 偶效应,需用球粒陨石标准化(CN)。用作标准化的 球粒陨石的REE值已由许多学者提出,这里建议采用 泰勒值(Taylor,et al.,1977,GCA,41,1375~ 80):La 0.315ppm,Ce 0.813,Pr 0.116,Nd 0.597,Sm 0.192,Eu 0.0722,Gd 0.259,Tb 0.049,Dy 0.325,Ho 0.0730,Er 0.213,Tm 0.0300,Yb 0.208,Lu 0.0323。 进行REE地质地球化学含义解释时,较常使用的参 数,除上述∑REE和∑LREE/(∑HREE+Y)以外, 是dEu、(La/Yb)CN、(La/Sm)CN和(Gd/Yb) CN,后三种可简写为La/YbN、La/SmN和Gd/YbN。
在计算CIPW标准矿物含量时,如果是全 铁含量,应找一个有效的方法将全铁分成 FeO和Fe2O3;一般采用: FeO*(TFeO)=FeO+0.8998Fe2O3 在使用TAS分类图时,首先要检查一下 要进行分类的岩石是否为“高镁”火山岩; 谨慎使用那些风化、蚀变、变质、变形 或者经历过重结晶作用的岩石化学分析数 据,但对于许多低级变质火山岩,要求烧 失量应小于5%;
二、微量元素
计量与分类 常(主)量元素,指岩石中该元素氧化物的重量丰度> 0.1%,即>1000ppm(mg/g,10-6,1/百万);微量(痕量) 元素的重量丰度<1000ppm,>0.1ppm;超微量元素< 0.1ppm,即<100ppb(10-9,1/10亿)。 微量(痕量)元素的常用代号: HFSE(高场强元素—稳定元素):镧系元素,Sc和Y,以及 Th、U、Pb、 Zr、 Hf、Ti、Nb、 Ta、等 ; LFSE(低场强元素又称—活动性元素— LILE大离子亲石元素):Cs、 Rb、K、Ba、Sr等,轻稀土元素; ICE,不相容元素; CE,相容元素; REE,稀土元素; RHE,放射性生热元素。
岩石地球化学
(一)利用常量元素开展岩石的分类 岩石的分类通常是基于主量元素成分,单它 们的具体命名要根据矿物组成。但是对火山岩而 言,岩石的具体命名也主要依据化学成分。 图1是Le Maitre et al (1989)提出的全碱 (Na2O+K2O)—SiO2的TAS分类图。 Wilson (1989)利用Cox et al (1979)的TAS图解 对侵入岩也进行了分区和命名(图2)。
如果岩石中含有较多的含水矿物,如黑云母,角闪石
或白云母,特别是蚀变强烈的岩石(含大量粘土矿物和
碳酸盐矿物),则岩石的总量将会低于99%,这时往往 用烧失量(LOI)或直接分析H2O+、H2Oˉ、F和CO2的含 量来补充。
在运用已有的常量元素时,应注意下列 几点:
测试样品必须是未蚀变的新鲜岩石,其 检验的标准是岩石中H2O+<2%,CO2<
0.5%;否则不能使用,只有高镁火山熔 岩(苦橄岩、科马提岩、麦美奇岩、玻古 安山岩)例外;
使用原始数据进行各种分类图表和化学 参数计算前,必须先去除H2O或烧失量, 重新计算为干成分的100%标准化时的主元 素质量百分数后,才能使用;
在计算CIPW标准矿物含量时,如果是全 铁含量,应找一个有效的方法将全铁分成 FeO和Fe2O3;一般采用:
1、用Muller等方法时,计算镁值(耐火度) (Mg# =MgO*100/ (MgO+FeO*)(摩尔比), FeO*=FeO+0.899Fe2O3。
岩石地球化学指标的分类及其意义
岩石地球化学指标的分类及其意义岩石地球化学指标是指用于研究岩石成因、地质作用与演化、地球系统等方面的化学参数。
它们可以提供关于岩石组成、物理性质、变质程度、岩石环境等信息,并为岩石地球化学研究提供了一个有力的工具。
这篇文档将介绍一些常用的岩石地球化学指标,并探讨它们的分类及其意义。
1. 主量元素指标主量元素指标是指构成岩石的主要元素,包括Si、Al、Fe、Mg、Ca、Na、K、Ti、P等元素。
这些元素主要用于描述岩石的化学成分和类型,以及岩石的分异、演化等过程。
主量元素指标常常用于研究岩石的成因与演化,对于识别不同类型的岩石、研究岩浆成因、推断岩石变质、沉积作用等领域都有重要作用。
2. 微量元素指标微量元素指标是指在岩石中含量较少,但对岩石形成和演化有重要影响的元素。
这些元素包括Cr、Ni、Cu、Pb、Zn、Co、V、Mn、Sr、Ba、Rb等等。
微量元素指标可以用于研究岩石的成因、岩浆演化、岩石变质、矿床形成等领域。
例如,利用铬(Cr)和尼克尔(Ni)等微量元素,可以区分岩石的不同成因类型,比如海洋壳体和陆壳体。
利用铅(Pb)和锌(Zn)等元素,可以研究矿床的成因、演化和定年。
3. 同位素指标同位素指标是指某种元素的不同同位素组成,通常用比值表示。
同位素指标主要用于研究岩石地质年代、地球演化、岩浆成因、环境成因等方面。
例如,铀-铅(U-Pb)同位素可以用于定年岩石的形成时期,锆石(Hf-O)同位素可以研究岩浆演化与变质过程,碳(C-N-O-S)同位素可以用于研究岩石和矿物的成因、沉积环境和地球大气演化。
4. 稳定同位素指标稳定同位素指标是指不放射性的同位素的比值,稳定同位素主要有氧(O)、碳(C)、硫(S)、氢(H)、氮(N)等元素。
稳定同位素指标可以应用于研究地球化学过程,比如通过碳同位素指标研究生物的起源以及大气CO2的变化,通过氢氧同位素指标分析水环境的演变和水的来源,通过硫同位素指标研究生物地球化学循环和成矿研究等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
peralkaline
high Fe/Mg
Stable craton
high Ga/Al
Rift zone
High REE, Zr
High F, Cl
* molar Al2O3/(CaO+Na2O+K2O)
Data from White and Chappell (1983), Clarke (1992), Whalen (1985)
和
143 Nd 144 Nd
S
(t)
计算方法
对于CHUR: 1 1N N 4 44 3 C d dH (t)U R 1 1N N 4 44 3 C d dH U 1 1N S 4 R 44 7 m C dH (e U t 1 R )
Sr同位素演化——地球初始Sr比值
地球形成时的(87Sr/86Sr)0 ?
如何获得?
(1)地球形成时的岩石样品难以获得。 (2)由于地球和陨石是在大致相同的时间由太 阳星云的凝聚相通过重力凝聚作用形成的,因 此陨石可以代表地球的(87Sr/86Sr)0比值。 (3)目前公认玄武质无球粒陨石的(87Sr/86Sr)0 比值为0.69897±0.00003 (Faure,1977),代 表地球形成时的初始比值,以BABI表示。
因此:同位素年代学和同位素地球化学注重同位素体系的演化, 将同位素研究的计时作用和示踪作用结合起来,可以更好地揭 示整个地球历史的演化过程。
Sr同位素地球化学
基本原理——
体系中Sr同位素初始比值(87Sr/86Sr)0是一个重要 的地球化学示踪参数,不同的地球化学储库的 (87Sr/86Sr)0是不同的。 (87Sr/86Sr)0对示踪物质的来源, 壳幔物质演化及壳幔相互作用等均具有重要意义。
详见下页
Nd同位素的标记办法——Nd
由于在整个地质时期143Nd /144Nd比值变化很小,引入了εNd参数,其涵义为:
N(d 0) 1 14 4 N N 3 3//1 1d dN 4 N 44 4s C d d aH m ((0 0 U ))p R l1 e 140
加入Rb/Sr比值后
见下页图
地幔和地壳Sr同位素演化
地幔演化——由于上地幔具有低的Rb/Sr比值(0.03),
导致上地幔的 (87Sr/86Sr)0随时间缓慢增长。
地壳演化——
2.7Ga年前,地幔分异形成大陆地 壳,继承地幔初始比值0.7014. 但 是其Rb/Sr=0.15,现今大陆壳的 (87Sr/86Sr)0平均为0.7211,连接 2.7Ga的地幔(87Sr/86Sr)0值到现今 大陆壳的(87Sr/86Sr)0值得到一条直 线,该直线为平均大陆壳随时间的 (87Sr/86Sr)0演化线。
例2:各个大洋的MORB
(87Sr/86Sr)0也不同(右图),印度 洋MORB明显区别于大西洋和东太 平洋(Faure,2001,fig.2.63)。
Sr同位素识别岩石源区
From Faure, 1986,fig.10.63
除了用于研究成岩和成矿物质来 源外,(87Sr/86Sr)0还可用来划分岩石 的成因类型。如花岗岩分类,
式中的Nd (0) 代表样品现今的(143Nd /144Nd)S 相对 CHUR现今的(143Nd /144Nd)CHUR比值的偏差值。
N(d t) 1 14 4 N N 3 3//1 1 d dN 4 N 44 4s C d d aH m ((ttU ))p R l1 e 140
二、Sr-Nd-Pb同位素地球化学
1. 同位素地球化学示踪基本原理
(1) 岩石或者岩浆的同位素特征,只受同位素衰变规律控制, 不受分异结晶作用影响,同位素比值在分离结晶过程中不 发生变化,因此由源区部分熔融形成的岩浆的同位素比值 代表其源区特征。
(2) 现有的岩石或者岩浆可以识别源区,如果是混合的源区, 则具有混合的同位素特征。
Nd同位素地球化学 ——特征和意义
Nd同位素地球化学——特征和意义
① Sm、Nd这对母子体具有相似的地球化学性质,除岩浆作用 过程Sm/Nd比值能发生一定变化外,一般地质作用很难使Sm、 Nd分离,特别是在地质体形成之后的风化、蚀变与变质作用 过程,Sm、Nd同位素通常不会发生变化;
②一些太古代样品的143Nd /144Nd的初 始比值均落在Sm/Nd比值相当于球粒陨 石的143Nd /144Nd演化线上,这表明地 球早期演化阶段的Nd同位素初始比值与 球粒陨石Nd同位素初始比值非常一致, 这使我们获得了有关Nd同位素演化起点 的重要参数;
图书馆书号: 274 Oz5/2
第三章、岩石地球化学数据的处理与解释
第三节、放射性成因同位素数据处理与解释 一、Rb-Sr、Sm-Nd、Re-Os、U-Pb同位素
年代学 二、Sr-Nd-Pb-Os同位素地球化学
二、Sr-Nd-Pb同位素地球化学
1. 同位素地球化学示踪基本原理 2. Sr-ห้องสมุดไป่ตู้d-Pb主要参数计算方法 3. 端元混合作用的同位素研究
由于在整个地质时期143Nd /144Nd比值变 化很小, DePaolo和Wasserburg提出了一 种表示法,初始比值可以相对于CHUR演化 线的万分偏差来表示,称之为ε单位(εNd)。 数学上,该表示法定义为:
N(d t) 1 14 4 N N 3 3//1 1 d dN 4 N 44 4s C d d aH m ((ttU ))p R l1 e 140
举例——1.0 Ga时,地幔和大陆地壳形成熔体的
(87Sr/86Sr)0值分别为:0.7034和0.7140。
Sr同位素的识别岩石的源区
地幔演化
A. 均一地幔 B. 亏损地幔 C. 富集地幔
Sr同位素的识别岩石的源区
若岩石的初始87Sr/86Sr比值落在大陆壳增长线以上 或其附近,表明形成该岩石的物质来自于陆壳;
S型花岗岩的(87Sr/86Sr)0 >0.707, I型花岗岩的(87Sr/86Sr)0 <0.705。
Table from Winter 2001 Table 18-3. The S-I-A-MClassification of Granitoids
Type SiO2 K2O/Na2O Ca, Sr A/(C+N+K)* Fe3+/Fe2+ Cr, Ni 18O 87Sr/86Sr
通过对地幔岩石或其派生的火山岩的(87Sr/86Sr)0比值研究, 为地幔不均一性的研究提供了重要例证,
例1:不同构造环境玄武岩在锶同位素组成上具有明显的不
均一性。(87Sr/86Sr)0的平均值,
洋中脊玄武岩——0.70280, 洋岛玄武岩———0.70386, 岛弧玄武岩———0.70437, 大陆玄武岩———0.70577。
第三章、岩石地球化学数据的处理与解释
第一节、主量元素数据处理与解释 第二节、微量元素数据处理与解释 第三节、放射性成因同位素数据处理与解释 第四节、稳定同位素数据处理与解释
参考书介绍
Faure G. 2001. Origin of igneous rocks: the isotopic evidence, Springer, pp.496
若岩石的(87Sr/86Sr)0比
值落于“玄武岩区”,则表 明形成它们的物质来自上地 幔源区;
若岩石初始87Sr/86Sr比值落在大
陆壳增长线和“玄武岩源区”之间, 则表明它们的物源可能是多样的, 或来自壳幔混合的源区,或来自地 壳下部Rb/Sr比值较低的角闪岩相, 麻粒岩相高级变质岩等。
Sr同位素识别岩石源区
2. Ernst R. E. and Buchan K. L. (eds) Mantle plumes: Their indentification through time. GSA Special paper 352. Pp.593(书号 P206.4/Sp3/352)
参考书介绍
Ozima M, Podosek F A. 2002. Noble gas geochemistry (2nd edition), Cambridge Press, pp.286
图书馆书号:
360.1/F27
参考书介绍——同位素地质学原理
Faure G. 1986. Principles of isotope geology (2nd edition), John Wiley & Sons, pp589
图书馆书号: 275.01 F27/2
参考书介绍——关于地幔柱
1. Condie Kent C. 2001. Mantle plumes and their record in Earth history. Cambridge Univ. Press. pp.306 (书号240 C75k)
Nd同位素地球化学——特征和意义
③年轻火山岩Nd同位素研究表明,143Nd /144Nd与87Sr/86Sr比值之间呈现良好的负相关 关系。
因此,Nd同位素在探讨地幔、地壳演化、壳幔 交换、岩石成因和物质来源等方面有十分重要的 作用。
地幔Nd同位素演化—— 全地球的(143Nd/144Nd)0 ?
S 65-74% high
mafic uminous to rocks peraluminous
low
high
low
high > 9?
med. Rb, Th, U
Infracrustal
hornblende Mafic to intermed.
magnetite
igneous source
> 0.707 variable LIL/HFS Subduction zone