4.6 用尺规作线段与角(第一课时)

合集下载

用尺规作角(课件)七年级数学下册(北师大版)

用尺规作角(课件)七年级数学下册(北师大版)

D C
A/ C/
∵∠EO'F在∠AOB的内部 ∴∠AOB>∠EO'F
探究新知
例2: 已知:∠1. 求作:∠MON,使∠MON=2∠1.
1
探究新知
作法:(1)作射线OM; (2)以点B为圆心,以任意长为半径画弧,交BA于点P,交BC
于点Q; (3)以点O为圆心,以BP长为半径画弧,交OM于点D ;
(4)以点D为圆心,以PQ长为半径画弧,交前面弧于点E ;
(5)过点O作射线OF,得到 ∠MOF=∠1.
C
F
Q
E
B1
P
A
D
O
M
探究新知
(6)以点B为圆心,以任意长为半径画弧,交BA于点R, 交BC于点S;
(7)以点O为圆心,以BR长为半径画弧,交OF于点G ; (8)以点G为圆心,以SR长为半径画弧,交前面弧于点H ;
随堂练习
2. 画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内 部画一条射线OC,使∠AOC=90°,正确的图形是( D )
随堂练习
3. 下列作图语句正确的是( D ) A. 过点P作线段AB的中垂线 B. 在线段AB的延长线上取一点C,使AB=BC C. 过直线a,直线b外一点P作直线MN使MN∥a∥b D. 过点P作直线AB的垂线
随堂练习
7.已知∠α,∠β (∠α>∠β),如图。 求作∠AOB,使∠AOB=∠α-∠β.
随堂练习
作法:先作∠AOC,使∠AOC=∠α; 再以OC为一边,作∠COB,使∠COB=∠β ,并且使射线OB落在 ∠AOC的内部,则∠AOB就是所要求作的角.
课堂小结
1.作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相同,而第三次

沪科版数学 七年级上册 4.6 用尺规作线段与角 课后练习题

沪科版数学 七年级上册 4.6 用尺规作线段与角 课后练习题

一、单选题1. 下列说法正确的是()A.延长直线到点B.延长射线到点C.延长线段至点,使D.延长线段至点,使2. 下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧3. 下列画图语言表述正确的是()A.延长线段AB至点C,使AB=ACB.以点O为圆心作弧C.以点O为圆心,以AC长为半径画弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b4. 如图,已知线段a,b.按如下步骤完成尺规作图,则的长是()①作射线;②在射线上截取;③在线段上截取.A.B.C.D.5. 从直观上看,下列线段中最长的是()B.A.C.D.二、填空题6. 在数学中,我们常限定用___________和___________作图,这就是尺规作图.7. 尺规作图:作一条线段等于已知线段.已知:线段AB,如图求作:线段CD,使CD=AB.小亮的作法如下:如图,(1)作射线________;(2)以点________为圆心,________长为半径作弧交CE于点________.线段CD就是所求作的线段.8. 如图,用圆规比较两条线段A′B′和AB的长短,A′B′和AB的大小关系是_____.三、解答题9. 如图,在同一平面内有三个点A、B、C.(1)连接AC,面出直线AB,射线BC;(2)尺规作图(保留作图痕迹):在线段AC上作一点D,使得.10. 如图所示,已知线段AB,点P是线段AB外一点.按要求画图,保留作图痕迹;(1)作射线PA,作直线PB;(2)延长线段AB至点C,使得AC=2AB.11. 已知:∠AOB内一点C及线段(如图) ,求作:∠AOB内的点P,使P点到射线OA,OB的距离相等且PC= (不写作法但要保留作图痕迹,写出结论)。

2023-2024学年沪科版七年级数学上册教学设计:4.6用尺规作线段与角教学设计

2023-2024学年沪科版七年级数学上册教学设计:4.6用尺规作线段与角教学设计

2023-2024学年沪科版七年级数学上册教学设计:4.6用尺规作线段与角教学设计一. 教材分析《沪科版七年级数学上册》第四章第六节“用尺规作线段与角”是学生在掌握了尺规作图的基本方法之后,进一步学习尺规作线段和角的方法。

本节内容让学生通过尺规作线段和角,培养学生的动手操作能力和空间想象能力,同时也能让学生更好地理解线段和角的特征。

二. 学情分析七年级的学生已经掌握了尺规作图的基本方法,对于尺规作线段和角,他们可能已经有一定的了解,但可能没有系统地学习和练习。

因此,在教学过程中,需要注重引导学生理解和掌握尺规作线段和角的方法,并通过大量的练习让学生熟练掌握。

三. 教学目标1.让学生掌握尺规作线段和角的方法。

2.培养学生的动手操作能力和空间想象能力。

3.让学生能够运用尺规作线段和角的方法解决一些实际问题。

四. 教学重难点1.教学重点:尺规作线段和角的方法。

2.教学难点:如何让学生理解和掌握尺规作线段和角的方法,以及如何运用尺规作线段和角的方法解决实际问题。

五. 教学方法采用问题驱动法、示范教学法、分组合作法、练习法等教学方法,引导学生通过自主学习、合作学习、探究学习,掌握尺规作线段和角的方法。

六. 教学准备1.准备尺规作图的工具,如直尺、圆规等。

2.准备一些线段和角的实际问题,以便在课堂上进行解决。

3.准备一些练习题,以便在课堂上进行练习。

七. 教学过程1.导入(5分钟)教师通过一些实际问题,引导学生思考如何用尺规作线段和角。

例如,如何用尺规作出两条相等的线段,如何用尺规作出一个特定大小的角。

2.呈现(10分钟)教师通过示范教学,向学生展示如何用尺规作线段和角的方法。

在示范过程中,教师要注意讲解清楚每一步的操作方法,以及为什么要这样做。

3.操练(10分钟)学生分组合作,用尺规作线段和角。

在操作过程中,教师要巡回指导,解答学生的问题,并引导学生注意操作的准确性。

4.巩固(10分钟)学生独立完成一些关于尺规作线段和角的练习题。

初中数学(pdf水印版)—沪教版

初中数学(pdf水印版)—沪教版
7
【重点】结合具体问题,能列一元一次不等式,解决简单的不等关系问题 【难点】能正确的分析不等关系,建立相应的不等式 第四课时: 【重点】复习一元一次不等式的解法和应用 【难点】性质 3 的正确使用
7.3 一元一次不等式组 第一课时: 【重点】一元一次不等式组的解法 【难点】一元一次不等式组解集的确定 第二课时: 【重点】灵活解一元一次不等式组的解法 【难点】熟练地判断一元一次不等式的解集
4.5 角的比较与补(余)角 第一课时: 【重点】角的大小比较方法以及 【难点】从图形中观察角的数量关系 第二课时: 【重点】两角互补、互余的概念及性质 【难点】从图形中观察角的数量关系
4.6 用尺规作线段与角 第一课时: 【重点】尺规作图的意义、用尺规作一条线段等于已知线段 【难点】让学生理解作图步骤中的语言描述,并会根据画图要求画出图形 第二课时: 【重点】作一个角等于已知角 【难点】让学生理解作图步骤中的语言,并能根据作图要求画出图形
4.3 线段的长短比较 第一课时: 【重点】两条线段长短的比较 【难点】两条线段长短比较的方法 第二课时: 【重点】理解并掌握线段的性质 【难点】掌握并灵活运用线段的性质
4.4 角 第一课时: 【重点】掌握角的表示方法,会用量角器测量角的度数 【难点】掌握角的表示方法 第二课时: 【重点】掌握角的度量单位以及单位之间的换算 【难点】角度的换算以及对方位角的理解
3.4 二元一次方程组的应用 第一课时: 【重点】能根据题意找出等量关系,并能根据题意列二元一次方程组 【难点】正确找出问题中的两个等量关系 第二课时: 【重点】经历和体验用方程组解决实际问题的过程 【难点】用方程组刻画并解决实际问题 第三课时: 【重点】用列表、画图的方法分析题意、建立模型 【难点】如何应用列表法、图像法分析问题、建立模型

七年级数学上册《用尺规作线段与角》教案、教学设计

七年级数学上册《用尺规作线段与角》教案、教学设计
b.设计丰富多样的练习题,让学生在课后巩固所学知识,提高作图技能。
c.开展小组讨论和分享,促进学生之间的交流与合作,提高学生的沟通能力。
4.关注个体差异,因材施教:
a.对基础薄弱的学生,进行个别辅导,帮助他们掌握基本的尺规作图方法。
b.对学有余力的学生,提供拓展性学习资源,提高他们的几何作图技能。
5.融入情感态度与价值观教育:
2.尺规作线段的方法:
a.作给定长度的线段:利用尺子和圆规,按照步骤进行操作,边讲解边示范。
b.作等分线段:介绍等分线段的原理,演示等分线段的尺规作图方法。
3.尺规作角的方法:
a.作直角:利用圆规和直尺,按照步骤作出直角。
b.作等角:以已知的角为基准,利用圆规和直尺作出与之相等的角度。
4.结合实际例子,讲解尺规作图在实际问题中的应用。
1.引入:教师出示一张白纸,提出问题:“如何用最简单的方法在纸上画出一条指定长度的线段?”引导学生思考并回答。
2.背景知识:简要介绍尺规作图的历史和在实际生活中的应用,让学生了解尺规作图的价值和意义。
3.导入新课:通过以上铺垫,引出本节课的主题——《用尺规作线段与角》。
(二)讲授新知
1.尺规作图的基本概念:介绍尺子和圆规在几何作图中的作用,讲解基本的作图方法。
4.能够运用尺规作图方法探索数学规律,发现几何图形中的对称美和几何关系。
(二)过程与方法
1.通过观察、实践、探索,让学生掌握尺规作图的基本方法和技巧。
2.培养学生的动手操作能力,提高空间想象力和逻辑思维能力。
3.引导学生运用尺规作图方法解决实际问题,培养学生分析问题、解决问题的能力。
4.鼓励学生在尺规作图过程中,积极与他人交流与合作,提高沟通能力。

沪科版七年级数学上册《第4章直线与角4.6用尺规作线段与角(第1课时)》教学设计

沪科版七年级数学上册《第4章直线与角4.6用尺规作线段与角(第1课时)》教学设计

沪科版七年级数学上册《第4章直线与角4.6用尺规作线段与角(第1课时)》教学设计一. 教材分析《第4章直线与角4.6用尺规作线段与角(第1课时)》这一节内容,主要让学生掌握用尺规作线段与角的方法,进一步理解直线、射线、线段的性质及角的概念。

本节内容是前面学习内容的延续,也是后面学习的基础,对于培养学生几何思维具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的概念,角的定义及分类,具备一定几何基础。

但用尺规作线段与角还需引导学生理解和掌握。

因此,在教学过程中,要关注学生对基础知识的掌握情况,注重引导学生通过实际操作,理解并掌握用尺规作线段与角的方法。

三. 教学目标1.知识与技能目标:让学生掌握用尺规作线段与角的方法,能独立完成用尺规作线段与角的操作。

2.过程与方法目标:通过小组合作、探究学习,培养学生几何思维和动手能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:用尺规作线段与角的方法。

2.难点:理解并掌握用尺规作线段与角的原理。

五. 教学方法采用“问题驱动”的教学方法,引导学生通过观察、操作、思考、讨论,自主探索用尺规作线段与角的方法,培养学生的动手能力和几何思维。

六. 教学准备1.准备尺规作图工具:直尺、圆规、铅笔、橡皮等。

2.准备相关课件和教学素材。

七. 教学过程1.导入(5分钟)教师通过复习直线、射线、线段的概念,角的定义及分类,引导学生回顾已学知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示用尺规作线段与角的操作过程,让学生初步感知用尺规作线段与角的方法。

同时,引导学生思考:为什么这样操作可以得到正确的线段与角?激发学生的探究欲望。

3.操练(10分钟)学生分组进行合作学习,每组选择一个线段或角进行用尺规作图。

教师巡回指导,解答学生在操作过程中遇到的问题。

4.巩固(10分钟)教师选取几组学生用尺规作出的线段与角,让学生判断正确与否,并说明理由。

4.6 用尺规作线段与角-课件

4.6 用尺规作线段与角-课件
OP长为半径画弧交EG于点D ;
⑶以点D为圆心,PQ长为半
F
径画弧交第⑵步中的弧于点F;
⑷作射线EF(图4.6-5),
则∠DEF就是所求作的角.
E
DG
图4.6-5
小练习二
如图4.6-6,已知∠1 、∠2,且∠1 > ∠2,用直尺和圆规作∠AOB等于
⑴ ∠1 + ∠2; ⑵ ∠1 - ∠2.
1
2
图4.6-6
课堂总结: 通过这节课学习,你有什么收获?
4.6 用尺规作线段与角
做一条线段等于 已知线段
Hale Waihona Puke 作一个角等于已 知角A
B
A
O
B
作业布置
1.练习 第2、3题 2.习题4.6 第1、2题
a
b
2a - b
b
a
a
做一条线段等于 已知线段
A
B
作一个角等于已 知角
A
O
B
作一个角等于已知角。
已知:∠AOB 求作:∠DEF,使∠DEF= ∠AOB.
A
O
B
作法:
A
Q
⑴在∠AOB上,以点O为圆
心,任意长为半径画弧,分别交
OA,OB与点P,Q[图4.6-4];
O
PB
⑵作射线EG,并以点E为圆心, 图4.6-4
a
图4.6-1
求作:线段AB,使AB= a .
作法: ⑴作一条直线 l ;
A
B
图4.6-2
l
⑵在l上任取一点A,以点A为圆心,以线段a的
长度为半径画弧,交直线l于点B[图4.6-2] .
线段AB就是所求作的线段.
小练习一

沪科版七年级数学上册优秀教学案例:4.6用尺规作线段与角(2课时)

沪科版七年级数学上册优秀教学案例:4.6用尺规作线段与角(2课时)
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我注重情境创设,激发学生的学习兴趣;善于提出引导性问题,培养学生的独立思考能力;鼓励小组合作,培养学生的团队合作精神;注重反思与评价,帮助学生总结经验,不断提高。通过本节课的教学,学生能够掌握尺规作线段与角的知识,培养自己的实践能力和创新思维。
2.问题导向:教师在教学过程中提出引导性问题,引导学生自主探究尺规作线段与角的方法。这种方式有助于培养学生的独立思考能力和问题解决能力,使学生在学习过程中更加主动和积极。
3.小组合作:本案例鼓励学生进行小组合作学习,共同完成尺规作线段与角的实践操作任务。这种教学方式培养了学生的团队合作精神,提高了学生的实践操作能力和创新能力。
二、教学目标
(一)知识与技能
1.学生能够理解尺规作线段与角的基本原理,掌握用尺规作线段与角的方法和步骤。
2.学生能够运用尺规作线段与角的知识,解决实际问题,提高运用几何知识解决实际问题的能力。
3.学生能够熟练运用直尺和圆规,准确作出给定长度的线段和给定度数的角,培养空间想象能力和动手操作能力。
(二)过程与方法
(三)小组合作
1.学生分组进行合作学习,共同完成尺规作线段与角的实践操作任务。
2.教师设计具有挑战性和开放性的合作任务,鼓励学生发挥团队协作精神,激发学生的创新思维。
3.教师巡回指导,关注每个小组的学习进度,针对不同程度的学生给予适当的辅导,使他们在原有基础上得到提高。
(四)反思与评价
1.学生通过自我反思,总结自己在尺规作线段与角学习过程中的收获和不足,明确今后的学习方向。
4.反思与评价:教师注重引导学生进行自我反思和互评,使学生能够总结自己在尺规作线段与角学习过程中的收获和不足,明确今后的学习方向。同时,教师对学生的学习情况进行评价,给予肯定和鼓励,激发学生的学习积极性。

4.6用尺规作线段与角QQQ

4.6用尺规作线段与角QQQ

O ’ O ’
C’
A’
∠A’O’B’就是所求的角.
随堂练习 随堂练习
独立思考、合作交流; 口述作法、保留作图痕迹。
1、已知: ∠AOB。 利用尺规作∠A’O’B’ 使∠A’O’B’=2∠AOB
法二:
DB C A
。: 作法一
B’
C B B’ O
E C’
O
A’ A
O’
A
∠A’O’B’为所求.
∠A’O’B’为所求.
4.6 做线段和角
尺规作图:用无刻度的直尺 和圆规画图,这种画法叫尺 规画法
1、作一条线段等于已知线段
利用没有刻度的直尺和圆规作一条线段等于已知线段.
已知:线段AB. 求作:线段A’ B’,使A’ B’=AB. A 作法与示范: 作 法 示 范
B
(1) 作射线A’C’ ; (2) 以点A’为圆心, 以AB的长为半径画弧, 交射线A’ C’于点 A B’ 就是所求作的线段 B’ ’,

D B

(1) 作射线O’A’; (2) 以点O为圆心, 任意长为半径 画弧, 交OA于点C, 交OB于点D; (3) 以点O’为圆心, 同样(OC)长为半径画弧, 交O’A’于点C’; (4) 以点C’为圆心, CD长为半径画弧, 交前面的弧于点D’ , (5) 过点D’作射线O’B’.
O
C A ’ D’BB ’
A’
B’
C’
例2、已知线段a,b画一条线段AB,使它的
长度等于两条已知线段的长度的和。
画法:
a
b
1.画射线AD 2.用圆规在射线AD上截取AC=a 3.用圆规在射线AD上截取CB=b
结论 不能 少
A
c a C b B D

市优质课《2.4用尺规作线段和角(1)》教学实录

市优质课《2.4用尺规作线段和角(1)》教学实录

市优质课《2.4用尺规作线段和角(1)》教学实录作者:文/金秀霞来源:《新课程·上旬》2014年第05期一、创设情境,导入新课师:(用多媒体展示一组图片。

)师:这些图案漂亮吗?生:漂亮!师:有了它们的点缀,我们的世界才会丰富多彩,你想不想自己也能设计出如此漂亮的图案呢?生:想。

师:让我们从最基本的尺规作图:用尺规作线段和角(1)开始(板书课题)。

师:所谓尺规作图,就是限定用没有刻度的直尺和圆规的作图,利用没有刻度的直尺和圆规可以作出很多图形,大家还记得我们是如何用刻度尺画一条线段等于已知线段的吗?请和老师完成以下作图。

二、正确作图,规范表达师:展示问题:一条线段等于已知线段。

已知:如图,线段a求作:线段AB,使AB=a师:请同学们在学案上完成。

师:哪位同学愿意把自己的作法与大家分享?生1:我是先用直尺量取线段a的长度为5cm,然后再画出线段AB为5cm。

师:很好,如果我们手中只有无刻度的直尺和圆规该如何作图呢?哪位同学有好的办法?生2:老师,可以先画一条直线,然后再用圆规“量取”线段的a长就可以了;生3:不对,老师,圆规没法“量取”线段!生4:可以张开圆规的角度“量取”!生5:老师,先画一条线段也可以!生6:先画一条射线!师:同学们说得都非常好,但是我的意见更倾向于第一步先画射线,大家能明白为什么吗?生1:线段本身无法延伸,而直线没有端点。

师:对,我们画射线的目的是为了定所画线段的位置和端点;第二步可以用圆规量取线段a的长度的(演示),第三步以A为圆心,以a的长为半径画弧交AC于点B。

我们第三步的目的是定另一个端点。

画完后我们再写出结论:线段AB就是所求的线段。

好,请同学们尝试口述作法,并在草纸上完成作图。

生:口述作法并作图。

三、明确步骤,熟记要点师:让我们回顾刚才的作图过程,明确作图步骤,熟记作图要点。

(在屏幕上用动画展示作图过程)师:作图步骤:(1)画射线目的:定位置,定端点;(2)画弧目的:定长度,定另一端点。

《用尺规作角》教案 (公开课)2022年

《用尺规作角》教案 (公开课)2022年

用尺规作线段和角教学案例本课时内容的设计意图:本课知识属于“空间与图形〞局部,在学会利用尺规作线段的根底上进一步运用尺规作一个角等于角。

通过这节课的学习,增强学生运用尺规作图的技能。

本课时内容的设计思路:首先展示与本课内容密切联系的问题情境,作为新知的切入点,表达“数学是现实的〞课标精神。

利用情境问题激发学生的探究意识,在探索过程中体会知识的形成过程,将新知自然渗透纳入到学生的知识体系中,在此根底上,引导学生利用所学新知解决问题,从而将数学知识转化为数学技能。

一、创设情境,激趣导入出示课件和图形,提出问题:(1)请学生拿出收集的长方形纸板模型,标出相应的线段AB和点C。

(2)请过点C画出与AB平行的另一条线。

(3)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?学生活动:对于问题(1) (2),学生自主完成;对于问题(3),学生自主探索后,引导学生进行分组讨论,产生质疑。

教师活动:利用实物投影仪展示学生完成的作业,并请学生答复作图过程,针对答复的情况,师生共同给予及时适当的评价。

(设计意图:课前要求学生从生活中寻找一些废弃的长方形纸板模型。

如牙膏盒、玩具盒、各种包装盒等,让学生体验“数学知识来源于现实生活〞,并学会从实际事物中抽象出几何模型。

在问题(3)的讨论中,引发了学生的认知冲突,从而自然导入了新课。

(二)实验探究,归纳总结:∠AOB。

求作:∠A′O′B′,使∠A′O′B′=∠AOB。

学生活动1:学生在教师的示范操作下,利用尺规进行画图实践。

教师活动:教师在黑板上用尺规引导学生一步步进行画图示范,利用实物投影仪展示学生的作业,针对学生的画图情况给予评价。

最后请学生概述自己的画图过程。

学生活动2:利用量角器验证自己所作的角与角是否相等,学生答复自己所验证的结果。

(设计意图:学生在教师的示范下,亲身实践,感受知识的形成过程,在画图操作中培养了学生的动手、动脑、动口的能力。

(三)解决问题,完善结构随堂练习第1题。

用尺规作线段和角的教学重点与难点

用尺规作线段和角的教学重点与难点

用尺规作线段和角的教学重点与难点
在生活实践中和学习各种知识的过程中,经常需要借助于几何图形解决问题.几何学是研究图形的,学习几何更离不开画图.在几何里,利用图形,可帮助我们研究它的性质,反过来,作图方法也是几何研究的成果.因此尺规作图是几何的重要内容,而基本作图是其他复杂作图的基础.作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形.学习尺规作图,一方面可以培养学生正确的作图思想与方法,另一方面在以后做题中经常用到,同时也给实际的技术制图打下了理论基础.由于学生刚刚学习作图问题,首先感到困难的是作图语言的叙述,经常出现不准确、不严密的现象.由于学生还不能完全作图的依据,还不能分析作图方法的来源及作图过程的推理,因此本节的重点是掌握尺规作图的基本方法.难点是几何作图语言的掌握.这里关键是正确理解基本作图的原理.要让学生首先明确已知、求作,然后在此基础上给出草图分析,找出作图的步骤,准确叙述作法,作后完成作图.。

【志鸿优化设计】2013-2014学年七年级数学上册 第4章4.6 用尺规作线段与角例题与讲解 (新

【志鸿优化设计】2013-2014学年七年级数学上册 第4章4.6 用尺规作线段与角例题与讲解 (新

4.6 用尺规作线段与角1.尺规作图的概念几何中,通常用没有刻度的直尺和圆规来画图,这种画图的方法叫做尺规作图.(1)尺规作图与画图虽然都是指按要求画出符合条件的正确图形,但两者还是有本质上的区别.尺规作图是画图的一种特殊的表现形式,它要求只能限定用直尺和圆规这两种工具完成画图过程,而画图一般不限定工具.既可用直尺和圆规,也可以用其他的辅助工具,比如量角器、三角板、刻度尺等.(2)直尺的功能:在两点间连接一条线段;将线段向两边延长.圆规的功能:以任意一点为圆心,适当长为半径作一个圆;以任意一点为圆心,适当长为半径画一段弧.【例1】 下列说法中,正确的是( ).A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使AC =12AB D .延长线段AB 到C ,使AC =2AB 解析:A 项:射线不可以延长,只能反向延长;B 项:直线没有延长线和反向延长线;C项:如果延长AB 到C ,则AC >AB ,不可能AC =12AB . 答案:D2.作一条线段等于已知线段(1)已知:线段a求作:线段AB ,使AB =a .作法:①作一条直线l ;②在l 上任取一点A ,以点A 为圆心,以线段a 的长度为半径画弧,交直线l 于点B . 线段AB 就是所求作的线段.(2)常用的基本作图语言有:①过点×和点×作射线××(或作直线××);②在射线××上截取××=××;③在射线上顺次截取××=××=××;④以点×为圆心,××长为半径作弧,交××于点×.谈重点作图的要求作图题的作图要求:(1)要根据问题把已知条件具体化;(2)要写明作什么图形,满足什么要求;(3)在作法中要使用规X 语句,按照作图的顺序逐一写明;(4)最后要指出结论.【例2】 已知线段a ,如图:求作:线段AB ,使AB =3a .分析:先作一条直线,在这条直线上连续作出三条线段都等于a 即可.作法:(1)作一条直线l ;(2)在l 上任取一点A ,以点A 为圆心,以线段a 的长度为半径作弧,交直线l 于C ;(3)以点C 为圆心,以线段a 的长度为半径作弧,在同一方向上交直线l 于D ;(4)以点D 为圆心,以线段a 的长度为半径作弧,在同一方向上交直线l 于B .所以线段AB就是所求的线段.释疑点截取线段的方法沿着某一个方向依次截取几次,结果所得到的线段就是原线段的几倍.3.作一个角等于已知角已知:∠AOB.如图所示:求作:∠DEF,使∠DEF=∠AOB.作法:(1)在∠AOB上以点O为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF.则∠DEF即为所求作的角.【例3】如图,已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.作法:(1)以O为圆心,以任意长为半径画弧交OA于点C,交OB于点D;(2)作射线O′A′,以O′为圆心,以OC长为半径画弧交O′C′于点C′;(3)以C′为圆心,以CD的长为半径画弧交前弧于E点,接着以E为圆心,同样的长为半径画弧交前面弧于点B′;(4)过点B′作射线O′B′,∠A′O′B′就是所求作的角.如图.辨误区作留作图痕迹作图痕迹是尺规作图必不可少的部分,不可擦去.4.作线段的和、差“作一条线段等于已知线段”是基本作图之一,它是作线段和、差的依据,因此我们要对“作一条线段等于已知线段”的过程和操作方法非常熟练.作线段的和时,是沿着某一点按照一个方向依次截取每一条线段,这条直线上的始点与终点组成的线段就是所作的几条线段的和;作线段的差时,先作被减线段,然后以这条线段的一个端点为端点,在这条线段内部作出要减的线段,其余的两个端点组成的线段就是要求作的线段.【例4】如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.分析:先作2a+b,然后再减去c.作法:(1)作射线AF;(2)在射线AF上顺次截取AB=BC=a,CD=b;(3)在线段AD上截取DE=c.所以线段AE即为所求.5.作角的和、差“作一个角等于已知角”是基本作图之一,它是作角和、差的依据,因此我们要对“作一个角等于已知角”的过程和操作方法非常熟练.作角的和时,是沿着角的一边按照一个方向依次作出每一个角,这个角的始边与终边组成的角就是所作的几个角的和;作角的差时,先作被减的角,然后以这个角的一条边为一边,在这个角的内部作出要减的角,其余的两条边所组成的角就是要求作的角.【例5】如图,已知∠α和∠β(∠α>∠β),求作∠AOB,使∠AOB=∠α-∠β.作法:(1)作射线OA;(2)以射线OA为一边作∠AOC=∠α;(3)以O为顶点,以射线OC为一边,在∠AOC的内部作∠BOC=∠β,则∠AOB就是所求作的角.6.“作一个角等于已知角”的应用在小学时,我们知道三角形的三个内角之和为180°,现在我们学习了“作一个角等于已知角”,我们可以利用“作一个角等于已知角”作出一个三角形的三个内角的和,利用图形来说明这一结论.析规律尺规作图步骤用尺规作图来说明问题时,根据要解决的问题先写出已知、求作,再作图并写出作法.作图要力求准确.作复杂的图形时,一般先根据题意画出草图,再写出已知、求作和作法.【例6】任意作一个三角形,用尺规作图作出它的三个内角的和,并用量角器度量出三个内角的和.解:已知如图所示,任意△ABC,求作∠MON=∠A+∠B+∠C,并测量∠MON的大小.作法:(1)作∠MOD=∠A;(2)以OD为一边,在∠MOD的外部作∠DOE=∠B;(3)以OE为一边,在∠MOE的外部作∠EON=∠C;则∠MON为所求作的角.用量角器度量出∠A+∠B+∠C=∠MON=180°.。

沪科版数学七年级上册4.6《用尺规作线段与角》教学设计

沪科版数学七年级上册4.6《用尺规作线段与角》教学设计

沪科版数学七年级上册4.6《用尺规作线段与角》教学设计一. 教材分析《沪科版数学七年级上册4.6》这一节主要介绍了如何使用尺规作线段与角的方法。

在教材中,学生已经学习了线段与角的基本概念,本节课将进一步引导学生了解并掌握用尺规作线段与角的方法,培养学生的动手操作能力和几何思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对线段与角的概念有一定的了解。

但学生在用尺规作图方面可能存在一定的困难,因此,在教学过程中,教师需要耐心引导学生,让学生在动手操作中掌握用尺规作线段与角的方法。

三. 教学目标1.让学生了解并掌握用尺规作线段与角的方法。

2.培养学生的动手操作能力和几何思维能力。

3.提高学生解决实际问题的能力。

四. 教学重难点1.重点:用尺规作线段与角的方法。

2.难点:如何引导学生动手操作,并熟练运用尺规作线段与角。

五. 教学方法1.采用问题驱动法,引导学生主动探究用尺规作线段与角的方法。

2.利用多媒体辅助教学,展示尺规作图的过程,增强学生的直观感受。

3.采用分组合作学习,让学生在动手操作中相互交流、探讨,共同解决问题。

4.教师引导学生总结用尺规作线段与角的方法,提高学生的归纳总结能力。

六. 教学准备1.准备多媒体教学课件,展示尺规作图的过程。

2.准备尺规作图的练习题,让学生在课堂上动手操作。

3.准备黑板,用于板书重点知识点。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如:“如何用尺规作一条长度为5厘米的线段?”引发学生的思考,激发学生的学习兴趣。

2.呈现(10分钟)教师利用多媒体课件展示尺规作线段与角的过程,让学生直观地了解尺规作图的方法。

同时,教师讲解相关知识点,如线段、角的概念,以及尺规作图的基本原理。

3.操练(10分钟)教师引导学生分组合作,进行尺规作图的练习。

每组选取一条线段和一种角,用尺规作出相应的线段和角,并互相检查、讨论。

教师巡回指导,解答学生遇到的问题。

沪科版七年级数学上册 第四章 4.6 用尺规作线段与角 教案设计

沪科版七年级数学上册 第四章 4.6 用尺规作线段与角 教案设计

4.6 用尺规作线段与角【教学目标】【知识与技能】1.了解尺规作图的概念和意义.2.会用尺规作一条线段等于已知线段,会用尺规作一个角等于已知角,并了解它们在尺规作图中的简单应用.3.经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.【过程与方法】从如何画美丽的图案引入尺规作图的概念,并通过各种师生活动加深学生对“作一线段等于已知线段”和“作一角等于已知角”的做法的理解和过程的叙述;并使学生初步了解基本尺规作图的步骤,使学生在作图的过程中掌握图形运动的直观根据.【情感态度】能用适当的语言与他人交流,合理清晰地表达自己的操作过程,并尝试解释其中的理由.在尺规作图的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识.【教学重点】重点是会用尺规作线段与角.【教学难点】难点是作线段与角的和、差、倍数.【教学过程】一、情境导入,初步认识【情境1】实物投影,并呈现问题:现实生活中,我们经常见到一些美丽的图案,如下列图案想一想,这些图案是利用哪些作图工具画出的?【情境2】实物投影,并呈现问题:如何画一条线段等于已知线段?如果只有圆规和没有刻度的直尺如何画呢?仿照下图的做法,用语言叙述作图的过程.【教学说明】学生独立思考后,小组讨论,教师注意引导学生用恰当的语言叙述作图的过程,通过观察、比较,给学生以充分的时间去动手操作、交流和归纳,关注学生对作图的表述,从而得出作一条线段等于已知线段的一般步骤.情境1中直尺、圆规和三角尺.情境2中用刻度尺量出已知线段的长度,再画一条等于所测长度的线段即可.用尺规画图时,先画一直线l,在直线l上截取已知线段a的长度,则AB=a.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知尺规作图问题1什么是尺规作图?你对尺、规有怎样的理解?问题2用尺规作图的一般步骤是什么?【教学说明】一方面让学生明确尺规作图的概念,另外让学生初步感知基本尺规作图的一般步骤.【归纳结论】几何中,通常用没有刻度的直尺和圆规来画图,这种画图的方法叫做尺规作图.(1)尺规作图是画图的一种特殊的表现形式,它要求只能限定用直尺和圆规这两种工具完成画图过程.(2)直尺的功能:在两点间连接一条线段;将线段向两边延长.圆规的功能:以任意一点为圆心,适当长为半径作一个圆;以任意一点为圆心,适当长为半径画一段弧.尺规作图题的步骤:(1)已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;(2)求作:能根据题目写出要求作出的图形及此图形应满足的条件;(3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图去寻找作法.用尺规作图时一定要保留作图痕迹.三、运用新知,深化理解1.如图,已知线段a和b,求作线段AB=a+b.2.用1:10000的比例尺,即用1cm表示100米,精确到0.1cm,按下列要求画图.如图,某人从O点向南偏西30°方向走了100米,到P点,从P点向南偏东60°方向走了173米,到Q点,再从Q点向北偏东30°,走了100米,到达A点,通过度量来计算一下该人这时到O点的距离和相对于O点的方位.3.如图所示,∠AOB是已知角,求作∠DEF使∠DEF=∠AOB的作图过程,依据作图试写出具体的作法.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.通过本环节的讲解与训练,让学生对尺规作图有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.(1)作射线AC.(2)在射线AC上截取AD=a,DB=b.(3)线段AB就是所求线段.2.OA≈1.7cm即OA的距离是170米,A点的方位是南偏东60°.3.作法:(1)在∠AOB上以点O为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF.则∠DEF即为所求作的角.四、师生互动,课堂小结1.什么是尺规作图?尺规作图的一般步骤是什么?2.通过这节课的学习,你还有哪些疑惑,大家相互交流一下.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.【课后作业】1.布置作业:从教材第154页“练习”和教材第154页“习题4.6”中选取.2.完成同步练习册中本课时的练习.【教学反思】在本节课的实际教学中,尺规作图是一种情境的创设,即要求在某种条件下,由学生自己动手解决问题.学生能作出一张符合要求的图形,是一种具有挑战性的创造活动,能够激发学生的兴趣和创造性,因此,在几何教学中强调“观察、操作、推理”.让同学们在学习的过程中,领略数学中美的东西,学会欣赏美,然后努力去创造美,也让他们感受到不管多么复杂的物体都是由最基础、最简单的东西构成的,“万丈高楼平地起”,学习又何尝不是如此呢!。

初中数学沪科版七年级上课件4.6用尺规作线段与角(1)

初中数学沪科版七年级上课件4.6用尺规作线段与角(1)
美 丽 的 图 案
如果你只有一个圆规和一把没有刻 度的直尺,你能画出这些图案吗?
几何中,通常用没有刻度的 直尺和圆规来画图,这种画图的
方法叫做尺规作图
例1、作一条线段等于已知线段
已知:线段AB. 求作:线段A’ B’,A 使A’ B’=B AB.
A B

(1) 作射线A’C’ ;



(2) 以点A’为圆心, 以AB的长为半径画弧 交射线A’ C’于点B’, 线段A’B’ 就是所求作的线段
A’
B’Leabharlann C’作图题的基本步骤: 已知、求作、作法 作图题的要求:能正确画出图形(保留作图痕迹); 能口头表述作法。
练习
思考: 如何求作: AB=a−b?
已知线段a、b,求作线段AB,使AB=a+b
b
a
按要求填空任意画一条线段a,求作一条线 段AB,使AB=2a
已知:__________
求作:线段AB ,使_________
作法:
通过此题你会不会作出一 条线段等于已知线段的3倍、4
倍、5倍⋯等等呢?
已知线段a、b,求作线段AB,使AB=a+2b
b a
已知:__________
求作:线段AB ,使_________
作法:
课外作业
试着尺规作出下面展示的图案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.6用尺规作线段与角
第1课时作一条线段等于已知线段
教学目标
会利用直尺和圆规作线段等于已知线段.
教学重难点
【重点】尺规作图的意义、用尺规作一条线段等于已知线段.
【难点】让学生理解作图步骤中的语言描述,并会根据画图要求画出图形.
教学过程
一、创设情境,引入新课
尺规作图有着悠久的历史,直尺的功能是在两点之间连接一条线段,将线段向两个方向延长.圆规的功能是以任意一点为圆心、任意长为半径作一个圆;以任意一点为圆心、任意长为半径画一段弧.利用尺规可以作出许多美丽的图案,在“数学王子”高斯的纪念碑上,就刻着一个正十七边形,它的尺规作图方法是高斯在青年时代发现的.没有刻度的直尺和圆规可以作出很多几何图形.
师:你能用没有刻度的直尺和圆规作一条线段等于已知线段吗?
学生操作、讨论交流.
教师示范:
已知:线段AB,求作:线段A'B',使A'B'=AB.
作法:1.作射线A'C'.
2.以点A'为圆心,以AB的长为半径画弧,交射线A'C'于点B'.
线段A'B'就是所求作的线段.
师:用尺规作图应具有以下四个步骤:
已知:即已知的条件是什么?
求作:即所要作的最终结果是什么?
分析:即分析如何作出所要求作的图形,一般不写出来.
作法:即写清楚作图的过程.
二、新课讲授
如图,已知线段a和两条互相垂直的直线AB、CD.
1.利用圆规在射线OA、OB、OC、OD上作线段OA'、OB'、OC'、OD',使它们分别与线段a 相等.
2.依次连接A'、C'、B'、D'、A',你得到了一个怎样的图形?与同伴交流.
师:已知线段a、b,你能作线段AC=a+b吗?
学生讨论分析,画图:
教师指导,先画草图分析,再确定作图步骤.
教师示范:作法:(1)在射线AM上截取AB=a;
(2)在射线BM上截取BC=b,
则线段AC就是所求作的线段.(注:用圆规量取线段的长度后,圆规两角间的距离不能变,也就是使量得的长度保持不变)
师:你能作线段A'C'=a-b吗?
学生独立完成,教师巡视指导.
三、课堂小结
1.用无刻度的直尺和圆规作线段等于已知线段,看似简单,却是最基本的几何作图的方法.
2.课外还要加强基本作图工具的使用,特别是圆规的使用要领与技巧要勤加操练.
3.练习中还要注意几何语言表述的规范,书写格式的规范的训练.
感谢您的阅读,祝您生活愉快。

相关文档
最新文档