高斯定理
高斯定理的数学表达式
![高斯定理的数学表达式](https://img.taocdn.com/s3/m/35419f7766ec102de2bd960590c69ec3d5bbdb31.png)
高斯定理的数学表达式为:∮E·dA = Q/ε0。
该公式表达的是在闭合曲面S上的电场E的通量,与该闭合曲面内的总电荷量Q与真空介电常数ε0的比值相等。
换句话说,电场的总通量等于在闭合曲面S内的总电荷量与真空介电常数之比。
这个定理表明,电场通量的大小与所选取的闭合曲面无关,只与该曲面内的电荷量有关。
因为电场线从正电荷流出,流入负电荷,因此正电荷和负电荷的电场线互相抵消,而只有闭合曲面内的电荷对电场通量产生贡献。
高斯定理在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
高斯定理公式
![高斯定理公式](https://img.taocdn.com/s3/m/efec511166ec102de2bd960590c69ec3d5bbdb85.png)
高斯定理公式
高斯定理数学公式是:∮F·dS=∫(▽·F)dV。
高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
扩展资料:
高斯定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。
换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。
它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。
在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。
当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
1.3高斯定理
![1.3高斯定理](https://img.taocdn.com/s3/m/c206682fa55177232f60ddccda38376baf1fe025.png)
S,两底面到带电平面距离相同。
E dS E dS E dS E dS 2ES
s
左底
右底
側
圆柱形高斯面内电荷 q S
由高斯定理得
E
S
E
2ES S / 0
E 2 0
σ
33
E 20
0 场强方向指离平面; / 20 / 20
§1.3 高斯定理
/ 2 0 / 2 0
§1.3 高斯定理
ห้องสมุดไป่ตู้
一、 电场线(E 线)
1 电场线的 定义:
为定量的描述电场而人为的引入的一些曲线,
E3
目的是使电场形象化、直观化。
(1)方向: 电场线上各点的切线方向 表示电场中该点场强的方向。
E2
(2) 大小: 穿过垂直于该点场强方向的
E1
单位面积上的电场线的条数(电场线
的面密度)等于该点场强的大小。
E dN dS
E
电场线越密集,场强越大
dS
1
2. 电场线示例
几
+
种
电
荷
分
布
的
+
电
场
线
+
图
§1.3 高斯定理
-
+
-
2
3. 电场线的性质:
§1.3 高斯定理
1)电场线起于正电荷,终止于负电 荷;电荷是电场线的“源”和“尾闾 ”2)电场线不会在无电荷的地方中断;
3)电场线不会在无电荷的地方相交; q
(2)半径为R的均匀带电体密度为ρ
的长圆柱体。
R2
E
2 0 r
r
2 0
(r R) (r R)
高斯定理内容总结
![高斯定理内容总结](https://img.taocdn.com/s3/m/e2d8a4b94793daef5ef7ba0d4a7302768e996fed.png)
高斯定理内容总结1. 高斯定理的概念高斯定理,也称为“散度定理”或“高斯-奥斯特罗格拉茨基定理”,是一个基本的数学定理,用来描述矢量场在一个闭合曲面上的整体特性。
它是物理中应用广泛的定理之一,可以用来求解电场、磁场和流体力学问题。
2. 高斯定理的表述高斯定理可以表述为:对于一个闭合曲面S,其向外法向量为n,矢量场F,高斯定理给出了矢量场在S上的通量与该矢量场在S包围的体积的关系。
具体表述如下:∮S F·n dS = ∭V ∇·F dV其中,∮代表闭合曲面S上的曲面积分,∭代表闭合曲面S包围的体积积分,F为矢量场,n为曲面S的向外法向量,·表示内积运算,∇表示梯度运算,∇·F表示矢量场的散度。
3. 高斯定理的推导与理解高斯定理可以通过对体积积分进行数学推导得到。
假设有一个闭合曲面S,体积为V,如下图所示:________/ // //_______ /根据高斯定理的表述,我们需要计算矢量场F在曲面S上的通量。
我们将曲面S分成许多小面元,每个小面元上的通量为F·n,其中n为该小面元的法向量。
当我们把曲面S分割为无数个小面元时,可以将曲面S视为由这些小面元组成的连续曲面。
在极限情况下,当每个小面元的面积无限接近于0时,我们可以将曲面S视为无限小的曲面。
此时,我们可以对矢量场F在曲面S上的通量进行积分,得到:∮S F·n dS = lim(S→0) ∑(F·n)dS通过将曲面S分割为无数个小面元,并将每个小面元的通量求和,我们可以得到矢量场F在整个曲面S上的通量。
同时,根据散度的定义,我们知道散度可以表示为矢量场的微分运算。
因此,我们可以将散度运算应用到上述积分中,得到:∮S F·n dS = ∑(∇·F)dV其中,∇·F表示矢量场F的散度,∑表示对整个体积V进行求和。
为了获得正确的结果,我们需要取极限,将小面元的面积趋近于0,体积元的体积趋近于0,从而得到公式的最终形式:∮S F·n dS = ∭V ∇·F dV这就是高斯定理的推导过程。
高斯定理及应用
![高斯定理及应用](https://img.taocdn.com/s3/m/93dfe1a4fbb069dc5022aaea998fcc22bdd1435e.png)
物理学方法概论
目录 §2.1 高斯定理与运动电荷 §2.2 在无磁场情况下电场旳变换 §2.3 匀速直线运动点电荷旳电场 §2.4 电场对运动电荷旳作用力
物理学方法概论
§2.1 高斯定理与运动电荷 静止点电荷旳电场 运动点电荷旳电场
球对称
轴对称
库仑定律成立
库仑定律不成立!
+
+v
1、横向场强增大到 倍。
v
S系
E
E
v
静电场 E 0
S系
E
0
0
E
2、纵向场强不变
E
物理学方法概论
E
v
S系
S系
E E
物理学方法概论
§2.3 匀速直线运动点电荷旳电场
z
S系
E ?
?
P(x, y, z,t)
r
vt
x
OQv
物理学方法概论
电荷系S' 中 P( x, y, z, t)点电场(静电场):
S
E
各类点电荷旳电场线 +
物理学方法概论
+
++
2q
q
+++++++
电场线特征
物理学方法概论
1) 始于正电荷,止于负电荷(或来自无 穷远,去向无穷远),在没有电荷旳地方 电场线不会中断
2) 静电场电场线不闭合
3) 电场线不相交 +
4) 电场线密集处,电场强度较大, 电场线稀疏处电场强度较小。
注意:电场线是为了描述电场分布而引 入旳曲线,不是电荷旳运动轨迹
场点旳变换:
物理学方法概论
高斯定理数学
![高斯定理数学](https://img.taocdn.com/s3/m/4c626ddf541810a6f524ccbff121dd36a32dc4f0.png)
高斯定理数学高斯定理,又称为高斯-奥斯特罗格雷定理(Gauss-Ostrogradsky theorem),是描述向量场通过曲面的流量密度与该曲面边界上环绕该曲面沿法向量方向的一圈线积分之间的关系的定理,是矢量分析的重要内容之一,也是工程中常用的理论。
$$\oint_S \textbf{F} \cdot \textbf{n} dS = \iiint_V \nabla \cdot \textbf{F} dV$$$\textbf{F}$ 表示某个向量场,$S$ 表示一个逐片光顺的曲面,$V$ 为该曲面所包围的立体。
$\textbf{n}$ 表示曲面上某一点的法向量,$\nabla \cdot \textbf{F}$ 为向量场 $\textbf{F}$ 的散度。
该式中左边表示 $\textbf{F}$ 向外通过曲面 $S$ 的流量密度。
左侧积分的意思是,对于曲面 $S$ 的每一点,对由该点到曲面外侧的垂直方向的投影所围成的小面积$dS$ 进行积分,得到整个曲面通过的总流量密度。
右边表示 $\textbf{F}$ 在立体$V$ 中的散度。
右侧积分的意思是,对于立体 $V$ 中的每一点,计算该点的散度,然后对整个立体进行积分,得到散度在整个立体中的总量。
高斯定理适用于任意的向量场,包括电场、磁场等。
它可以用来推导一些物理方程,并在基础数学领域中起到重要作用。
对于电场,高斯定理可以用来计算电通量,即电场向外通过一个立体的总电量。
对于静电场和恒定电场来说,高斯定理可以推导出库仑定律。
对于磁场,高斯定理可以用来推导出安培环路定理。
高斯定理在物理学和工程学中有非常广泛的应用,是理解和解决问题的重要工具之一。
高斯定理的证明可以通过追踪微小体积元素上的向外流量来完成。
假设该体积元素为$\Delta V$,体积元素表面上带有一小片面积为 $\Delta S$,该片面积的法向量表示为$\textbf{n}$。
向量场 $\textbf{F}$ 在该面积上的流量为 $\textbf{F} \cdot\textbf{n} \Delta S$,如果对所有该体积元素上的面积进行累计,则构成了整个曲面的流量,并得到了高斯定理的左侧积分:$$\oint_S \textbf{F} \cdot \textbf{n} dS$$接下来,可以通过施加散度定理来将该定理转化为该向量场的散度在这个立方体中的积分:证明中还需要使用到一些高等数学的知识,如积分中值定理等,具体证明过程相对复杂。
高斯定理(电磁学)
![高斯定理(电磁学)](https://img.taocdn.com/s3/m/2b9e319877eeaeaad1f34693daef5ef7ba0d12fe.png)
证明方法
高斯定理的证明通常基于库仑定律、电场线性质和微积分等 基本原理。通过选择适当的闭合曲面和运用微积分中的高斯 公式,可以推导出高斯定理。
推导过程
首先,根据库仑定律,电场线从正电荷发出,终止于负电荷 或无穷远处。然后,通过选取适当的闭合曲面,将电荷包围 在其中,运用高斯公式和高斯定理的推导过程,最终得到高 斯定理的数学表述。
要点一
总结词
高斯定理在其他领域也有广泛的应用,如电场、量子力学 、光学等。
要点二
详细描述
高斯定理在电场中可以用来计算电场的分布和强度,以及 电通量的计算等问题。在量子力学中,高斯定理可以用来 研究波函数的性质和演化。在光学中,高斯定理可以用来 研究光场的分布和强度,以及光通量的计算等问题。
05
高斯定理的扩展和深化
磁场中的应用
总结词
高斯定理在磁场中也有广泛的应用,它可以 帮助我们理解和计算磁场的分布和强度。
详细描述
在磁场中,高斯定理可以用来计算球形区域 内磁场的分布和强度,通过球面上的磁场强 度的积分可以得到球内的磁场。此外,高斯 定理还可以用来研究磁场线的闭合性质,以 及磁通量的计算等问题。
其他领域的应用
引力场中的应用
总结词
高斯定理在引力场中也有重要的应用,它可以帮助我们理解和计算引力场的分布和强度。
详细描述
在引力场中,高斯定理可以用来计算球形区域内物质的质量分布,通过球面上的引力场强度的积分可以得到球内 的质量。此外,高斯定理还可以用来研究引力场的空间分布,通过球面上的引力场强度的分布,可以推导出球内 引力场的分布情况。
高斯定理的应用条件
适用范围
高斯定理适用于任何线性、非自相互作用、电荷连续分布的电场。对于非线性、 自相互作用或离散分布的电荷,高斯定理可能不适用。
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/5e17a81c650e52ea5518985c.png)
λ
∑q
r
∑ q = λh
φ = ∫∫S EdS cosθ =
φ左底 = φ右底 = 0
φ = φ左底 + φ侧 + φ右底
ε0
h
Q E⊥dS , cosθ = 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
φ = φ侧 = ∫∫侧 EdS cosθ
侧面上各点的场强 E 大小相等,方向 大小相等, 与法线相同。 与法线相同。
E = E+ − E− = 0
+σ
−σ
E+ E− E+
极板右侧
E = E+ − E− = 0
E+
E−
E−
两极板间
σ σ σ + = E = E+ + E− = 2ε 0 2ε 0 ε 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
E
n
r
λ
φ = E ∫∫侧 dS
= E 2πrh =
∑q
ε0
λh = ε0
λ E= 2πε 0r
h
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
例3:无限大带电平面,面电荷密度为 σ, :无限大带电平面, 求平面附近某点的电场强度。 求平面附近某点的电场强度。 解:作底面积为 S , 高为 h 的闭合圆柱面, 的闭合圆柱面, σ
S
r
ε0 σS 2ES = ε0 σ E= 2ε 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
φ=
∑q
例4:两无限大带电平面(平行板电容 :两无限大带电平面( 器),面电荷密度分别为 +σ 和 −σ , ),面电荷密度分别为 电容器内、外的电场强度。 求:电容器内、外的电场强度。 解:极板左侧
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/e6d1c79b08a1284ac8504367.png)
1
4π0
q r3
rdS
e
S de
q
q
dS
S 4π0r 2
4π0r 2
dS q
S
0
Φe 与r 无关q ,也就是说,无论高斯面多大,总 电通量都为 0 ,即通过各球面的电力线总条数相 等。 说明点电荷的电力线可以延伸到无限远处。 9
2. 点电荷在任意封闭曲面内
穿过球面S1和S2的电场线,必定也穿 过闭合曲面S。所以穿过任意闭合曲
e ES cos 或 e E S
S cos
(3) 非均匀电场强度电通量
de E dS
通过任一曲面S 的电通量:
e de EdS
S
S
5
思考题:电场线与电通量的区别
(4) 任意闭合曲面的电通量:
e d e E dS
S
S
一个闭合曲面把整个空间分割成两部分: 内部空间和外部空间
外法线矢量:指向曲面外部空间的法线矢量 内法线矢量:指向曲面内部空间的法线矢量
S2
S
E
面 S的电通量必然为q/ 0 ,即
q S1
Φe
s
Ev dSv
q
0
• 点电荷为-q时,通过任意闭合曲面的电通量
Φe
S
Ev
dSv
q
0
电场线是穿入闭合曲面的。
10
3. 任意闭合曲面S包围多个点电荷q1、q2、…、qn 根据电通量的定义和电场强度的叠加原理,其电通
量可以表示为
Φe
E
S
dS
(E1
其实高斯定理不仅适用于静电场,还可用于变化的电 场,比库仑定律更广泛,是Maxwell方程组之一
16
大学物理高斯定理
![大学物理高斯定理](https://img.taocdn.com/s3/m/4fd80286d4bbfd0a79563c1ec5da50e2524dd135.png)
大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。
高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。
定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。
解读根据高斯定理,电通量与环绕其的电荷量成正比。
如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。
因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。
高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。
这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。
应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。
我们想通过高斯定理计算球内外的电场。
在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。
根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。
因此,和在点积后等于,其中是球面上的电场强度。
曲面的面积元等于球的表面积元。
因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。
由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。
由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。
例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。
我们想通过高斯定理计算线外的电场。
在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。
我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。
5-3 高斯定理
![5-3 高斯定理](https://img.taocdn.com/s3/m/925bed7302768e9951e73853.png)
q
高斯面
r
4 3 pR 3
可见,球体内场强随 线性增加 线性增加。 可见,球体内场强随r线性增加。 均匀带电球体电场强度曲线如 上图。 上图。
+ q + + + + + + + + + + + + + + + + + +
上页 下页 返回 退出
例2
均匀带电无限大平面的电场. 均匀带电无限大平面的电场. 高斯面:作轴线与平面垂直的圆柱形高斯面, 高斯面:作轴线与平面垂直的圆柱形高斯面, 底面积为S,两底面到带电平面距离相同。 底面积为 ,两底面到带电平面距离相同。
r E=
lr v e 2 r 2pe0R
上页 下页 返回 退出
(2)当r>R 时,
λ E= 2 0r πε
r E=
E λ 2πε0R
∑q = λl
矢量式为: 矢量式为:
r l er 2pe0r
Er 关系曲线
r
均匀带电圆柱面的电场分布
l
−1
∝r
R
0
r
上页 下页 返回 退出
均匀带电球体空腔部分的电场, 例4 均匀带电球体空腔部分的电场,球半径为R, 在球内挖去一个半径为r( 在球内挖去一个半径为 (r<R)的球体。 )的球体。 试证:空腔部分的电场为匀强电场,并求出该电场。 试证:空腔部分的电场为匀强电场,并求出该电场。 证明: 用补缺法证明。 证明: 用补缺法证明。 在空腔内任取一点p, 在空腔内任取一点 , 设该点场强为 E E r1 设想用一个半径为r且体电荷密度与大球相 设想用一个半径为 且体电荷密度与大球相 c 同的小球将空腔补上后, 同的小球将空腔补上后,p点场强变为 E 1 u r v o pE r uu
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/96f4cad649649b6648d74772.png)
同 学 们 好§8-3 高斯定理德国数学家和物理学家。
长期从事于数学并将数学应用 于物理学、天文学和大地测量 学等领域的研究.著述丰富,成 就甚多。
他一生中共发表323篇 (种)著作,提出404项科学创 见。
在CGS电磁系单位制中磁感应强 高斯(德 ) 度的单位定为高斯,便是为了 ( 1777-1855) 纪念高斯在电磁学上的卓越贡 献。
一.电场强度通量 通过电场中某一给定面的电场线的总条数叫做通 过该面的电通量。
1.匀强电场,规则面积下的电通量Sθ ESΨe = ES⊥SSΨe = ES⊥ = ES cosθ2.非匀强电场或不规则面积下的通量 r v 面积元矢量: dS = dS e n r 面积元范围内 E 视为均匀 微元分析法:以平代曲; 以不变代变。
dSr dSθr ES(1)通过面元的电通量:r r dΨe = EdS⊥ = E (dS cosθ ) = E ⋅ dS(1) 通过面元的电通量:πr r dΨe = EdS⊥ = E(dS cosθ ) = E ⋅ dSθ < θ > θ = π π2 2 2 dΨe > 0 dΨe < 0 dΨe = 0r dSθdSr ESr r (2)通过曲面 S 的电通量 Ψe = ∫s d Ψe = ∫s E ⋅ d S(3) 通过封闭曲面的电通 量r r Ψe = ∫ E ⋅ dSs通过封闭曲面的电通量r r Ψe = ∫ E ⋅ dSsr n规定:封闭曲面外法向为正 穿入的电场线 穿出的电场线r n rEΨe < 0 Ψe > 0r nS二、 高斯定理 高斯定理的导出 库仑定律 高斯 定理电场强度叠加原理 1.点电荷电场中电通量与电荷的关系 (1)曲面为以电荷为中心的球面E=Sq 4 π ε 0rS2r2v dSv v Ψe = ∫ E ⋅ dS = ∫qΨe =q4 πε 0 rdS+ε0(2)曲面为包围电荷的任意封闭曲面dΨe =q 4 πε 0 r2dS cos θq dS' = 2 4π ε0 r其中立体角dS' = dΩ 2 r q q Ψe = ∫ dΨ = ε 0 4 πε 0v v dS' dS+rθv dS'v dS(3)曲面为不包围电荷的任意封闭曲面r v d Ψ1 = E 1 ⋅ d S 1 > 0v v dΨ2 = E 2 ⋅ dS 2 < 0v E2qv dS 2v dS 1 vE1d Ψ1 + d Ψ 2 = 0 v v ∫ E ⋅ dS = 0S2.点电荷系电场中通量 与电荷的关系v v Ψe = ∫ E ⋅ dS = ∫Sv v v E = E1 + E2 + LS iq1q2v EvdSv v ∑ Ei ⋅ dSsSqi=i (内)∑∫eSv v Ei ⋅ dS +i (外)∑ ∫v Eiv v Ei ⋅ dSQ∴ Ψ =i (外)∑∫Sv ⋅ d S = 01i (内)∑ ∫Sv v E i ⋅dS =ε0i ( 内)∑qi曲面上各点处电场强度:nE E E E r L r r r +++=21(包括S 内、S 外,所有电荷的贡献)只有S 内的电荷对穿过S 的电通量有贡献。
数学高斯定理
![数学高斯定理](https://img.taocdn.com/s3/m/ab5828f36e1aff00bed5b9f3f90f76c661374c23.png)
数学高斯定理
高斯定理也称为高斯通量理论,或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系,高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
高斯定理的解释和公式
![高斯定理的解释和公式](https://img.taocdn.com/s3/m/050595d54bfe04a1b0717fd5360cba1aa8118cd2.png)
高斯定理的解释和公式
高斯定理,也称为散度定理,是数学中的一个重要定理。
它描述了一个向量场通过一个封闭曲面的总量。
高斯定理在物理学和工程学的许多领域中都有广泛的应用,如电磁学、流体力学和热传导等。
高斯定理的数学表达形式如下:
对于一个平滑的三维矢量场F=(Fx,Fy,Fz),定义一个封闭曲面S来围绕一个具有体积V的区域D。
那么,高斯定理可以写作:
∬S F·dS = ∭D ∇·F dV
其中,F·dS表示向量场F在曲面元dS上的点积积分,∇·F表示向量场F的散度,dV表示体积元。
这个定理的物理解释是,对于一个流经封闭曲面的流体量,其发散性(流出和流入区域的总和)等于其在包围该区域的体积中的源和汇的总量。
高斯定理的应用非常广泛。
在电磁学中,它可以用来计算通过一个闭合曲面的电场强度和磁场强度的总量。
在流体力学中,它可以用来计算液体或气体通过一个封闭曲面的流量。
在热传导中,它可以用来计算热量通过一个封闭曲面的扩散量。
总之,高斯定理提供了一个非常强大的工具,用于计算向量场通过封闭曲面的总量。
它在物理和工程学中的应用使得我们能够更好地理解和分析各种自然现象和工程问题。
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/9d0f16ee960590c69ec37673.png)
dE
以 O 为中心,r 为半径的球面 S 上各点彼此等价
E 大小相等
以 O 为中心的球面 S 上各点
E
方向沿径向
确定高斯面
R dq
以半径 r 的同心球 S q
o
dq
面 S为高斯面
r
P
dE ' dE dE'
dE
通过S的电通量: E dS E cos0dS E 4r2
s
s
由高斯定理:
E E1
r
o
1
0
q内
L 0
r
E 2 0 r
讨论:
R
oo
E o
1. 无限长均匀带电柱面的电场分布
对称性分析:视
为无限长均匀带
电直线的集合;
选高斯面;同轴
圆柱面
rr
P
dE
P
dE '
dE
dE '
由高斯定理计算
r R: E0 r R:
Rr
E
2 0r
讨论:
2.求无限长、 均匀带电柱体的电场分布时,高斯面如 何选取?
电场相互抵消: E 0
NP
L o L x
NP
x L : 选如图高斯面
E
S
L o x L xq内源自dVLx
ax Sdx
aS 1 (L2 x2 ) 2
E dS 左 E dS 右 E dS 侧E dS E S
E0
cos 0 穿入
由高斯定理:
1
E dS
高
高
r
斯 面
r
斯 面
l
l
3.当带电直线,柱面,柱体不能视为无限长时,
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/db6e31f2f90f76c661371ab9.png)
高斯定理科技名词定义中文名称:高斯定理英文名称:Gauss theorem定义:通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和与电常数之比。
所属学科:电力(一级学科);通论(二级学科)本内容由全国科学技术名词审定委员会审定公布目录编辑本段高斯定理1矢量分析的重要定理之一。
穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。
换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。
如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。
这个规律类似于电场中的高斯定理,因此也称为高斯定理[1]。
与静电场中的高斯定理相比较,两者有着本质上的区别。
在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。
电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。
公式表达:∫(E·da) = 4π*S(ρdv)适用条件:任何电场静电场(见电场)的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。
根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即公式这就是高斯定理。
它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。
在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。
当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
数学中的高斯定理
![数学中的高斯定理](https://img.taocdn.com/s3/m/9d4cf734df80d4d8d15abe23482fb4daa58d1d03.png)
数学中的高斯定理高斯定理是数学中的一个非常重要的定理,它是现代微积分理论的基石之一。
该定理最初由德国数学家高斯在18世纪末发现,一直到今天,它依然广泛应用于物理学、工程学、计算机科学等多个领域。
本文将从高斯定理的数学原理、物理应用和现代研究方向三个方面来介绍这一重要的定理。
一、高斯定理的数学原理高斯定理是关于矢量场的定理,它是一种矢量积分定理。
简单来说,该定理描述了在一个体积内的矢量场在该体积表面所引起的通量的关系。
通量是一个常用的物理概念,它可以理解为矢量场流经一个表面所引起的量,通量可以正、负或者为零,具体取决于矢量场和表面的相对方向。
图1展示了一个二维平面内的矢量场和一个封闭曲线,该曲线的起点和终点相同,它将该平面划分成了内部和外部两个区域。
高斯定理告诉我们,曲线内部的通量等于曲线外部的通量,即:$\int_{S}\textbf{F}\cdotd\textbf{S}=\int_{V}\nabla\cdot\textbf{F}\textbf{dV}$ (1)其中,$\textbf{F}$表示一个三维矢量场,$d\textbf{S}$表示曲线的微元面积,$\nabla\cdot\textbf{F}$表示矢量场的散度,$dV$表示一个三维体积元,$S$表示封闭曲线的表面。
公式(1)即为高斯定理的数学形式。
图1 二维平面内的矢量场和封闭曲线从数学角度来看,高斯定理是一个非常重要的结果。
它表明,在矢量场满足一定条件的情况下,我们可以通过计算矢量场的散度来推导出曲面与体积之间的通量关系。
这种关系对于求解物理问题和工程实践非常有用,因此高斯定理在物理学和工程学等领域中得到了广泛的应用。
二、高斯定理的物理应用高斯定理在物理学中的应用非常广泛,其中最为典型的就是电场通量和磁场通量的计算。
在静电场问题中,电场可以看作是一个矢量场,它的导数就是该场的散度。
因此,应用高斯定理可以计算出电场通过一个闭合曲面的通量,具体而言,该通量等于该曲面内部所包含的电荷量除以真空介电常数,即:$\int_{S}\textbf{E}\cdotd\textbf{S}=\frac{Q}{\varepsilon_0}$ (2)其中,$\textbf{E}$表示电场强度,$dS$表示曲面微元面积,$Q$表示曲面内所包含的电荷量,$\varepsilon_0$表示真空介电常数。
高 斯 定 理
![高 斯 定 理](https://img.taocdn.com/s3/m/d24a927bbf1e650e52ea551810a6f524ccbfcbd5.png)
1.3 高斯定理
静电场是由电荷所激发的,通过电场空间某一给定闭合 曲面的电通量与激发电场的场源电荷必定有确定的关系。德 国科学家高斯通过缜密运算论证了这个关系,并提出了著名 的高斯定理。该定理给出了通过任何曲面S的电通量φe与闭 合曲面内部所包围的电荷之间的关系。下面就以点电荷为例 来讨论。
(3)利用高斯定理解出场强E。
【例7-4】求点电荷Q的电场强度的分布情况。
S
0
由此可见,通过此球面的电通量等于球面内的电荷量q除以 真空电容率ε0 ,与球面半径无关。
(2)一个正点电荷q,被任意闭合曲 面S′和球面S同时包围,如下图所示。根 据电力线的连续性可知,凡是通过球面S 的电力线都一定通过曲面S′。所以通过闭 合曲面S′的电通量等于通过球面S的电通 量,均为 q/ε0 。
物理学
高斯定理
1.1 电场线
电场线是空间中一系列假想的曲线,主要反映电场的特
征,描述电场中各点场强E的大小和方向。为此,对电场线作
如下规定:
(1)电场线上每一点的切线方向与该点场强E的方向一
致。这样,电场线的方向就反映了场强方向的分布情况。
(2)在任一场点,使通过垂直于场强E的单位面积的电
场线数目(称为电场线密度),正比于该点处场强E的大小。
2.非均匀电场的电通量
在非均匀电场中,为了求出通过任意曲面S的电通量φe, 可以把曲面S分成无限多个面元dS,如下图所示。此时,面元 dS可以近似看成一个平面,并且在面元的范围内电场强度可 以近似看成大小相等、方向相同的匀强电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯定理陈述报告
班级:电气121班
姓名:徐鹏学号:2012230106 姓名:邵辉学号:2012230158
姓名:王天宇学号:2012230102
高斯定理
高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系
由曲面向外定义为其方向,为闭合曲面内的电荷,为真空电容率,为此处电介质的介电常数(如果是真空的话,其数值为1)。
其微分形式;其中,为电荷密度(单位C/m3)。
在线性材料中,等式变为。
其中为材料的电容率。
基本定义:高斯定理(Gauss Law)也称为高斯公式(Gauss Formula),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
设空间有界闭合区域Ω,其边界∂Ω为分片光滑闭曲面。
函数P(x,y,z)、
Q(x,y,z)、R(x,y,z)及其一阶偏导数在Ω上连续,那么[1]:
图一(高数上的高斯公式)
(由于百科不支持很多格式及字符,故本词条使用一些截图,本公式请见右侧图一)
(如图一)其中∂Ω的正侧为外侧,cos α、cos β、cos γ为∂Ω的外法向量的方向余弦。
高斯投影
称向量场
的散度(divergence)。
[1]
即矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分。
它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式,也是研究场的重要公式之一。
其他高斯定理:高斯定理2
定理:凡有理整方程
至少有一个根。
推论:一元n次方程
有且只有n个根(包括虚根和重根)。
高斯定理3
正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数。
适用条件:任何电场
静电场(见电场)的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。
根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即
公式
这就是高斯定理。
它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。
在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。
当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
高斯定理反映了静电场是有源场这一特性。
凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。
正电荷是电力线的源头,负电荷是电力线的尾闾。
高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。
把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。
对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。
当存在电介质并用电位移D描写电场时,高斯定理可表示成▽·D=ρ。
它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和Σq o,与自由电荷的分布情况无关,与极化电荷亦无关。
电位移对任一面积的能量为电通量,因而电位移亦称电通密度。
对于各向同性的线性的电介质,电位移与电场强度成正比,D=εrεo E,εr称为介质的相对介电常数,这是一个无量纲的量。
如果整个封闭曲面S在一均匀的相对介电常数为εr的线性介质中(其余空间区域可以充任何介质),高斯定理(2)又可写成在研究电介质中的静电场时,这两种形式的高斯定理特别重要。
高斯定理微分形式:。