GPS在工程测量中的应用
GPS工程施工测量
标题:GPS工程施工测量的应用与实践随着科技的不断发展,全球定位系统(GPS)技术在工程施工测量领域得到了广泛的应用。
作为一种先进的测量技术,GPS具有精度高、速度快、操作简便等特点,为工程施工提供了高效的测量解决方案。
本文将从GPS工程施工测量的原理、应用和实践三个方面进行探讨。
一、GPS工程施工测量的原理GPS工程施工测量是利用全球定位系统卫星信号,通过接收器接收到的信号数据,确定测站的空间位置。
GPS系统由若干颗卫星组成,卫星上携带有精确的时间和位置信息。
接收器在接收到卫星信号后,通过解算信号传输时间差,计算出测站与卫星之间的距离,再结合卫星的位置信息,即可得到测站的精确位置。
二、GPS工程施工测量的应用1. 工程定位:在工程施工过程中,GPS技术可以实现对工程设施的精确定位。
通过在工程设施上安装GPS接收器,可以实时获取设施的位置信息,确保施工精度。
2. 地形测绘:GPS技术在地形测绘领域具有广泛的应用。
通过GPS测量,可以快速、高效地获取地形地貌数据,为工程设计提供准确的地形资料。
3. 施工放样:GPS技术在施工放样中发挥着重要作用。
利用GPS测量,可以实现对施工线、施工区域的精确放样,提高施工效率。
4. 工程监测:GPS技术在工程监测领域具有广泛的应用前景。
通过实时监测工程设施的位置变化,可以及时发现潜在的安全隐患,为工程安全提供保障。
三、GPS工程施工测量的实践在实际工程施工测量中,GPS技术的应用取得了显著的成果。
以下以某桥梁工程为例,介绍GPS工程施工测量的实践过程。
1. 工程概况:某桥梁工程全长1.5公里,跨越南北两岸,工程规模较大,施工测量要求高。
2. GPS测量设备:选用高精度GPS接收器,确保测量精度。
3. 测量方案:根据工程特点,制定合理的测量方案,包括测站设置、观测时间、数据处理等。
4. 测量实施:按照测量方案,对桥梁工程进行GPS测量。
测量过程中,严格遵循操作规程,确保数据准确性。
GPS测量技术在工程测量中的应用
GPS测量技术在工程测量中的应用GPS测量技术是一种在建筑工程测量中广泛应用的测量工具和技术。
它通过使用卫星信号来测量地面点的坐标,能够在空间中精确地定位建筑物、道路、桥梁、隧道、水坝等工程构筑物的位置,大小和形状,从而帮助工程师在建设过程中更好地规划设计和管理施工。
1.土地测量GPS测量技术可用于测量土地的大小和边界,以及确定土地的所有者和使用限制。
这对于土地评估和合法化地形分析非常重要,可帮助工程师和监管机构提供更准确和可靠的土地数据。
2.建筑测量GPS测量技术可用于测量建筑物的大小和位置以及确定其高度、体积和形状。
这可帮助工程师和建筑师在建设过程中规划和设计建筑物,确保建筑物符合安全标准,并满足预期的使用需求。
3.道路、桥梁和隧道测量4.水坝和水库测量GPS测量技术可用于测量水坝和水库的大小、位置和形状,以便工程师可以更好地规划并进行水力模型分析,确保水坝和水库足够安全,并可有效地控制水流和保护环境。
5.地铁和轻轨测量GPS测量技术可用于确定地铁和轻轨的位置、长度、高度和坡度,以便工程师和建筑师可以设计和规划一个有效、安全的地下交通系统。
优势和局限性GPS测量技术具有很多优势。
它可以从设备附近的任何位置收集数据,从而实现高精度的测量结果。
此外,GPS测量技术可以在较短的时间内测量较大的区域,并提供精确的空间坐标,可以帮助工程师减少出错的可能性。
然而,GPS测量技术也存在一些局限性。
首先,GPS测量技术对天气和大气状况非常敏感,如降雨、云层或其他天气状况,会影响GPS信号的质量和稳定性,导致测量失准。
其次,GPS测量技术有时可能受到邻近高建筑物和树木的干扰,这会影响到设备接收的卫星信号。
因此,在进行GPS测量之前,应该先对周边情况进行充分考虑。
GPS-RTK测量技术在测量工程中的应用分析
GPS-RTK测量技术在测量工程中的应用分析GPS-RTK(Real-Time Kinematic)是一种实时动态定位技术,其在测量工程中的应用非常广泛。
下面对GPS-RTK测量技术在测量工程中的应用进行分析。
GPS-RTK技术可以用于地形测量和制图。
通过在地面上布设多个GPS基站,可以实时获取大量高精度的空间位置数据。
这些数据可以用于制作地形图、三维模型和数字高程模型等,为地质勘查、城市规划和土地利用研究等提供准确的空间参考。
GPS-RTK技术在工程测量中可以提供高精度的定位和导航。
在建设道路、桥梁、铁路等工程时,通过GPS-RTK技术可以实时测量工程现场各个点的位置和高程,并准确地绘制出工程的平面图和剖面图,为工程施工提供准确的定位和导航数据。
GPS-RTK技术还可以用于监测工程结构的变化和形变。
在大桥、高楼和堤坝等工程中,通过将GPS接收机安装在工程结构上,可以实时监测结构的位移、沉降和变形等,并及时预警和采取相应的措施,确保工程的安全和稳定。
GPS-RTK技术还可以应用于测绘地籍和土地管理。
通过GPS测量可以获取土地界线和边界的精确位置,为土地调查、土地登记和土地管理提供准确的数据基础,提高土地资源的管理效率。
GPS-RTK技术在测量工程中还可以应用于海洋测量和深海勘探。
通过在海上或深海区域设置GPS基站,可以对船只和探测设备进行实时定位和导航,准确测量海洋地形、海底地质和水文等数据,并为海洋勘探和水下工程提供精确的定位和导航服务。
GPS-RTK测量技术在测量工程中有着广泛的应用。
它可以提供高精度的定位和导航,用于地形测量、工程监测、土地管理和海洋测量等领域。
随着技术的不断创新和发展,GPS-RTK技术在测量工程中的应用将会更加广泛和深入。
探析GPS测绘技术在测绘工程中的应用
探析GPS测绘技术在测绘工程中的应用1. 引言1.1 GPS测绘技术概述GPS测绘技术是一种利用全球定位系统(GPS)进行测量和测绘的技术。
全球定位系统是一种通过卫星和地面设备来确定地球上任何位置的系统。
在测绘工程中,GPS测绘技术可以提供高精度的位置信息,帮助测绘人员准确地绘制地图、测量地形、规划城市等工作。
GPS测绘技术的原理是通过接收卫星发射的信号来确定接收设备的位置。
全球定位系统由一组24颗卫星组成,它们以不同的轨道运行,每颗卫星大约每12小时绕地球运行两次。
接收设备通过同时接收多颗卫星的信号,计算出自己的位置坐标,并与地面控制点进行比对,从而得到更精确的位置信息。
GPS测绘技术在测绘工程中的应用越来越广泛,它可以有效提高测绘工作的效率和精度,同时也可以减少人力和时间成本。
随着技术的不断发展,GPS测绘技术将在测绘领域发挥越来越重要的作用,为城市规划、环境监测、航空航海等领域提供更好的服务和支持。
2. 正文2.1 GPS测绘技术在地形测量中的应用GPS测绘技术在地形测量中的应用可以说是其最为经典和重要的应用之一。
利用GPS技术进行地形测量的主要优势在于其高精度和高效率。
通过在地面或者空中部署GPS接收机,可以快速准确地获取地表各点的三维坐标信息,从而构建出精确的地形模型。
在地形测量中,GPS技术可以实现对地面高程、坡度、方位等参数的实时监测和测量。
这为地质勘探、土地规划、水资源调查等领域的工作提供了重要数据支持。
GPS测绘技术还可以应用于地质灾害监测预警、地形地貌分析、地表形变监测等方面,为相关工作提供重要参考依据。
结合地理信息系统(GIS)技术,利用GPS数据可以实现地形测量数据的多源融合和空间信息可视化,提高地形测量的数据分析和应用效率。
通过将GPS测绘数据与卫星影像、地图数据等结合,可以实现对地形特征的全面、多角度的观测和分析,为地形测量工作提供更为全面和准确的数据基础。
GPS测绘技术在地形测量中的应用不仅提高了测量效率和精度,还为地质勘探、环境保护、城市规划等领域提供了重要的支持和数据基础。
GPS测绘技术在测绘工程中的应用研究
GPS测绘技术在测绘工程中的应用研究一、GPS测绘技术概述GPS是由美国国防部研制的卫星导航定位系统,通过一组由人造卫星发射的微波信号,为地球上的任何点的三维位置提供准确的定位。
GPS系统主要由卫星信号发射器、地面控制系统和用户接收器三部分组成。
用户接收器接收来自卫星的微波信号,通过计算收到信号的时间差来确定用户位置的经纬度和高程,从而实现精确定位。
通过将GPS技术与地理信息系统(GIS)、遥感技术等相结合,可以实现测绘工程的高精度、高效率、智能化测量和数据处理。
二、GPS测绘技术在测绘工程中的应用1. 地形测绘GPS测绘技术可以用于地形测绘,通过在地表布设GPS接收器,利用卫星信号来确定地表各点的经纬度和高程信息,从而绘制出高精度的地形图。
与传统的地形测绘方法相比,GPS测绘技术具有操作简便、测量速度快、精度高等优势,可以大大提高地形测绘的效率和精度。
2. 土地利用规划在土地利用规划中,GPS测绘技术可以用于准确测量土地的边界、面积和地形等信息,为土地规划和利用提供精确的基础数据。
利用GPS测绘技术进行土地利用规划,不仅可以提高数据的准确性和可靠性,同时也可以加快规划编制的速度,提高规划效率。
3. 基础设施建设GPS测绘技术可以用于基础设施建设的规划、设计和施工。
在道路建设中,可以利用GPS测绘技术进行地形测量和路径规划;在建筑施工中,可以利用GPS测绘技术进行地基测量和建筑定位。
利用GPS测绘技术进行基础设施建设,不仅可以提高测量和定位的精度,也可以提高工程施工的效率。
4. 矿产资源调查在矿产资源调查中,GPS测绘技术可以用于测量矿区的边界、矿藏的分布及其规模等信息。
利用GPS测绘技术进行矿产资源调查,可以提高勘探的效率和准确性,为矿产资源的开发和利用提供科学依据。
5. 灾害防治在灾害防治中,GPS测绘技术可以用于测量灾害影响区域的变化、规划灾害防治措施和监测灾害预警。
利用GPS测绘技术进行灾害防治,可以提高对灾害影响区域的监测和预警能力,加强对灾害的防治和救援工作。
GPS-RTK技术在工程竣工测量工作中的优缺点与应用
GPS-RTK技术在工程竣工测量工作中的优缺点与应用一、GPS-RTK技术的特点及优势1.高精度测量GPS-RTK技术利用全球卫星定位系统,通过对多颗卫星信号的接收和处理,可以实现厘米级甚至毫米级的测量精度。
尤其是在山区、林区等复杂地形的测量中,GPS-RTK技术能够提供更加精准的测量数据,保障了测量结果的可靠性。
2.快速测量GPS-RTK技术采用实时动态差分技术,能够快速获取测量数据,减少了测量的时间成本。
在工程竣工测量中,时间往往是一项极为重要的成本,GPS-RTK技术的快速测量能够大大提高测量效率,有利于工程竣工的及时验收和交付。
3.灵活便捷GPS-RTK技术可以实现无线通讯和数据传输,测量过程中无需布设大量的测量控制点,减少了现场工作量,提高了工作效率。
GPS-RTK设备体积小、重量轻,携带和操作都十分方便,使其在工程现场的应用更加灵活便捷。
4.多元数据应用除了提供位置坐标的测量,GPS-RTK技术还可以提供高精度的高程、方位、速度等多元测量数据,满足了工程竣工测量对多元数据的需求,为工程质量评估提供了更多的参考依据。
1.地形测量在工程竣工测量中,地形测量是一项重要的工作内容。
利用GPS-RTK技术,可以实现对地形的高精度三维测量,获取地面高程和坡度等数据,为工程设计和质量评估提供可靠的依据。
2.建筑结构监测在建筑工程的竣工测量中,需要对建筑结构进行监测,以评估结构的变形和变化情况。
GPS-RTK技术可以实现对建筑结构的实时监测,及时发现并纠正结构变形,保障建筑的安全和稳定。
1.信号遮挡问题GPS-RTK技术受到天气、地形、植被等因素的影响,容易出现信号遮挡的问题,影响测量的准确性和可靠性。
特别是在城市和山区等复杂地形中,GPS-RTK技术的信号稳定性和可靠性会受到较大挑战。
2.高成本从设备投入和维护成本来看,GPS-RTK技术相对较高,对于一些中小型工程而言,成本相对较高。
且GPS-RTK技术设备对人员的使用和维护也有一定要求,对工程测量人员的素质要求相对较高。
GPS测量技术在工程测量中的应用
GPS测量技术在工程测量中的应用GPS(全球定位系统)是利用卫星定位技术来确定地球上任何一个点的位置,俗称“卫星定位”。
它的出现对于工程测量领域来说具有革命性的意义,为后来的数字化测量技术发展奠定了基础。
以下是GPS测量技术在工程测量中的应用:1.土地测量GPS技术在土地测量中的应用非常广泛。
利用GPS定位技术可以精确地测量土地的边界,顺利完成土地分割、编制地籍图和测量地征等工作。
通过GPS定位技术,土地边界测量的精度得到了极大的提升,更为方便快捷。
2.建筑工程测量在建筑工程测量中,GPS与激光测量一起运用,用于确定建筑物的位置、高度和基础边界,优化建筑物的设计和组建。
GPS可以有效的提高测量的精度,使建筑师能够在设计中更加细致的考虑周围环境的影响。
3.道路测量在道路测量中,GPS可以用于边界测量和提高测量精度。
道路设计方案建立后,借助GPS技术可以计算出坡度和曲面,从而更好地施工和规划。
同时,在设计周期内,GPS还可用于监测道路施工过程中的凸起和下陷情况。
在水力学、河道治理和水利建设等方面都有广泛的应用。
GPS可以用于监测水流速度、流量和水位变化,并能在应用中发挥出极高的效益。
同时,GPS还可用于测量水库或者水坝堤坝的位置、大小和边界等。
5.采矿测量正是由于GPS技术极高的测量精度,使其在采矿测量中应用越来越广泛。
利用GPS技术,可以计算出有效矿区的面积以及矿区内各矿区的位置、面积和精确度。
尤其是在地下采场的测量中,GPS技术更能够发挥出其优势。
总之,GPS技术在工程测量中的应用,对于提高精度、提高效率、降低工程成本都起到了非常重要的作用。
在未来的发展中,随着技术水平的不断提高,GPS将在工程测量中又能够作出更大的贡献。
GPS技术在工程测量中的应用
GPS技术在工程测量中的应用1概述20世纪80年代以来,随着gps定位技术的出现和不断发展完善,使测绘定位技术发生了革命性的变革,为工程测量提供了崭新的技术手段和方法。
长期以来用测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定三维坐标的、高速度、高效率、高精度的cps技术所代替,同时定位范围己从陆地和近海扩展到海洋和宇宙空间;定位方法己从静态扩展到动态;定位服务领域己从导航和测绘领域扩展到国民经济建设的广阔领域。
对经典大地测量学的各个方面产生了极其深刻的影响,它在大地测量学及其相关学科领域,如地球动力学、海洋大地测量学、地球物理探测、资源勘探、航空与卫星遥感、地下工程变形监测、运动目标的测速以及精密时间传递等方面的广泛应用,充分显示了卫星定位技术的高精度和高效益。
2gps测量的基本原理与方法2.1gps测量的基本原理测量学中的交会法测量里有一种测距交会确定点位的方法。
与其相似,gps的定位原理就是利用空间分布的卫星以及卫星与地面点的距离交会得出地面点位置。
简言之,gps定位原理是一种空间的距离交会原理。
设想在地面未定边线上征用gps接收机,同一时刻发送4颗以上gps卫星升空的信号。
通过一定的方法测量这4颗以上卫星在此瞬间的边线以及它们分别至该接收机的距离,据此利用距离交会法推演出来测站p的边线及接收机钟差δt。
图3-1gps定位原理例如图3-1,设立时刻ti在测站点p用gps接收机同时测出p点至四颗gps卫星s1、s2、s3、s4的距离ρ1、ρ2、ρ3、ρ4,通过gps电文解译出四颗gps卫星的三维坐标,用距离交会的方法求解p点的三维坐标(x,y,z)的观测方程为:式中的c为光速,δt为接收机钟差。
2.2gps定位方法分类利用gps进行定位的方法有很多种。
若按照参考点的位置不同,则定位方法可分为(1)绝对定位。
即为在协议地球坐标系中,利用一台接收机去测量该点相对于协议地球质心的边线,也叫做单点定位。
GPS测量技术在工程测绘中的应用及特点
GPS测量技术在工程测绘中的应用及特点GPS(全球定位系统)是一种利用卫星信号进行测量并确定地球上任一位置的技术。
它是目前最常用的测量定位技术之一,被广泛应用于工程测绘领域。
下面将详细介绍GPS测量技术在工程测绘中的应用及特点。
一、GPS在工程测绘中的应用1.土地测绘:GPS可以精确测量和确定地表的地理位置和边界,用于土地测绘、土地划分和土地使用规划。
它可以准确测量位置坐标、海拔高度和地表特征,提供精确的地图和地形模型数据。
2.建筑测量:GPS可以应用在建筑物定位、控制测量和建筑监测中。
例如,在建筑物的建设过程中,GPS可以用于测量建筑物的位置和高度,以确保施工准确无误,避免出现误差。
3.水利工程测量:GPS可以用于水利工程测量,包括水库、大坝和河流的测量。
它可以提供精确的地理位置信息、水位高度和地形特征,有助于水利工程设计和管理。
4.道路工程测量:在道路建设和改造过程中,GPS可以用于确定道路的位置、线路、轮廓和高程。
它可以提供精确的测量结果,使道路工程设计和施工更加准确和高效。
5.矿山测量:GPS可以用于矿山勘探、矿区规划和矿山管理。
它可以确定地下矿藏的位置和规模,提供矿山地质和地形信息,有助于矿山资源的开发和利用。
6.市政工程测量:GPS可以用于城市规划和市政工程建设。
通过GPS测量,可以确定城市各个建筑物、道路、桥梁和其他设施的位置和高度,为城市规划和市政工程提供准确的数据支持。
二、GPS测量技术在工程测绘中的特点1.高精度:现代GPS接收器可以提供亚米级的定位精度,甚至更高。
这种高精度使得GPS成为工程测绘的重要工具,能够满足工程测绘中对精度要求较高的需求。
2.实时性:GPS可以提供实时的定位结果,快速反馈测量数据。
这使得工程测绘过程更加高效,能够及时调整和纠正测量方案,提高工程测绘的效率。
3.经济性:相比传统测量技术,GPS测量所需的设备和人力成本相对较低。
同时,GPS可以同时测量多个点位,减少了工程测绘的工作量和时间。
GPS测量技术在工程测量中的应用
GPS测量技术在工程测量中的应用
GPS测量技术是指用全球定位系统对空间坐标进行测量的技术。
它的出现为工程测量
的技术发展带来了新的机遇。
GPS测量技术主要涉及卫星定位、单点定位、定向精度测量、多点定位、数据处理等。
GPS测量在工程测量中有着重要的作用,如岩土工程及灾害防治、交通道路工程测量、土壤调查等领域。
GPS测量能快速、高精度、面向全球的测量,无论是管线的布置,还是建筑物的施工,都可以使用GPS技术来快速定位目标。
GPS测量技术在土木工程测量中的应用非常广泛,如平整度测量,GPS测量可快速作
到高精度、全覆盖的测量,大大减少了作业时间。
传统的测量方法需要在每个测点采集数据,浪费时间,而GPS测量只需要一次测量,即可得到全面的结果。
GPS测量也可以应用于水利工程测量,比如沿河工程测量,能够同时测量河段的高程
和位移,使把握河道的治理动态变化更有效率和可行。
此外,环境水文调查也可以使用GPS测量技术,帮助水力学研究进行测量,对水力学数据的准确性和可靠性进行检验。
GPS测量技术在其他工程量测中也有广泛应用,如矿山测量、边坡测量、地形测量、
工程测深、建筑物测量等等。
GPS测量不仅能用于当前工程量测,还可以用于未来的高精
度定位,大大提升了测量精度和效率。
GPS测量能够满足工程测量对精确性、快速性、全面性及连续性等要求。
它也为大范
围地质勘查、大区域调查及国家地理信息数据库的建立提供了有力技术支持。
GPS测量技
术是一项新的技术,它的出现有利于工程量测中的技术发展,它就要求更多的工程师掌握GPS测量技术,才能使GPS测量技术充分发挥其作用。
探析GPS测绘技术在测绘工程中的应用
探析GPS测绘技术在测绘工程中的应用GPS测绘技术是一种利用全球定位系统(GPS)进行地理位置测量和地图制作的技术。
它已经成为现代测绘工程中不可或缺的重要工具,广泛应用于土地测绘、地质勘探、城市规划、道路建设、农业资源调查等领域。
本文将探析GPS测绘技术在测绘工程中的应用,从技术原理、应用案例和发展趋势等方面进行分析,以期为测绘工程领域的专业人士和相关从业者提供一些参考和借鉴。
一、GPS测绘技术的原理GPS测绘技术是建立在全球定位系统(GPS)的基础上的一种测绘技术。
全球定位系统是由一组在地球轨道上运行的24颗卫星和地面控制站组成的系统,它能够提供任何地点的三维位置信息。
GPS测绘技术利用这些卫星发射的信号,通过接收机接收并计算卫星信号的传输时间来确定接收点的位置,以实现地理位置测量。
GPS测绘技术的原理主要包括卫星信号接收、信号计算和位置测定三个方面。
GPS接收机接收来自多颗卫星的信号,并记录下每颗卫星信号的传输时间和信号强度。
接着,接收机利用这些信息计算出接收点到各个卫星的距离,并通过三角定位法确定接收点的地理位置。
将测定的位置数据进行处理和分析,生成地图和测绘成果。
1. 土地测绘GPS测绘技术在土地测绘领域有着广泛的应用。
利用GPS测绘技术可以快速、精确地获取地块边界和地形地貌信息,为土地管理、土地规划和土地利用提供数据支持。
GPS测绘技术还可以用于土地权属调查和土地资源普查,为土地管理和土地资源管理提供科学依据。
3. 城市规划城市规划是现代城市建设的重要环节,GPS测绘技术在城市规划中有着广泛的应用。
通过GPS测绘技术可以获取城市的地理位置信息、地形地貌数据和城市基础设施的分布情况,为城市规划、城市设计和城市管理提供数据支持。
利用GPS测绘技术还可以实现对城市交通、环境、资源利用等方面的监测和评估。
4. 道路建设在道路建设领域,GPS测绘技术可以对道路线路、道路坡度和道路曲线等进行快速、准确的测量和设计。
GPS测量技术在工程测量中的应用
GPS测量技术在工程测量中的应用摘要:GPS测量技术有着较多的技术优点,包括功能性强、定位精度高、观测时间短、操作简单等,适合在工程测绘中进行广泛应用。
随着我国经济水平和国家建设的加快,工程测绘在数量和规模也在持续增长,GPS测量技术在工程测绘中的应用能够大大提高工程测绘的质量和效率,所以需要加大对GPS测量技术的分析研究,提高GPS测量技术的应用效果。
关键词:GPS测量技术;工程测量;应用1、总结GPS测量技术在工程测量中应用的优势第一,作业范围广泛。
利用GPS测绘技术进行工程测量可以利用GPS技术的定位功能进行远距离定位。
传统的测绘技术在进行定位测量时具有较大的局限性,在一些工程测绘当中需要通过多次测量才可以达到精度要求,测量误差相对较大,而利用GPS测绘技术可有效开展远距离测量,弥补传统测绘技术的不足,提高测量精度,减小误差,提高整体的测绘质量。
第二,操作简便。
GPS测绘技术主要是利用GPS接收设备与卫星定位系统采集地面信息,不需要太多的人为操作,可降低人力成本,也可以减少人工操作失误,提高测绘精度。
在设定相关卫星参数与程序模型之后,可以对某一时间段以及空间点进行定位。
在时间定位的过程中也可以利用信息节点传输技术以及载波相位测量进行整周未知数的计算,控制累积误差,提高作业效率与精准度。
与传统的测绘技术相比,GPS测绘技术的工作量相对较少,所需的测绘人员少,操作较为简便。
第三,测量精度高。
在应用GPS测绘技术时,可以利用GPS接收系统采集地面位置信息,所采集的测绘数据会经过专用程序或随机程序的计算,同时可以通过GPS卫星系统的准确定位获取地理空间的坐标数据,从而提高测绘精度。
相比于其他测绘手段,GPS测绘技术的准确度更高,可减小误差累积,且后续数据是利用计算机处理的,无需人工处理,可提高数据处理的价值。
2、阐述GPS测量技术在工程测量中的具体应用2.1、现代化城市建设中的应用城市管网的精度要求较高,同时涉及面积大,应用频率高,并且城市管网主要在城市地面分布,这些导致城市化建设发展过程中,出现不同程度的破坏现象,为城市建设持续稳步发展造成较大影响。
浅析GPS测量技术在工程测量中的应用
浅析GPS测量技术在工程测量中的应用GPS(Global Positioning System)是一种通过卫星定位来实现地理位置测量的技术。
它在工程测量中广泛应用,能够提高测量的准确性和效率。
本文将就GPS测量技术在工程测量中的应用进行浅析。
一、GPS测量技术概述GPS是一种通过卫星信号来获取位置信息的技术。
它通过接收来自卫星的信号,并根据信号的传播时间和卫星的位置来计算接收设备的位置。
目前,全球共有30颗左右的GPS 卫星,它们按照固定的轨道在地球周围运行,覆盖全球绝大部分地区。
通过对多颗GPS卫星的信号进行接收和处理,就可以精确地确定接收设备的位置信息。
在工程测量中,GPS技术通常与测量仪器相结合,可以实现高精度的位置测量。
通过GPS技术,测量人员可以准确地获取地点的经纬度、高度等信息,从而实现各种工程测量任务,比如地形测量、建筑测量、道路测量等。
二、GPS测量技术在地形测量中的应用地形测量是工程测量的一个重要领域,它通常用于绘制地图、规划道路、建筑物等。
传统的地形测量通常需要进行实地测量和测绘,费时费力。
而通过GPS技术,可以大大简化地形测量的流程,提高工作效率。
GPS测量技术在工程测量中具有很多优势,比如测量精度高、工作效率高、成本低等。
但与此GPS测量技术也面临着一些挑战,比如天气影响、信号阻塞等。
在实际工程测量中,需要对GPS测量技术进行合理的应用和技术调整,才能发挥其最大的作用。
GPS测量技术在工程测量中具有广泛的应用前景,它可以提高测量的准确性和效率,为工程测量带来新的发展机遇。
随着技术的不断进步和应用的不断扩大,相信GPS测量技术将在工程测量中发挥越来越重要的作用。
GPS测量技术在工程测量中的应用
GPS测量技术在工程测量中的应用摘要:科学技术的快速发展推动了工程测绘水平的极大提升。
GPS测量技术的快速发展,给工程测绘带来了革命性的变化,大大提升了工作效率和服务范围。
本文对GPS在工程测绘中的实施进行了探析,供同行参考借鉴。
关键词:GPS;工程测量;特点;应用近年来,随着我国经济的发展,GPS 技术应用研究的逐步深入,全球定位系统已广泛应用于工程建设领域中,在道路与桥梁的建设中发挥着重大的作用。
GPS 测量通过接收卫星发射的信号并进行数据处理,且具有良好的抗干扰性和保密性。
本文着重探讨一下GPS 在工程测量领域的应用。
一、全球定位系统(GPS)全球定位系统(GPS)是“卫星授时测距导航/全球定位系统”的简称。
该系统由美国国防部于1973年组织研制,历经20年,耗资近300亿美元,于1993年建设成功,主要为军事导航与定位服务。
GPS利用卫星发射的无线电信号进行导航定位,具有全球性、全天候、高精度、快速实时三维导航、定位、侧速和授时功能,并具有良好的保密性和抗干扰性。
GPS已成为美国导航技术现代化的重要标志,被称为本世纪继阿波罗登月计划之后的又一重大航天技术。
GPS 不但可以用于军事上各兵种和武器的导航定位,在民用上也具有广泛的应用。
GPS定位技术的引入,引发了测绘技术的一场革命,使得测绘领域步入了一个崭新的时代。
二.GPS 构成2.1 空间卫星星座GPS 空间卫星星座由21 颗工作卫星和3 颗在轨备用卫星组成。
24 颗卫星均匀分布在 6 个轨道平面内,轨道平面的倾角为55°,卫星的平均高度为20200km,运行周期为11h58min。
卫星用L 波段的两个无线电载波向广大用户连续不断地发送导航定位信号,导航定位信号中含有卫星的位置信息,使卫星成为一个动态的已知点。
在地球的任何地点、任何时刻,在高度角15°以上,平均可同时观测到6 颗卫星,最多可达到9 颗。
2.2 地面监控站GPS 地面监控站主要由分布在全球的一个主控站、三个注入站和五个检测站组成。
工程gps定位器测量仪作用
工程GPS定位器测量仪的作用工程GPS定位器测量仪是一种专门用于工程测量的设备,使用全球定位系统(GPS)技术,可以准确测量和记录物体的位置坐标。
它在建筑、土木、矿业等领域中发挥着重要的作用。
本文将介绍工程GPS定位器测量仪的作用及其在工程测量中的应用。
1. 提高测量的精度和准确性工程GPS定位器测量仪采用卫星导航系统,能够实时获取精确的全球定位信息,相比传统的测量仪器,具有更高的测量准确度。
它可以提供更精确的坐标数据,实现对建筑物、道路、地形等物体的准确测量和定位。
在工程建设中,精确的测量数据对于保证工程质量和安全至关重要。
2. 方便快捷的测量操作相比传统的测量方法,工程GPS定位器测量仪具有操作简便、快速的特点。
只需设置好测量参数,即可通过卫星导航系统获取相关位置数据。
无需繁琐的设备调试和复杂的数据计算。
这样可以节省大量的工作时间和人力成本,提高测量效率。
3. 实时监测和数据记录工程GPS定位器测量仪不仅可以实时获取位置坐标数据,还可以实现实时监测和数据记录。
通过工程GPS定位器测量仪,工程师可以实时了解工程进展情况,掌握施工现场的变化。
同时,测量仪还能将测量数据记录下来,可供后续分析和参考,为工程管理和决策提供可靠依据。
4. 应用于多个工程领域工程GPS定位器测量仪在建筑、土木、矿业等多个工程领域中都有广泛的应用。
其中,在建筑领域,工程GPS定位器测量仪可用于测量建筑物的定位、建筑高度、地基沉降等;在土木领域,可以用于测量道路、桥梁、隧道等的位置和变形情况;在矿业领域,可以用于测量矿山地形、开采区域等。
由于其灵活性和精确性,工程GPS定位器测量仪成为这些领域中不可或缺的工具。
5. 可靠的工程测量辅助工具工程GPS定位器测量仪在工程测量中扮演着重要的辅助角色。
它能够提供精确的定位数据,帮助工程师进行工程设计、施工和监测。
它能够准确地定位地形和设施,提供准确的坐标数据,帮助工程师规划和布局工程。
gps技术在建筑工程测量中的应用分析
GPS技术在建筑工程测量中的应用分析引言GPS(全球卫星定位系统)是一种基于卫星技术的全球位置系统,已经被广泛应用于测量、导航和地图绘制等领域。
在建筑工程测量中,GPS技术也被越来越多地使用,尤其是在大型工程项目中。
本文将分析GPS在建筑工程测量中的应用,包括其优点、缺点和使用注意事项。
GPS在建筑工程测量中的优点高精度GPS测量的精度通常可以达到厘米级别。
这意味着可以更准确地测量建筑物和其他结构物的位置、高度和形状。
这在大型工程项目中尤其重要,因为偏差可能会导致严重的错误和安全问题。
大范围覆盖GPS系统的覆盖面积达到全球,无论建筑工程位于世界的哪个角落,都可以使用GPS技术进行测量。
这使得GPS成为建筑工程测量的一种理想选择。
高效性GPS测量比传统测量(如传统地面测量、激光测距仪等)更迅速、更高效。
使用GPS技术可以快速测量大面积的地形和结构,并且可以更轻松地获得详细的数据和信息。
数据准确性高、一致性好通过使用GPS技术进行测量,可以确保数据的准确性和一致性。
所有数据都是从同一个参考系统中获取的,因此可以避免来自不同来源的数据之间的偏差和不一致性。
GPS在建筑工程测量中的缺点信号干扰在某些环境下,如在城市中心或建筑物内部,GPS信号可能会受到干扰。
这可能会影响 GPS 系统的测量精度,甚至导致误差。
天气影响在某些天气条件下,如大雨或大雾,GPS信号也可能会受到影响。
这可能会导致 GPS 系统无法工作,从而影响建筑工程测量的准确性。
器材成本高GPS测量需要专用的GPS接收器和软件,这些设备成本较高。
此外,进行GPS 测量需要专门培训的人员,这也增加了测量的成本。
GPS在建筑工程测量中的应用注意事项在建筑工程中选用 GPS 接收器时需根据所需测量的工程大小和范围来选择。
对于一些小型建筑工程,如住宅和简单的商业建筑,传统测量工具是更经济有效的选择。
因为 GPS 技术的成本比传统的测量方法要高,但对于大型建筑工程项目,如跨越整个城市的高速公路、高层住宅和商业综合体,选择使用 GPS 技术是更经济有效的。
GPS-RTK技术在工程竣工测量工作中的优缺点与应用
GPS-RTK技术在工程竣工测量工作中的优缺点与应用随着科技的不断进步,全球定位系统(GPS)在工程测量领域中的应用变得越来越普遍。
而RTK(Real Time Kinematic)技术是GPS技术的一种重要应用,它通过无线通信实现了实时高精度测量,为工程测量工作带来了极大的便利。
本文将重点介绍GPS-RTK技术在工程竣工测量工作中的优缺点与应用。
一、GPS-RTK技术的优点1.高精度:GPS-RTK技术可以实现毫米级甚至亚米级的高精度定位,比传统的测量方法具有更高的精度和稳定性。
这使得测量结果更加可靠,为工程设计和施工提供了准确的数据支持。
2.实时性:GPS-RTK技术通过无线通信实现了实时测量,即测量数据可以实时传输到数据采集设备中,实现了现场实时监测和数据处理。
这大大提高了测量工作的效率和及时性。
3.节约人力物力:与传统的测量方法相比,GPS-RTK技术可以大大节约人力物力,降低了测量成本,提高了工作效率。
4.适用性广:GPS-RTK技术适用于各种地形和环境,无论是在平原、山区还是城市,都能准确测量,具有较强的适用性。
1.受大气条件和天体干扰:GPS-RTK技术在使用过程中受大气条件和天体干扰影响较大,可能会影响其测量精度。
2.设备成本较高:GPS-RTK技术所需的设备成本较高,包括GPS接收机、数据采集设备等,对于一些小型工程测量而言,设备投资成本相对较高。
3.对操作人员要求高:由于GPS-RTK技术需要专业的操作人员进行操作和维护,因此对操作人员的要求较高,需要具备一定的专业技能和经验。
1.土地测绘:GPS-RTK技术可以用于土地测绘工作,快速准确地确定土地边界、地形地貌等关键信息。
2.工程测量:在建筑工程、市政工程等竣工测量工作中,GPS-RTK技术可以实现对建筑物、道路、桥梁等工程结构的精确定位和形态测量,为工程验收提供重要依据。
3.矿山测量:GPS-RTK技术可以用于矿山测量,实现对矿区地质、地形、地下水位等的快速精确测量,为矿山开发提供技术支持。
GPS-RTK技术在建筑工程测量中应用
GPS-RTK技术在建筑工程测量中应用提纲:一、GPS-RTK技术在建筑工程测量中的应用概述二、GPS-RTK技术的优势及与其他测量技术的比较三、GPS-RTK技术的实际应用场景及算法分析四、GPS-RTK技术在建筑工程测量中的问题及解决方案五、GPS-RTK技术未来在建筑工程测量领域的发展方向一、GPS-RTK技术在建筑工程测量中的应用概述GPS-RTK是指在全球定位系统(GPS)辅以实时运动相位数据、称为载波相位或观测数据,采用差分技术进行实时精密定位。
在建筑工程测量中,GPS-RTK技术广泛用于建筑物的描画、地形图的制作、分区测量线路、地图绘制等方面。
GPS-RTK技术应用于建筑工程测量中,可实现大面积的高精度测量,同时也可提升作业效率,使建筑工程测量更加精准和高效。
二、GPS-RTK技术的优势及与其他测量技术的比较与传统的测量技术相比,GPS-RTK技术拥有更高的精度和更快的作业效率。
它可以通过全球卫星网络实现测量,减少了测量时间,实现了高效的测量。
GPS-RTK技术还可以实现多点同时成像,大大提高了测量的类别无法完成,其测量精度达到亚厘米甚至毫米级别,这大大缩短了建筑工程测量的周期,实现了快速的精度和高效性。
与传统的测量数据不同,GPS-RTK的测量数据更容易被分析和应用。
三、GPS-RTK技术的实际应用场景及算法分析GPS-RTK技术在建筑测量中应用的最主要的场景包括地形图制作、建筑物描画、分区测量线路、地图绘制等。
地形图制作时,GPS-RTK技术可以逐渐绘制地形图,对地形进行分析,以便查寻某些特殊的区域,如山区。
在建筑物描画时,GPS-RTK技术可以精确定位建筑物的尺寸和位置。
在分区测量线路时,GPS-RTK技术可以同时测量多个点,可以快速准确地确定建筑物的位置和结构。
GPS-RTK技术采用LAMBDA算法,它采用最小二乘法进行求解,从而获得高精度的位置信息,并将其转化为地图的坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS在工程测量中的应用1绪论GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。
经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命[1]。
全球定位系统(Global Positioning System)是美国第二代卫星导航系统。
是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。
和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。
按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。
21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。
卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。
这就提供了在时间上连续的全球导航能力。
地面监控部分包括四个监控站、一个上行注入站和一个主控站。
监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。
监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。
主控站设在范登堡空军基地。
它对地面监控部实行全面控制。
主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。
上行注入站也设在范登堡空军基地。
它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。
这种注入对每颗GPS卫星每天进行一次,并在卫星离开注入站作用范围之前进行最后的注入。
定位系统具有性能好、精度高、应用广的特点,是迄今最好的导航定位系统。
随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。
2 GPS简介2.1GPS的构成GPS主要由空间卫星星座、地面监控站及用户设备三部分构成。
(1)GPS空间卫星星座由21颗工作卫星和3颗在轨备用卫星组成。
24颗卫星均匀分布在6个轨道平面内,轨道平面的倾角为55°卫星的平均高度为20 200 km, 运行周期为11 h 58 min。
卫星用L波段的两个无线电载波向广大用户连续不断地发送导航定位信号,导航定位信号中含有卫星的位置信息,使卫星成为一个动态的已知点。
在地球的任何地点、任何时刻,在高度角15°以上,平均可同时观测到6颗卫星,最多可达到9颗。
(2)GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成。
主控站根据各监测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。
(3)GPS用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。
GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理,再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标。
2.2GPS定位原理GPS定位是根据测量中的距离交会定点原理实现的]2]。
在待测点Q设置GPS 接收机,在某一时刻tk同时接收到3颗(或3颗以上)卫星S1、S2、S3所发出的信号。
通过数据处理和计算,可求得该时刻接收机天线中心(测站点)至卫星的距离P1、p2、p3。
根据卫星星历可查到该时刻3颗卫星的三维坐标(Xj,丫j,Zj),j = 1, 2,3,从而由解算出Q点的三维坐标(X,丫,Z)。
2.3GPS测量的特点相对于常规测量来说,GPS测量主要有以下特点:①测量精度高。
GPS观测的精度明显高于一般常规测量,在小于50 km的基线上,其相对定位精度可达1 x 10- 6,在大于1 000 km的基线上可达1X10 —&②测站间无需通视。
GPS测量不需要测站间相互通视,可根据实际需要确定点位,使得选点工作更加灵活方便。
③观测时间短。
随着GPS测量技术的不断完善,软件的不断更新,在进行GPS测量时,静态相对定位每站仅需20 min左右,动态相对定位仅需几秒钟。
④仪器操作简便。
目前GPS 接收机自动化程度越来越高,操作智能化,观测人员只需对中、整平、量取天线高及开机后设定参数,接收机即可进行自动观测和记录。
⑤全天候作业。
GPS卫星数目多,且分布均匀,可保证在任何时间、任何地点连续进行观测,一般不受天气状况的影响。
⑥提供三维坐标。
GPS测量可同时精确测定测站点的三维坐标,其高程精度已可满足四等水准测量的要求。
3 GPS测量3.1RTK测量3.1.1RTK技术的应用RTK是GPS应用中的最新技术,它是实时载波相位测量的简称。
RTK技术在近几年逐步走向成熟并不断有新产品问世。
利用RTK技术进行测量有如下优点:① 具有GPS测量所共有的特点,如全球适用,不受气候、时间影响,不需通视。
②可实时获得具有厘米级精度的点位坐标。
以往都是通过后处理来获得厘米级的点位坐标,实时处理大大提高了作业的效率,并且保证了数据的质量,同时扩大了GPS 应用的领域,比如施工放样等。
③可在运动过程中连续高精度采样。
采用常规的GPS 静态测量、快速静态、伪动态方法,在外业测设过程中不能实时知道定位精度,如果测设完成后,回到内业处理后发现精度不合要求,还必须返测,而采用RTK来进行控制测量,能够实时知道定位精度,如果点位精度要求满足了,用户就可以停止观测了,而且知道观测质量如何,这样可以大大提高作业效率。
如果把RTK用于公路控制测量、电子线路控制测量、水利工程控制测量、大地测量、则不仅可以大大减少人力强度、节省费用,而且大大提高工作效率,测一个控制点在几分钟甚至于几秒钟内就可完成。
采用RTK时,仅需一人使用仪器在要测的地形地貌碎部点呆上一二秒钟,并同时输入特征编码,通过手簿可以实时知道点位精度,把一个区域测完后回到室内,由专业的软件接口就可以输出所要求的地形图,这样用RTK仅需一人操作,且不要求点间通视,大大提高了工作效率,采用RTK配合电子手簿可以测设各种地形图,如普通测图、铁路线路带状地形图的测设,公路管线地形图的测设,配合测深仪可以用于测水库地形图,航海海洋测图等。
3.1.2 RTK技术的基本原理RTK技术,即GPS实时相位差分。
RTK测量技术是以载波相位观测量为根据的实时差分GPS测量技术,它是测量技术与数据传输相结合而构成的测量系统,一台接收机固定在已知点上做基准站,其它接收机安置在运动载体上做流动站,同时观测卫星。
基准站把接收到的所有卫星信息(如基准站的坐标、天线高等)都通过通讯系统传送到流动站。
流动站本身在接收卫星数据的同时,也接收基准站传送的卫星数据。
在流动站完成初始化后,把接收到的基准站信息传送到控制器内(一般是微型计算机),由控制器实时计算出点位坐标并显示出来。
RTK系统实施的技术关键是快速准确地求解整周模糊度及数据传输技术。
在静态测量中,需观测较长时间才能解算出整周模糊度,对于实时动态载波相位测量来说,我们利用快速解算模糊度法(OTF)在较短时间内求出整周模糊度的值,达到快速定位的目的。
数据传输技术的好坏直接影响观测值的质量,这就要求它有较高的数据传输率和较高的波特率传输数据,并保持误码率及较短的历元延迟,一般利用VHF或VHF无线电设备进行数据通讯。
为了获得高精度的实时动态定位结果,还需一系列方法和措施来保证结果的可靠性。
另一方面,RTK技术所得到的各点位置是属于WGS-84地球协议地心坐标系中的坐标值,而实用的工程项目成果属于某一国家地点的参心坐标系或者工程项目所建立的工程坐标系如建筑物施工业工作结束后,利用软件对数据进行测后处理,并成图。
3.2G PS静态定位测量3.2.1 GPS静态定位在测量中的应用目前,GPS静态定位在测量中被广泛地用于大地测量、工程测量、地籍测量、物探测量及各种类型的变形监测等,在以上这些应用中,其主要还是用于建立各种级别、不同用途的控制网。
GPS在布设控制网方面具有以下一些特点: 1.测量精度高GPS观测的精度要明显高于一般的常规测量手段,GPS基线向量的相对精度一般在~之间,这是普通测量方法很难达到的。
2.选点灵活、不需要造标、费用低GPS 测量,不要求测站间相互通视,不需要建造觇标,作业成本低,大大降低了布网费用。
3.全天侯作业在任何时间、任何气候条件下,均可以进行GPS观测,大大方便了测量作业,有利于按时、高效地完成控制网的布设。
4.观测时间短采用GPS布设一般等级的控制网时,在每个测站上的观测时间一般在1-2个小时左右,采用快速静态定位的方法,观测时间更短,观测工程和数据处理过程均是高度自动化的。
3.2.2布设GPS基线向量网的工作步骤布设GPS基线向量网主要分测前、测中和测后三个阶段进行。
1.测前工作项目的提出:一项GPS测量工程项目,往往是由工程发包方、上级主管部门或其他单位或部门提出,由GPS测量队伍具体实施。
对于一项GPS测量工程项目,一般有如下一些要求:测区位置及其范围:测区的地理位置、范围,控制网的控制面积。
用途和精度等级:控制网将用于何种目的,其精度要求是多少,要求达到何种等级点位分布及点的数量:控制网的点位分布、点的数量及密度要求,是否有对点位分布有特殊要求的区域。
提交成果的内容:用户需要提交哪些成果,所提交的坐标成果分别属于哪些坐标系,所提交的高程成果分别属于哪些高程系统,除了提交最终的结果外,是否还需要提交原始数据或中间数据等。
时限要求:对提交成果的时限要求,即何时是提交成果的最后期限。
投资经费:对工程的经费投入数量。
技术设计:负责GPS测量的单位在获得了测量任务后,需要根据项目要求和相关技术规范进行测量工程的技术设计。
测绘资料的搜集与整理:在开始进行外业测量之前,现有测绘资料的搜集与整理也是一项极其重要的工作。
需要收集整理的资料主要包括测区及周边地区可利用的已知点的相关资料(点志记、坐标等)和测区的地形图等。
仪器的检验:对将用于测量的各种仪器包括GPS接收机及相关设备、气象仪器等进行检验,以确保它们能够正常工作。
踏勘、选点埋石:在完成技术设计和测绘资料的搜集与整理后,需要根据技术设计的要求对测区进行踏勘,并进行选点埋石工作。