红外测温技术的应用及介绍(参考Word)

红外测温技术的应用及介绍(参考Word)
红外测温技术的应用及介绍(参考Word)

红外测温技术的应用及介绍

目前,红外测温技术的应用越来越广泛,尤其在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。

一、外测温仪工作原理

了解组外测温仪的工作原理、技术指标、环境工作条件及操作和中频电炉维修等是为了帮助用户正确地选择和使用红外测温仪。

一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射特性一辐射能量的大小及其按波长的分布一与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

黑体辐射定律:

黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。

物体发射率对辐射测温的影响:

自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。

影响发射率的主要因素在:材料种类、表面粗糙度、理化结构和材料厚度等。当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目

标的温度。单色测温仪与波段内的辐射量成比例:双色测温仪与两个波段的辐射量之比成比例。

红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。

选择红外测温仪可分为三个方面:性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等;环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。

确定测温范围:测温范围是测温仪最重要的一个性能指标。如宁波神光电炉产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。

确定目标尺寸:红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。

对于神光电炉双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标;有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。

确定光学分辨率(距离及灵敏)

光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。

确定波长范围:目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用10μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低区区选用8-14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚醋类选用4.3μm或7.9μm波长。厚度超过

0.4mm选用8-14μm波长;又如测火焰中的C02用窄带4.24-4.3μm波长,测火焰中的C0用窄带4.64μm波长,测量火焰中的N02用4.47μm波长。

确定响应时间:响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。bytek(雷泰)新型红外测温仪响应时间可达1ms。这要比接触式测温方法,快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。

信号处理功能:测量离散过程(如零件生产)和连续过程不同,要求红外测温仪有信号处理功能(如峰值保持、谷值保持、平均值)。如测温传送带上的玻璃时,就要用峰值保持,其温度的输出信号传送至控制器内。环境条件考虑:测温仪所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时应尽可能要求标准化服务,以降低安装成本。当烟雾、灰尘或其他颗粒降低测量能量信号,双色测温仪是最佳选择。在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,光纤双色测温仪是最佳选择。在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。在低温测量应用中,通常用Ge或Si材料作为窗口,不透可见光,人眼不能通过窗口观察目标。如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如应采用既透红外辐射又透过可见光的光学材料,如ZnSe或BaF2等作为窗口材料。

操作简单,使用方便:红外测温仪应该是直观的,操作简单,易于被操作人员使用,其中便携式红外测温仪是一种集测温和显示输出为一体的小型、轻便、由人携带进行测温的仪器,在显示面板上可显示温度和输出各种温度信息,有的可通过遥控或通过计算机软件程序操作。在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。可选择与现行控制设备相匹配的信号输出形式。红外辐射测温仪的标定:红外测温仪必须经过标定才能使它正确地显示出被测目标的温度。如果所用的测温仪在使用中出现测温超差,则需退回厂家或维修中心重新标定。

蓄热式均热处理炉的工作原理

蓄热式燃烧换热技术,准确地应称为蓄热式换热燃烧技术。这项技术是一项古老的换热方式,早在十九世纪中期就在平炉和高炉上采用延续至今。轧钢系统的初轧钢锭加热炉以蓄热式均热炉最为节能,并且采用的就是低热值的高炉煤气为燃料。终因其蓄热室占用宁波神光电炉车间面积大,换向时间长,操作复杂,逐渐被中心换热均热炉和上部单侧烧嘴均热炉所取代。此后,蓄热式换热技术远离了轧钢系统的加热炉。蓄热式换热技术,属不稳态传热,利用耐火材料作载体,交替地被废气热量加热。再将蓄热体蓄存的热量加热空气或煤气,使空气和煤气获得高温预热,达到废热回收的效能。由于蓄热体是周期性地加热、放热,神光电炉为了保证炉膛加热的连续性,蓄热体必须成对设置。同时,要有换向装置完成蓄热体交替加热、放热。到了二十世纪八十年代,宁波神光电炉解决了蓄热体的小型化和换向时间缩短到以分秒计,才使这项古老的换热技术得以在轧钢系统的连续式加热炉(含步进式加热炉)上重现废热回收

的优势,即将空、煤气双预热到1000℃左右,排出废气温度在150℃以下,使废热回收率达到极限值。并且,出现研究高温空气燃烧理论与实践的新领域。

锻造加热与热处理加热裂纹的正确鉴别

锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其形态特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型形态外,有时会出现有些锻造裂纹比较细。裂纹周围不是全脱碳而是半脱碳。

淬火加热过程中产生的裂纹与锻造加热过程形成的裂纹在性质和形态上有明显的差别。对结构钢而言,热处理温度一般较锻造温度要低得多,即使是高速钢、高合金钢其加热保温时间则远远小于锻造温度。由于热处理设备加热温度偏高,保温时间过长或快速加热,均会在加热过程中产生早期开裂。产生沿着较粗大晶粒边界分布的裂纹;裂纹两侧略有脱碳组织,零件加热速度过快,也会产生早期开裂,这种裂纹两侧无明显脱碳,但裂纹内及其尾部充有氧化皮。有时因高温仪器失灵,温度非常高,致使零件的组织极粗大,其裂纹沿粗大晶粒边界分布。

结构钢常见的缺陷:

1 、锻造缺陷

(1)折叠:冲孔、切料、刀板磨损、锻造粗糙等原因造成了表面缺陷,在后续锻造时,将表面氧化皮等缺陷卷入锻件本体内而形成折缝。在显微镜上观察时,可发现折叠周围有明显脱碳。

(2)过热、过烧:主要特征是晶粒粗大,有明显的魏氏组织。出现过烧缺陷说明加热温度高、断口晶粒粗大,凹凸不平,无金属光泽,晶界周围有氧化脱碳现象。

(3)锻造裂纹:常产生于组织粗大,应力集中处或合金元素偏析处,裂纹内部常充满氧化皮。锻造温度高,或者终端温度低,都容易产生裂纹。还有一种裂纹是锻造后喷水冷却后形成的。

2、热处理缺陷

(1)过热:显微组织粗大,如果是轻度过热,可采用二次淬火来挽救。

(2)淬裂:其特点是刚健挺直,呈穿晶分布,起始点较宽,尾部细长曲折。此种裂纹多产生于马氏体转变之后,故裂纹周围的显微组织与其它区域无明显区别,也无脱碳现象。

(3)软点:显微组织有块状或网状屈氏体和未溶铁素体等。加热不足,保温时间不够,冷却不均匀都会产生软点。

(4)过烧:除晶粒粗大外,部分晶粒已趋于熔化,晶界极粗。

利用调质热处理工艺提高零部件的使用寿命

为了解决水泥企业设备零部件实用调质热处理的难题,根据调质热处理工艺,结合企业实际情况,采用氧气-乙炔火焰对零件加温到双液淬火和高温回火的方法,进行实践研究。加温过程及温度控制工艺根据调质热处理的工艺来完成,采用氧气-乙炔火焰升温,温度通过便携式红外线温度计、火焰颜色或用色谱图对照来控制。结果表明,采用氧气-乙炔火焰来对零件加温,也可达到调质热处理的目的,此调质热处理工艺简单实用。

调质热处理工艺可以使机械零部件具有良好的综合力学性能,即在保持较高强度的同时,具有良好的可塑性和韧性。调质热处理可用于处理各种重要的结构零件,如轴、齿轮等。水泥企业的斗式提升机、链板机、双轴搅拌机和胶带输送机等设备轴损坏后,往往自行加工或修复。没有经过调质热处理的轴使用一段时间后,轴的键槽容易受扭矩而变形,使联轴器、皮带轮等零件传递扭矩时打滑,严重时会发生斗式提升机上链轮滑链等设备事故。

有些水泥企业受机械加工条件和经费等方面限制,很少将设备的零部件进行专业的调质热处理。往往采取损坏后修复、改小或报废等方式。如果企业利用现有的机械维修工作条件,对设备重要的零部件做一般调质热处理,提高零部件的综合力学性能,可以延长其使用寿命,降低设备运行成本。在实际运用中,我们以45号钢的轴为例总结了一些实践经验供读者参考:

1.双液淬火:将精加工好的轴的键槽台阶用气割炬即氧气-乙炔火焰来加热到淬火温度820°C~840°C,然后保持大约10分钟,接着放入10%食盐水溶液冷却7~8秒,最后在空气中冷却到常温。

2.高温回火:经过双液淬火后冷却到常温的轴的键槽台阶再用氧气-乙炔火焰加热到高温回火温度500°C~540°C,保持10分钟,最后在空气中冷却到常温。

采用这种工艺方案加热温度可用便携式红外线温度计控制,也可用火焰颜色来控制,或用色谱图来对照。

其他轴台阶根据需要也可参考此方法进行调质热处理,为消除轴热应力,常采用敲击法。不同材料的设备零部件需要调质热处理时,它的淬火温度和回火温度可根据有关资料来确定。此调质热处理工艺简单、实用,技术含量低,容易操作。

关于热处理质量前提的讨论

在生产实践过程中,有很多因素都会造成热处理工艺质量的下降,那么材料质量是否会影响热处理质量的下降呢?我认为这其中是有影响的,各个企业对原材料的质量要进行严格控制,因为总体来说,中国钢厂的冶炼质量还不是很高,而且近年来,许多小钢厂雨后春笋地发展起来,虽然也通过各种质量系统审核,但实际是质量却很差,许多企业,甚至一些大中型企业为追求低价格,也向这些小钢厂采购,这就造成了许多企业热处理出现异常情况,如:用多年的成熟工艺在某一批次材料处理时出现大批不合格的情况,而同时处理的其他炉号或其他钢厂的材料生产的同样产品却合格,这不仅给我们热处理技术人员造成很大困绕,而且企业也要蒙受损失,所以我认为应该加强入厂检验,除常规的低倍,成份检验,还要取样进行热处理试验,以最终热处理确定参数.如果发现不合格应及时退回。

此外,本人还要指出,中国钢材标准都是钢厂起草制订的,为便于钢厂控制,许多质量要求均很松。根本不能满足大多数最终用户的要求,实际在签定材料采购协议时,许多项目均要格外加严,一些钢企趁机加价;如果不格外要求加严,钢企就按国标干,就成份变化这一点就够我们这些企业热处理人员受的。相比而言,西方技术发达国家的材料相比要稳定的多,我们有一家客户,多年从国外进口某一关键锻件,经过多年材料检验数据分析,材料成份变化非常窄,均在标准的中间范围,而该产品进行国产化后,材料从国内钢企采购,质量却极不稳定,进行成份分析,材料在标准范围内,但充分利用了标准的上下限。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

红外测温方法的工作原理及测温..

红外测温方法的工作原理及测温仪 (北京化工大学信息科学与技术学院) 摘要:本文从黑体辐射原理出发分析了红外测温的工作原理,从发射率、距离系数、环境等几个方面,探讨和分析了测温误差的原因,以及基于红外测温技术的测温仪的简单的概述,并对红外测温仪的分类、性能、选择及应用简要的说明。 关键词:黑体辐射、红外测温仪、温度测量 Infrared Thermometer and the working principle of Infrared Temperature measurement (College of Science and Technology, Beijing University of Chemical Technology) Abstract: In this paper, the theory of infra-red temperature measurement was analyzed according to the principle of blackbody radiation. We discussed the main factors for measurement accuracy, such as reflectance, distance coefficient and environment.Based on infrared temperature measurement technology, we make a simple overview of infrared thermometer, and a brief description of its classification, performance, selection and application. Key words: Blackbody radiation; infrared thermometer; temperature measurement 0引言 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。 表1常用测温方法对比 测温方法温度传感器测温范围(°C)精度(%) 接触式热电偶-200~1800 0.2~1.0 热电阻-50~3000.1~0.5非接触式红外测温-50~33001其它示温材料-35~2000<1

红外线测温仪原理及应用

红外线测温仪原理及应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和 热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理

红外测温仪应用领域

红外测温仪应用领域 任何一个无法接触到的区域如果需要温度测量的话,红外测温仪可以测量表面温度可以实现非接触式测量,红外测温仪可测量的温度范围也比较大。红外测温技术已发展到可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。由于红外测量的本质决定了红外更多的被应用于工业领域。红外温度计被普遍的用在钢铁,玻璃和塑料工业。他们也被广泛的应用于预防设施中。 一、在钢铁工业 钢铁工业使用温度计是因为产品都是处于运动状态,温度都非常高。普通的钢铁工业应用是温度是一个持续的状态熔化的钢铁开始转变成块。用同一的温度重新加热钢铁是防止它变形的关键,红外温度计被用来测量回热器的内部温度。在高温旋转轧碾机中,红外温度计被用来确认产品的温度是在旋转限度内。在冷却轧碾机,红外温度计在钢铁冷却的过程中来监控钢铁的温度。 二、红外测温仪在玻璃工业 在玻璃工业中,要被加热到很高的温度。红外温度计用来监测熔炉中的温度。手持式的传感器通过测量外部来探测高温点。测量溶化玻璃的温度来决定适当的熔炉口的温度。在扁平的玻璃品中,传感器在每个加工阶段都要检测温度。错误的温度或过快的温度变化会造成不平的膨胀或收缩。对于瓶子和容器产品来说,熔化的玻璃会流向保持在同一温度的前炉。红外温度计被用来探测前炉的玻璃的温度。所以它在出口的地方应该是适当的状态。在玻璃纤维制品,红外传感器被用来在加工炉中探测前炉的玻璃的温度。红外传感器在玻璃工业中另外一个用途是用于挡风玻璃制品工艺中。 三、在塑料工业 在塑料工业中,红外温度计被用来避免产品被玷污,测量动态物体和测量高温塑料。在吹制的薄膜喷出的过程中,温度测量来调整适应加热和冷却可以帮助保持塑料的张力的完整和它的厚度。在抛制的薄膜喷出的过程中,传感器帮助控制温度来保证产品的厚度和同一。在薄片压出时,传感器可以让操作员来调整熄灭的加热器和冷卷来保证产品的质量。 四、化学工业 在石化行业中,炼厂在常规的预防维护程序中采用温度显示系统。这些程序

(完整版)红外测温传感器

红外光电传感器测温仪 1红外测温传感器结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。 2红外测温传感器工作原理 在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。根

据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。 当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。 普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为: E=δε(T-To ) E 是辐射出射度.单位是W /m3; δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4); ε是物体的辐射率: T 是物体的温度(K ); To 是物体周围的环境温度(K )。 红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率 )调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。 红外测温仪的光学系统可以是透射式, 也可以是反射式。 反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、 铝、镍或铬等对红外辐射反射率很高的金属材料。 3红外测温理论基础 3.1红外辐射(红外线、红外光) 红外线是电磁波谱中,波长0.76μm -1000μm 范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm -40μm 红外辐射热效应最大。 自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律 黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。黑体一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状特性无关。斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律: 4 0)(T T M σ=

红外线测温仪的使用方法

引用红外线测温仪的使用方法 lao wu tong 的红外线测温仪的使用方法 红外线测温仪的理论原理和应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些 介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于 0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光

谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温 度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个 关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。被测物体和反馈源的辐射线经调制器调制后输入到红外检测器。两信号的差值经反放大器放大并控制反馈源的温度,使反馈源的光谱辐射亮度和物体的光谱辐射亮度一样。显示器指出被测物体的亮度温度 三,红外线测温仪的性能指标及作用

红外线测温仪用法整理

1 红外测温仪的工作原理及特点 1.1 黑体辐射与红外测温原理 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 由于黑体的光谱辐射功率Pb(λΤ)与绝对温度Τ 之间满足普朗克定理: ()1exp 2 51-=-T c c T P b λλλ (1) 其中,Pb(λΤ)—黑体的辐射出射度; λ—波长; T —绝对温度; c1、c2—辐射常数。

式(1)说明在绝对温度Τ 下,波长λ处单位面积上黑体的辐射功率为Pb(λΤ)。根据这个 图1 黑体辐射的光谱分析 从图1中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并满足维恩位移定理T *λm = 2897.8 μm *K ,峰值处的波长λm 与绝对温度Τ 成反比,虚线为λm 处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 根据斯特藩—玻耳兹曼定理黑体的辐出度 Pb(Τ)与温度Τ 的四次方成正比, 即: ()4 T T P b σ= (2) 式中,Pb(T)—温度为T 时,单位时间从黑体单位面积上辐射出的总辐射能,称为总辐射

IT系列红外测温仪说明书

IT系列红外测温仪

目录 1 概述 2 技术参数 3 外形结构 3.1 IT-5外形结构 3.1 IT-6/ITL-500外形结构及面板说明 3.2 IT-8外形结构及面板说明 4 选型表 4.1 ITL-500选型表 4.2 IT-5选型说明 4.2 IT-6/8选型表 5 使用 5.1 安装 5.2 引出线定义 5.3 输出选择 5.4 瞄准及距离系数

1 概述 IT红外测温仪分为,ITL-500,IT-5,IT-6,IT-8四大种系列产品,各系列产品各具特色,可分别适用于各种不同的场合。ITL-500用于从负温度起到1200℃的温度测量,IT-5用于安装空间小,测量目标小的场合,IT-6是一款性价比高,适应性很强的测温仪,可广泛运用于金属加工,科研试验等领域。IT-8是IT红外测温仪的高端产品,适合有色金属加工,例如铝材,铜材等。 IT各系列红外测温仪产品均具有激光瞄准功能,安装使用方便,温度测量范围覆盖了-25℃-3000℃,各系列产品可在其有效的测量范围内自由分段。可以满足用户各种温度测量的需求。IT红外测温仪采用优异的光学结构及工艺;电路处理单元采用32bit(部分产品使用16bit)MCU。严谨的制作工艺及严格的质量管理,使得本测温仪的测量精度和重复性有了很好的保证。非接触测量的特性,使得IT红外测温仪可广泛运用于运动物体,带电导体,真空环境或其他特殊要求的目标进行非接触温度检测。 IT红外测温仪可广泛应用于食品,塑料加工,铸造、粉末冶金、轧钢、电力、化工、玻璃、陶瓷生产、热处理,中高频感应加热,线材生产,焦化,热压烧结、焊接等行业。 选型使用推荐及各系列产品适用的行业: ITL-500 该型号测温仪由于波长,温度范围的特点,适用于温度较低,常规材料辐射率比较接近1的场合,行业包括感应加热的电磁线高频烧结,塑料,化工,电机热安装等行业 IT-5 安装空间狭窄或者对精确瞄准及快速响应要求较高的场合,例如高频焊接,中频钎焊等行业,目前较典型的如全自动焊齿机IT-6 中频长短棒料透热,窑炉,中频钎焊,轧钢,玻璃,陶瓷,粉末冶金,热压烧结,精密铸造等行业 IT-8

红外测温仪使用指南2

红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过吸收被测物体发出的红外辐射来测量其温度。可1秒快速测温,达到快速筛查体温异常的目的,并防止交叉传染。 [种类] ●红外人体表面温度快速筛检仪 (红外筛检仪) 多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,用于体温异常人员的快速筛查。 ●红外体表温度计(红外额温计) 适用于企事业单位、住宅、社区等人流较少的场合,适合移动巡检,目前大量应用于防疫控制中。 ●红外耳温计 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 [准确性] 红外耳温计>红外额温计>红外筛检仪 [使用须知] ●红外筛检仪 1、通电预热,与环境达到热平衡后再使用; 2、避免强电磁干扰,无较大的气流,环境条件应保持恒定,温度不应有较大变化; 3、当被测者来自与测量环境温度差异较大时,建议等候(5~10)分钟,两者达到热平衡后再测量为佳; 4、保持设备的探测镜头干净整洁,避免触碰损伤镜头,影响测量准确性。 ●红外额温计 1、使用前确认“体温”测量模式; 2、保持额温计在(16~35)℃之间工作,使用时应避免阳光直晒和环境热辐射,额温计、被测者和环境温度保持热平衡为佳; 3、额温计应垂直于额头中心、眉心上方,其距离按说明书规定的要求一般为3~5cm,如未说明的按照3cm距离测量,不能紧贴被测者额头; 4、被测者前额应无水迹、汗渍、无化妆品,无帽子、毛发等遮挡物; 5、严格按照使用说明书进行操作。

●红外耳温计 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移; 3、耳温计须配备一次性卫生耳套使用,避免多人使用交叉感染; 4、严格按照仪器使用说明书进行操作。 [遇到红外额温计数值不准怎么办?] 1、确认是否选择“体温”模式; 2、防止额温计长时间暴露在低温环境,一般不超过3分钟,要采取适当保温措施; 3、测量多次取平均值,一般两次测量数据之差不超过0.3℃; 4、人员长时间在寒冷环境下会导致额温偏低,可转移至温暖环境中复测; 5、如出现较大误差或异常情情况时,可用玻璃体温计或电子体温计核查进行数据修正。 ●简易修正方法: 第一步:在相同环境条件下,同时用玻璃体温计(或电子体温计)和红外额温计测量多名健康人员的体温,可测量多次,分别记录玻璃体温计(或电子体温计)和红外额温计测量平均值,两者的差距为修正值; 第二部:使用红外额温计测量时,测量值加上修正值即为人员体温。 [温馨提示] 1、红外测温仪可用于初筛,一旦发现体温异常,应使用经玻璃体温计或医用电子体温计进行二次确认,作为诊断最终依据。 2、如发现红外测温仪数据误差大、示值重复性差、性能不稳定的,则建议停止使用,送计量技术机构校准,并结合校准数据使用,以减少测量误差。 3、测量前20~30分钟要避免剧烈运动、进食、喝酒、喝冷水或热水、冷敷或热敷。测量时须严格按照仪器使用说明执行。

303b红外测温仪产品说明

VICTOR303B说明书 一、产品简介 VICTOR303B是一种专业手持式非接触红外线测温仪,使用简单,设计严谨,测量准确度高,测温量程范围宽等特点。它具有激光瞄准,带背光源LCD显示器,超温报警,发射率可调及自动关机功能。使用时,只须将探测窗口对准物体,就能快速准确地测量物体的温度。 二、基本工作原理 一切温度高于绝对零度物体,均会依据其本身温度的高低发射一定比例的红外辐射能量。辐射能量的大小及按波长的分布与它的表面温度有着十分密切的关系。依据此原理,能准确地测定物体的红外发射能量,便得出被测物体的准确温度。 三、产品特点 ◆采用HEIMANN红外测温探头,测量精度高,性能更稳定; ◆具有测量温度高(阀值可设置)、声音提示功能; ◆背光型液晶(LED)数字显示; ◆华氏、摄氏两种模式选择; ◆发射率0.1~1.00可调; ◆内置激光瞄准器; ◆自动关机功能(节省电池耗费); ◆体积小巧、结构合理、操作方便。 四、主要技术指标 (一)、正常工作条件: 1.环境温度: 10℃~30℃; 2.储存温度: -10℃~40℃ 3.相对湿度:≤90%; 4.电源:一只9V电池(NEDA1604/6F22或同等型号); (二)、基本尺寸: 97mm×43mm×160mm(长×宽×高)。 (三)、重量(净重):125g(不含电池)。 (四)、LCD显示分辨力(精确度):0.1℃/℉。 (五)、测量范围:-20℃~550℃(-4℉~1022℉)。 (六)、消耗功率:≤50mw。 (七)、测量误差:±2.0℃或±2%(在0℃-25℃为±3.0℃)取大值。 (八)、测量时间:≤0.5秒。 (九)、测量距离:D:S=12:1(测量距离与物体目标比,测量条件:真空介质)。 (十)、自动关机时间:60秒。 (十一)、安全设计标准:符合欧洲CE安全规范。 EMC/RFI 在强度3伏特/米的射频电磁场中,可能影响读数,但是仪器性能不会受到永久影响。 ﹡注意:在3V/m频率350MHz~550MHz的电磁场中,最大误差是8℃(46.4℉)。 五、使用方法 ●安全条款 1.当激光光束打开时,请小心使用; 2.请不要将激光光束对着人或动物的眼睛; 3.请不要将激光光束射向物体表面反射到人的眼睛里; 4.请不要将激光光束射向任何可爆气体。 ●测量步骤方法 1.为了测得精确的温度值,本测温仪装好电池后,应放置10分钟后方可进行测量,如果移置新环境(新地点) 时,也需要10分钟后开始测量。 2.将探测窗口对准被测物体抠动把手的测量键,测温仪自动开启,提示‘滴’的一声,同时显示测量结果。 注意:测量时选好待测物体的发射率,同时根据待测物体大小调整测量距离。 六、按键及LCD显示符号说明

红外测温仪使用说明书

红外测温仪及二次表现场使用 说明书

双波长红外测温仪 为了解决温度的测量问题,温度的自由选择问题,以及长期稳定的校准需要等,威廉姆森设计了双波长高温计,这使得威廉姆森温度的测量上远远超过了业界的其它测温产品,显示出威廉姆森显著的优势 传感器概述: 相对与单波长温度传感器,双波长红外测温仪的主要优点在于: ●对于难测量的物体(如灰色金属表面),红外测温仪采用自动 补偿的方法从而增加准确度。 ●目标大小小于传感器目标直径,如电线,或移动的目标等,它 也可以准确无误的测量。 ●目标在部分受到阻挡镜头模糊时,或干预媒体,如烟雾,灰尘, 和/或水喷雾,双波长红外测温仪仍然可以准确和可靠的测量

williamson 有两种类型的高温计的设计。双波长及双色彩设计。这两种温度测量技术是基于相同的物理原理主要涉及测量红外能量 在两个相邻的波长之间计算的比例通过这两项测量,确定温度。两者的设计不同点在于:双色彩设计采用了两个层次的红外探测器被称为“夹心探测器” ,而双波长技术采用“单一探测器”的设计(见图) 。 基于其独特的技术测量红外能量,双波长红外测温仪设计提供了一些优势。 一, 在恶劣的环境下更高的稀释信号因子。提高了传感器的控制能力,使它可以穿过脏的窗口或水喷淋,喷雾油,烟,和尘埃等。从而也提高了测量精度这使得它对被测物体表面的氧化物,熔融金属,有光泽的金属(低辐射)等都不会受到影响 ,包括应用目标大小小于传感器目标直径,如电线,或移动的目标等,它也可以准确无误的测量。 双波长 双色彩

二、可根据需要定制温度范围,测量目标的温度可以低至300 C 以 下 三、长期稳定的校准过程监测与控制等方面的应用,使得测量结果准 确无误。 红外测温仪现场连接方式按现场接线图连接 工作正常时LCD上应显示LO TEMP 红外测温仪工作基本原理

红外测温方法的工作原理及测温(自己总结的)..

红外测温方法的工作原理及测温仪 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm 的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。 表1 常用测温方法对比 测温方法 温度传感器 测温范围(°C ) 精度(%) 接触式 热电偶 -200~1800 0.2~1.0 热电阻 -50~300 0.1~0.5 非接触式 红外测温 -50~3300 1 其它 示温材料 -35~2000 <1 1 红外测温仪的工作原理及特点 1.1 黑体辐射与红外测温原理 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 由于黑体的光谱辐射功率Pb(λΤ)与绝对温度Τ 之间满足普朗克定理: ()1 exp 251-= -T c c T P b λλλ (1) 其中,Pb(λΤ)—黑体的辐射出射度; λ—波长; T —绝对温度; c 1、c 2—辐射常数。

红外测温仪使用指南

2 附件红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过探测被测秒测温,达到物体发出的红外辐射来测量其温度。最快1 快速筛查体温异常的目的,并防止交叉传染。种类][(红外热成像筛检仪)红外人体表面温度快速筛检仪●多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,超温报警用于体温异常人员的快速筛查。 红外体表温度计(红外额温计)●适用于企事业单位、住宅、社区等人流较少的场合,易于便携适合移动巡检,目前大量应用于防疫控制中。红外耳温计● 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 ] 准确性[- 1 - 红外耳温计>红外额温计>红外筛检仪] [使用须知●红外热成像筛检仪1、通电预热,与环境达 到热平衡后再使用;、避免强电磁干扰,无较大的气流,环境条件应保持2 恒定,温度不应有较大变化;、当被测者来

自与测量环境温度差异较大时,建议等3 5候(~10)分钟,两者达到热平衡后再测量为佳;、保持设备的探测镜头干净整洁,避免触碰损伤镜4 头,影响测量准确性。●红外额温计1、使用前确认“体温”测量模式;)℃之间工作,使用时应避16~35、保持额温计在(2额温计、被测者和环境温度保持,免阳光直晒和环境热辐射热平衡为佳;- 2 - 、额温计应垂直于额头中心、眉心上方,其距离按说3,如未说明的按照明书规定的要求,一般为()cm3~5 3cm距离测量为佳,不能紧贴被测者额头;、被测者前额应无水迹、汗渍、无化妆品,无帽子、4 毛发等遮挡物;、严格按照使用说明书进行操作。5红外耳温计● 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移;、耳温计须配备一次性卫生耳套使用,避免多人使用3 交叉感染;、严格按照仪器使用说明书进行操作。4 ] [遇到红外额温计数值不准怎么办?、确认是否选择“体温”模式,以及是否还有足够电1 量;- 3 - 32、防止额温计长时间暴露在低温环境,一般不超过分钟,要采取适当保温措施;、测量多次取平均值,一般两次测量

红外测温原理简介

红外测温原理简介 红外测温仪分类 红外测温仪通过物体发出的红外辐射能量大小来确定物体的温度。理论上讲,任何高于绝对零度的物体都能发出红外辐射能量。红外测温仪按测量波长的多少可分为单色测温仪、双色测温仪、多色测温仪。 单色红外测温仪原理 目前市场上的单色测温仪,多为窄波段测温仪。它的测温原理是通过物体某一狭窄波长范围内发生的辐射能量,来决定温度的大小。测温仪测量的是一个区域内的平均温度,测量值受发射率、镜头的污染以及背景辐射的影响。 物体发出辐射能量的大小与发射率有一定关系。发射率越大,物体发出的红外线能量越大。物体的发射率与物体表面的状态有一定关系,表面的粗糙度、亮暗程度、不同材质都会影响发射率。所以在使用单色测温仪时,常会有一张不同材质的发射率表。 (2)双色测温仪原理 不同大气窗口下,选用的探测器类型 窗口1 Si (硅) 窗口2 Ge (锗)InGaAs (铟镓砷) 窗口3 PbS(硫化铅) ExInGaAs (扩展型铟镓砷) 窗口4 PbSe(硒化铅) Thermopile (热电堆) 窗口5 Thermopile (热电堆) 窗口6 发射率变化、镜头的污染以及背景辐射的影响,与波长的选择有关系。选择特殊波长范围 的测温仪,能够使单色测温仪尽量克服传输介质的干扰。比如水蒸汽、各种气体等其它物质的影响。选择短波长测温,可以使红外测温仪受发射率的影响降到最低。长波长测温仪通常用来测量 低于200℃的目标或特殊介质的测量。

双色红外测温原理 比色测温仪又称双色测温仪。它是利用邻近通道两个波段红外辐射能量的比值来决定温度的大小。比值与温度的关系是线性的,这是由探测器的性能决定的。 双色测温仪能够消除水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,双色测温仪测量绝大数灰体材料时不需要修正双色系数,双色测温仪测量一个区域内最高温度的平均值。 思捷光电的双色红外测温仪可以克服严重水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,即使检测信号衰减95%,也不会对测温结果有任何影响。软、硬件设计适用于一百万倍信号动态范围的可靠检测,满足用户对仪器的精度和分辨率等要求。 双色测温仪与单色测温仪比较的优势 双色测温不会随物体表面的状态而变化(表面粗糙度不一样、或表面的化学状态不一样),不会影响测温的准确性,而单色测温仪就会有影响。

红外扫描测温仪的应用范围

红外扫描测温仪的测温原理是将物体发射的红外线具有的辐射能转变成电信号,红外线辐射能的大小与物体本身的温度相对应,根据转变成电信号大小,可以确定物体的温度。下面由安徽锐光电子科技有限公司为您介绍下红外扫描测温仪的应用范围,希望能给您带来帮助。 红外扫描测温仪作为一种测量电器设备,可以非接触式的从安全的距离测量一个物体的表面温度,使其成为电器设备维修操作中不可缺少的工具。 红外扫描测温仪可以有效防止设备故障和计划外的断电事故的发生,其在电设备方面的应用表现为: 1.连接器-电连接部位会逐渐放松连接器,由于反复的加热(膨胀)和冷却(收缩)产生热量、或者表面脏物、炭沉积和腐蚀。非接触测温

仪可以迅速确定表明有严重问题的温升。 2.电动机-为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。 3.电动机轴承-检查发热点,在出现的问题导致设备故障之前定期维修或者更换。 4.电动机线圈绝缘层-通过测量电动机线圈绝缘层的温度,延长它的寿命。 5.各相之间的测量-检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同。 6.变压器-空冷器件的绕组可直接用红外测温仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。 7.不间断电源-确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。 8.备用电池-检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。 9.镇流器-在镇流器开始冒烟之前检查出它的过热。 10.公用设施-确定出连接器、电线接头、变压器和其他设备的热点。某些型号的光学仪器范围在60:1甚至更大,使几乎所有的测量目标都在测量范围内。

红外测温仪操作使用方法

红外测温仪操作使用法 1.操作测温仪 测温仪会在按下扳机或按下黄色键时打开。若连续8秒钟没有检测到活动,测温仪会自动关闭。测量温度时,将测温仪瞄准目标,拉起并保持扳机按下不动。松开扳机以保持温度读数。一定要考虑距离与光点尺寸比以及视场。激光仅用于瞄准目标物体。 1)找出热点或冷点 要找出热点或冷点,将测温仪瞄准目标区域之外。然后,缓慢地上下移动以扫描整个区域,直到找到热点或冷点为止。见图 5。 图5 找出热点或冷点 2)距离与光点尺寸 随着与被测目标距离(D)的增大,仪器所测区域的光点尺寸(S)变大。光点尺寸表示 90 % 圆能量。当测温仪与目标之间的距离为 1000 mm(100 in),产生 20 mm(2 in)的光点尺寸时,即可取得最大 D:S。见图 6。 图6 距离与光点尺寸

3)视场 要确保目标大于光点的大小。目标越小,则应离它越近。(见图7) 图7 视场 4)发射率 发射率表征的是材料能量辐射的特征。大多数有机材料和涂漆或氧化处理表面的发射率大约为。如果可能,可用遮蔽胶带或无光黑漆(< 150 ℃/302℉)将待测表面盖住并使用高发射率设置,补偿测量光亮的金属表面可能导致的错误读数。等待一段时间,使胶带或油渍达到与下面被覆盖物体的表面相同的温度。测量盖有胶带或油漆的表面温度。 如果不能涂漆或使用胶带,可使用发射率选择器来提高您的测量准确度。即使是使用发射率选择器,对带有光亮或金属表面的目标也很难取得完全准确的红外测量值。 5)用户设置操作 SET键:循环切换设置状态,循环次序为发射率设定锁定测量设定℃/℉选择设定正常测量。按黄色键可直接保存设置并退出。 6)发射率设定 此功能为改变发射率的值。 设定时“E=0.”字样闪烁。 单击▲递加,长按快速增加,当加到后停止。 单击▼递减,长按快速减少,当减到后停止。 可根据不同被测物体设置相应的发射率。请参见表2。表所列的发射率设置为对典型情况的建议。您的特定情况可能有所不同。 7)锁定测量设定 此功能设定锁定测量打开或关闭,锁定测量打开后,无需抠扳机仪表保持正常测量;锁定测量关闭后,用户抠住扳机仪表正常测量,放开扳机仪表自动保持测量结果。设定时屏幕下显示“SET”及“on”或“oFF”。单击▲/▼循环选择“on” /“oFF”。 8)℃/℉选择设定 此功能选择仪表显示℃或℉。 设定时屏幕下显示“SET”。 单击▲/▼循环选择“℃”/ “℉”。 9)HAL限值设定 此功能为设定高限值操作,测量时温度高过此值时连续蜂鸣报警。 按黄色键切换至屏幕下显示“HAL”字样,单击▲递增,长按快速增加,当

便携式红外测温仪简介及使用指引

便携式红外测温仪简介及使用指引 一、仪器简介 1、仪器名称:雷泰ST60红外测温仪 2、仪器介绍 Raytek(雷泰)公司于2000年推出新ST系列测温仪,该系列使用方便,测温速度快,是一种应用最广泛的红外测温仪,共有ST20、ST30、ST60、ST80四种型号。新ST系列性能更高、价格更佳。 新ST系列测温范围扩展至-32~760°C,并且系列中所有型号都带有激光瞄准方式,测温精度为+1%,光学分辨率从12:1至50:1,ST60/80发射率可调,并具有最小、平均、差值显示。 3、技术数据 温度范围:-32℃—600℃ (-25—1100oF) 光学分辨率:30:1 精度:±1% 或±1℃ (±2oF), 两者中较大的为准 重复精度:±0.5% 或±1℃ (±2oF), 两者中较大的为准 反应时间:0.5秒 光谱灵敏度:8–14μm 发射率:数码可调,步长0.01 工作温度:0℃—50℃ (32℃—120oF) 相对湿度:10–90% RH 存放温度:-20℃—0℃ (-13oF—158oF) 重量/尺寸:320 克;200 x 160 x 55 毫米 电源:9V 碱性或镍镉电池(带) 激光类型:10小时-20小时

显示保持(7秒):8点环束 数据记录12点 LCD 背景:是 显示温度:℃或oF 可选 显示精度:0.1℃(0.1oF) 三角架安装标准:1/4-20 UNC 其它选件:说明书、保修卡、塑料保存箱 4、雷泰ST60红外测温仪的应用 (1)诊断和预防电系统和设备故障的工具 在电系统和设备维修检查中,红外线测温仪证明是节约资金的诊断和预防工具。Raytek(雷泰)全线长红外线测温仪的精度是读数的1-4%,而且根据型号不同可以从180英尺的远处进行测量。这些仪器重量轻,表面有粗糙防滑纹,使用方便。 (2)测量电器设备 非接触红外线测温仪可以从安全的距离测量一个物体的表面温度,使其成为电器设备维修操作中不可缺少的工具。 (3)电设备方面的应用 在如下应用中,雷泰红外测温仪可以有效防止设备故障和计划外的断电事故的发生。 ◇连接器----电连接部位会逐渐放松连接器,由于反复的加热(膨胀)和冷却(收缩)产生热量、或者表面脏物、炭沉积和腐蚀。非接触测温仪可以迅速确定表明有严重问题的温升。 ◇电动机----为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。 ◇电动机轴承----检查发热点,在出现的问题导致设备故障之前定期维修或者更换。 ◇电动机线圈绝缘层----通过测量电动机线圈绝缘层的温度,延长它的寿命。 ◇各相之间的测量----检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同。 ◇变压器----空冷器件的绕组可直接用红外测温仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。

红外测温仪技术方案设计

红外测温仪 技 术 方 案

北京市科海龙华工业自动化仪器有限公司 2018年01月19日 一.概述 1、设备名称和型号: 1)设备名称:红外测温仪 2)设备型号:WFD-600-GZ 2、测温仪表简介: WFD-600-GZ系列红外测温仪是一种智能化、高精度、非接触式数字显示测温仪表,具有测温速度快、使用寿命长等优点。它利用被测物体的红外辐射能量精确测量物体的温度,测量距离与被测目标的大小成正比。仪表显示读数直观,可配置各种接口、性能稳定、操作简单,安装与调整方便。 WFD-600-GZ型红外测温仪,是可根据用户需要定做不同温度段的测温仪,测温仪具有较高的灵敏度,测斑适中。同时根据现场需求,设备配有冷却装置,能够快捷、安全、稳定的测量被测物温度。 二.技术指标 1、供电电压:交流220V供电,50Hz,20W或24V/DC 2、测温范围:900~2000℃ 3、输出信号:4-20mA和RS485标准信号 4、测量精度:±1%满量程 5、重复精度:±0.2%满量程 6、响应时间:<1秒(根据现场条件可调整) 7、距离系数:L/D=100 8、显示方式:4位LED发光数码管显示平均值、峰值、实时值(选其中一 种)

9、温度分辨率:1℃ 10、工作波长:0.7~1.1μm或1.1~1.7μm 11、辐射系数:0.1~1.0连续可调 12、气源压力:0.2~0.6MPa 13、气源流量:4~6m3/h 14、使用环境:见表一 15、重 三.技术特点 1、具有光学瞄准系统,采用固定焦距加分划板瞄准,可以方便找到被测目 标确保测量位置准确。 2、红外测温仪探头自身耐环境温度达90℃,这就大大延长了使用寿命。 3、显示方式具有实时值、平均值、峰值和自动环境温度补偿。 4、电路采用8位单片机作中央处理器并采用CMOS电路,使整机工作电流 小,工作稳定可靠。 5、输出接口:4-20mA(对应范围可设定)连接到PLC或RS485信号连接大 屏幕显示器。 6、红外测温系统结构简单,由红外探头、信号处理器、信号电缆组成。 7、设计成分体结构,避开高温区,维修调试方便。 8、测温探头带有气源冷却装置,减少物镜灰尘,保证测量精度。 9、红外测温探头工作在短波段,对窗口污染有较好的适应性,窗口透过率 降低36%,测温示值仅降低4%。

红外测温仪应用领域及说明

红外测温仪应用领域及说明 当遇到危险的、无法接触的、无法到达的各种环境和场合时,红外测温仪将被作为首选。任何一个无法接触到的区域如果需要温度测量的话,红外测温仪可以测量表面温度可以实现非接触式测量,红外测温仪可测量的温度范围也比较大。红外测温技术已发展到可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。由于红外测量的本质决定了红外仪器更多的被应用于工业领域。红外温度计被普遍的用在钢铁,玻璃和塑料工业。他们也被广泛的应用于预防设施中。一、红外测温仪在钢铁工业钢铁工业使用温度计是因为产品都是处于运动状态,温度都非常高。普通的钢铁工业应用是温度是一个持续的状态熔化的钢铁开始转变成块。用同一的温度重新加热钢铁是防止它变形的关键,红外温度计被用来测量回热器的内部温度。在高温旋转轧碾机中,红外温度计被用来确认产品的温度是在旋转限度内。在冷却轧碾机,红外温度计在钢铁冷却的过程中来监控钢铁的温度。二、红外测温仪在玻璃工业在玻璃工业中,要被加热到很高的温度。红外温度计用来监测熔炉中的温度。手持式的传感器通过测量外部来探测高温点。测量溶化玻璃的温度来决定适当的熔炉口的温度。在扁平的玻璃品中,传感器在每个加工阶段都要检测温度。错误的温度或过快的温度变化会造成不平的膨胀或收缩。对于瓶子和容器产品来说,熔化的玻璃会流向保持在同一温度的前炉。红外温度计被用来探测前炉的玻璃的温度。所以它在出口的地方应该是适当的状态。在玻璃纤维制品,红外传感器被用来在加工炉中探测前炉的玻璃的温度。红外传感器在玻璃工业中另外一个用途是用于挡风玻璃制品工艺中。三、红外测温仪在塑料工业在塑料工业中,红外温度计被用来避免产品被玷污,测量动态物体和测量高温塑料。在吹制的薄膜喷出的过程中,温度测量来调整适应加热和冷却

相关文档
最新文档