小学奥数教程:质数与合数(二)全国通用(含答案)

合集下载

六年下册奥数试题:质数与合数 全国通用(含答案)

六年下册奥数试题:质数与合数 全国通用(含答案)

第3讲质数与合数知识网络1.质数与合数(1)一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数)。

(2)一个大于1的自然数,如果除了1和它本身,还能被其他自然数整除,那么它就叫做合数。

例如:4、6、8、10、12、14,…都是合数。

在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数。

2.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如,把42分解质因数,即是42=2×3×7。

其中2、3、7叫做42的质因数。

又如,50=2×5×5,2、5都叫做50的质因数。

重点·难点要注意以下几条:(1)1既不是质数,也不是合数。

(2)关于质数1)质数有无限多个。

2)最小的质数是2。

3)在质数中只有2是偶数,其余的质数全是奇数。

4)每个质数只有两个约数:1和它本身。

(3)关于合数1)合数有无限多个。

2)最小的合数是4。

3)每个合数至少有三个约数:1、它本身、其他约数。

例如,8的约数除1和8外,还有2、4,所以8是合数。

学法指导(1)对比一下几种判别质数与合数的方法,可以看出例1方法的优越性。

判别269,用2至268中所有的数试除,要除267个数;用2至268中的质数试除,要除41个数;而用本题的方法,只要除6个数。

(2)将质数按照从小到大的顺序逐一去除一个数,来判断这个数是质数还是合数的方法,有弊病。

如果一个数是质数,在我们试除的过程式中就永远找不到另一个质数是它的约数。

那么,试除的数有什么范围呢?能不能使试除的数少一点呢?请同学们学习例1。

(3)用例1的方法判断一个数是质数还是合数,有着它的优越性,它可以明确试除的质数范围,使试除的数的量进一步减少。

小学五年级奥数第2课质数、合数和分解质因数试题附答案-精品

小学五年级奥数第2课质数、合数和分解质因数试题附答案-精品

小学五年级上册数学奥数知识点讲解第2课《质数、合数和分解质因数》试题附答案一.基本慨念和知识L质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2X3X5。

其中2、3、5叫做30的质因数。

又如12=2X2X3=22X3,2、3都叫做12的质因数。

二.例题例1三个连续自然数的乘积是210,求这三个数.例2两个质数的和是40,求这两个质数的乘积的最大值是多少?例3自然数123456789是质数,还是合数?为什么?例4连续九个自然数中至多有几个质数?为什么?例5把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

例6有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。

例7有3个自然数a、b、&己知aXb=6,bX c=15,例8一个整数a与1080的乘积是一个完全平方数.求a的最小值与这个平方数。

例9问36洪有多少个约数?例10求240的约数的个数。

答案二,例题例1三个连续自然数的乘积是210,求这三个数.7210=2X3X5X7・•・可知这三个数是5、6和7。

例2两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。

V17X23=391>11X29=319>3X37=111O,所求的最大值是391。

答:这两个质数的最大乘积是391。

例3自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

小学数学五年级奥数:质数与合数习题及答案

小学数学五年级奥数:质数与合数习题及答案

小学数学五年级奥数:“质数与合数(二)”试题(含答案)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

”他站起来,走到窗前,看了看楼下的孩子说:“有两个很小的孩子,我知道他们的年龄了。

”主人家的楼号是_____ ,孩子的年龄是_____.二、解答题11、甲、乙、丙三位同学讨论关于两个质数之和的问题。

甲说:“两个质数之和一定是质数”.乙说:“两个质数之和一定不是质数”.丙说:“两个质数之和不一定是质数”.他们当中,谁说得对?12、下面有3,从中抽出一张、二张、三张,按任意次序排起来,得到不同的一位数、两位数、三位数.把所得数中的质数写出来.13、在100以内与77互质的所有奇数之和是多少?14、在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.小学数学五年级奥数:“质数与合数(二)”答案1. 99100,98是偶数,99是3倍数,从而知97是1~100中最大的质数,又最小的质数是2,所以最小的质数与最大的质数的和是99.2. 3,3,5,8根据这四个数中只有一个是合数,可知其他三个数是质数,将360分解质因数得:360=2⨯2⨯2⨯5⨯3⨯3所以,这四个数是3,3,5和8.3. 1992依题意,将232323分解质因数得232323=23⨯10101=23⨯3⨯7⨯13⨯37从而,全部不同质因数之和AB=23+3+7+13+37=83所以,A⨯B⨯AB=8⨯3⨯83=1992.4. 36岁根据三个学生的年龄乘积是1620的条件,先把1620分解质因数,然后再根据他们的年龄一个比一个大3岁的条件进行组合.1620=2⨯2⨯3⨯3⨯3⨯3⨯5=9⨯12⨯15所以,他们年龄的和是9+12+15=36(岁)5. 83,24先把1992分解质因数,再根据两个数的和是107进行组合1992=2⨯2⨯2⨯3⨯83=24⨯8324+83=107所以,这两个数分别是83和24.6. 14根据两数之积能整除4875,把4875分解质因数,再根据两数之和为64进行组合.4875=3⨯5⨯5⨯5⨯13=(3⨯13)⨯(5⨯5)⨯5=(39⨯25)⨯5由此推得这两数为39和25.它们的差是39-25=14.7. 15解法一因为相同两数相加之和为原数的2倍,相减之差为零,相乘之积为原数乘以原数,相除之商为1.所以原数的2倍加上原数乘以原数应是256-1=255.把255分解质因数得: 255=3⨯5⨯17=3⨯5⨯(15+2)=15⨯2+15⨯15所以,这个数是15.解法二依题意,原数的2倍+0+原数⨯原数+1=256,即原数的2倍+原数⨯原数=256-1原数的2倍+原数⨯原数=255把255分解质因数得255=3⨯5⨯17=15⨯(15+2)=15⨯2+15⨯15所以,这个数是15.8. 21、22、65、76、153;34、39、44、45、133.先把10个数分别分解质因数,然后根据两组中所包含质因数必须相等把这10个数分成两组:21=3⨯7 22=2⨯1134=2⨯17 39=3⨯1344=2⨯2⨯11 45=3⨯3⨯565=5⨯13 76=2⨯2⨯19133=7⨯19 153=3⨯3⨯17由此可见,这10个数中质因数共有6个2,6个3,2个5,2个7,2个11,2个13,2个17,2个19.所以,每组数中应包含3个2,3个3,5、7、11、13、17和19各一个.于是,可以这样分组:第一组数是:21、22、65、76、153;第二组数是:34、39、44、45、133.[注]若将分为两组拓广分为三组,则得到一个类似的问题(1990年宁波市江北区小学五年级数学竞赛试题):把20,26,33,35,39,42,44,55,91等九个数分成三组,使每组的数的乘积相等.答案是如下分法即可:第一组:20,33,91;第二组:44,35,39;第三组:26,42,55.9. 12设这样的两位数的十位数字为A,个位数字为B,由题意依据数的组成知识,可知100A+B 能被10A+B整除.因为100A+B=90A+(10A+B),由数的整除性质可知90A能被10A+B整除.这样只要把90A 分解组合,就可以推出符合条件的两位数.210. 14;3岁,3岁,8岁因为三个孩子年龄的积是72,所以,我们把72分解为三个因数(不一定是质因数)的积,因为小孩的年龄一般是指不超过15岁,所以所有不同的乘积式是72=1⨯6⨯12=1⨯8⨯9=2⨯3⨯12=2⨯4⨯9=2⨯6⨯6=3⨯3⨯8=3⨯4⨯6三个因数的和分别为:19、18、17、15、14、14、13.其中只有两个和是相等的,都等于14.14就是主人家的楼号.如果楼号不是14,客人马上可以作出判断.反之客人无法作出判断,说明楼号正是14.亦即三个孩子年龄的和为14.此时三个孩子的年龄有两种可能:2岁、6岁、6岁;或3岁、3岁、8岁.当他看到有两个孩子很小时,就可以断定这三个孩子的年龄分别是3岁、3岁、8岁.主人家的楼号是14号.11. 因为两个质数之和可能是质数如2+3=5,也可能是合数如3+5=8,因此甲和乙的说法是错误的,只有丙说得对.12. 从三张卡片中任抽一张,有三种可能,即一位数有三个,分别为1、2、3,其中只有2、3是质数.从三张卡片中任抽二张,组成的两位数共六个.但个位数字是2的两位数和个位与十位上数字之和是3的倍数的两位数,都不是质数.所以,两位数的质数只有13,23,31.因为1+2+3=6,6能被3整除,所以由1、2、3按任意次序排起来所得的三位数,都不是质数.故满足要求的质数有2、3、13、23、31这五个.[注]这里采用边列举、边排除的策略求解.在抽二张卡片时,也可将得到六个两位数全部列举出来:12,13,21,23,31,32.再将三个合数12,21,32排除即可.13. 100以内所有奇数之和是1+3+5+…+99=2500,从中减去100以内奇数中7的倍数与11的倍数之和7⨯(1+3+...+13)+11⨯(1+3+ (9)=618,最后再加上一个7⨯11=77(因为上面减去了两次77),所以最终答数为2500-618+77=1959.[注]上面解题过程中100以内奇数里减去两个不同质数7与11的倍数,再加上一个公倍数7⨯11,这里限定在100以内,如果不是100以内,而是1000以内或更大的数时,减去的倍数就更多些而返回加上的公倍数有7⨯11的1倍,3倍,…也更多些,这实质上是“包含与排除”的思路.14. 依题意知,每射一箭的环数,只能是下列11个数中的一个0,1,2,3,4,5,6,7,8,9,10.而甲、乙5箭总环数的积1764≠0,这说明在甲、乙5箭得到的环数里没有0和10.而1764=1⨯2⨯2⨯3⨯3⨯7⨯7是由5箭的环数乘出来的,于是推知每人有两箭中的环数都是7,从而可知另外3箭的环数是5个数1,2,2,3,3经过适当的分组之后相乘而得到的,可能的情形有5种:(1)1,4,9;(2)1,6,6;(3)2,2,9;(4)2,3,6;(5)3,3,4.因此,两人5箭的环数有5种可能:7,7,1,4,9和是28;7,7,1,6,6和是27;7,7,2,2,9和是27;7,7,2,3,6和是25;7,7,3,3,4和是24。

第二讲 质数与合数 竞赛班 (带完整答案)_5年级奥数讲义与课件

第二讲   质数与合数   竞赛班  (带完整答案)_5年级奥数讲义与课件

第二讲质数与合数知识说明1.质数与合数:一个数除了1 和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1 和它本身,还有别的约数,这个数叫做合数。

要特别记住:0 和 1 不是质数,也不是合数。

常用的100 以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25 个;除了2 其余的质数都是奇数;除了2 和5,其余的质数个位数字只能是1,3,7 或9。

考点:(1)值得注意的是很多题都会以质数2 的特殊性为考点,例如:两个质数之和为39,求这两个质数的乘积。

分析:因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是 2,另一个是 37,乘积为 74。

我们要善于抓住此类题的突破口。

(2)除了2 和5,其余质数个位数字只能是1,3,7 或9。

这也是很多题解题思路,需要大家注意2.质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

互质数:公约数只有1 的两个自然数,叫做互质数。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如:30=2×3×5。

其中2、3、5 叫做30 的质因数。

又如12=2×2×3=22 ×3,2、3 都叫做12 的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式。

分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。

例如:三个连续自然数的乘积是 210,求这三个数.分析:210 分解质因数:210=2×3×5×7,可知这三个数是5、6 和7。

3.判断一个数是否为质数的方法:根据定义如果能够找到一个小于P 的质数p(均为整数),使得p能够整除P,那么P 就不是质数,所以我们只要拿所有小于P 的质数去除P 就可以了;但是这样的计算量很大,对于不太大的P,我们可以先找一个大于且接近P 的平方数K 2 ,再列出所有不大于K 的质数,用这些质数去除P,如没有能够除尽的那么P 就为质数。

质数与合数(含答案)

质数与合数(含答案)

第3讲质数与合数阿拉伯数字无疑是人类历史上最伟大的发明之一,其本身蕴含的规律更是数学学科中最璀璨的明珠!质数和合数的分类产生了哥德巴赫猜想等世界着名的命题,学习质数和合数,窥探数字的奥秘!对于自然数a 和b (0b ≠),若a b ÷没有余数,则a 是b 的倍数,b 是a 的约数。

特殊地,0是任意非零自然数的倍数。

质数:除了1和本身,没有其他约数的自然数叫质数。

合数:除了1和本身,还有其他约数的自然数叫合数。

特殊地,1既不是质数也不是合数。

最小的合数是4,最小的质数是2,且2是唯一的偶质数。

质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

互质数:公约数只有1的两个自然数,叫做互质数。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

编写说明知识要点【例1】对7个不同质数求和,和为58,则最大的质数是多少【分析】七个质数若全部是奇数,则和一定是奇数,而58是偶数,则七个质数中必定含有唯一的偶质数2,所以最小的质数是2,从2开始,最小的七个连续质数是2,3,5,7,11,13,17,和为58,所以题中的七个质数只能是从2开始的七个连续质数,最大为17。

【温馨提示】2是唯一的偶质数,是偶数中的“叛徒”,所以质数也经常与奇偶性相结合,主要考察“2”.【拓展】已知a、b、c、d都是质数,且130959179+=+=+=+,求a、b、c、d的值。

a b c d【分析】959179+=+=+,所以b、c、d应该都是奇数,所以a是唯一的偶质数2,依此可求得:b c dc=,53b=,41d=.a=,372【例2】从小到大写出5个质数,使后面数都比前面的数大12。

这样的数有几组【分析】考虑到质数中除了2以外其余都是奇数,因此这5个质数中不可能有2;又质数中除了2和5,其余质数的个位数字只能是1、3、7、9。

若这5个质数中最小的数其个位数字为1,则比它大24的数个位即为5,不可能是质数;若最小的数其个位数字为3,则比它大12的数个位即为5,也不可能为质数;由此可知最小的数其个位数字也不可能是7和9,因此最小的数只能是5,这5个数依次是5,17,29,41,53。

数学五年级下册质数和合数(2)课件及答案

数学五年级下册质数和合数(2)课件及答案

数学 五年级 下册
配RJ版
第2课时
235+77= 312 475+334= 809 405-127= 278 427+( 573 )=1000
返回目录
数学 五年级 下册
配RJ版
第2课时
基础积累
1.从“课前热身”中,我发现:
奇数+奇数=( 偶 )数
偶数+偶数=( 偶 )数
奇数+偶数=( 奇 )数
奇数-奇数=( 偶 )数
(1)一个奇数( C ),结果一定是偶数。
A. 乘3
B. 加上2
C. 加上1或者减去1
(2)若n与5的和是偶数,则n一定是( B )。
A. 质数
B. 奇数
C. 偶数
第2课时
返回目录
数学 五年级 下册
配RJ版
第2课时
4.在括号里填上不同的质数。(答案不唯一)
30=( 17 )+( 13 )
28=( 11 )+( 17 )
配RJ版
数学
五年级 下册
目 录
CONTENTS
数学 五年级 下册
配RJ版
2 因数与倍数 3. 质数和合数 第2课时 质数和合数(2)
01 课前热身
第2课时
02 基础积累 03 能力提升
返回目录
课前热身 53+27= 80 98+264= 362 1000-375= 625 480-408= 72
42=( 29 )+( 13 )
56=( 37 )+( 19 )
返回目录
数学 五年级 下册
配RJ版
第2课时
能力提升 5.李东的爸爸、妈妈今年岁数的和是偶数,5年后他们岁 数的和是奇数还是偶数?为什么呢?

小学奥数:质数与合数(二).专项练习及答案解析

小学奥数:质数与合数(二).专项练习及答案解析

5-3-2.质数与合数(二).题库 教师版 page 1 of1. 掌握质数与合数的定义2. 能够用特殊的偶质数2与质数5解题3. 能够利用质数个位数的特点解题4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。

模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。

六年下册奥数试题-质数与合数 全国通用含答案

六年下册奥数试题-质数与合数 全国通用含答案

第3讲质数与合数知识网络1.质数与合数(1)一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数)。

(2)一个大于1的自然数,如果除了1和它本身,还能被其他自然数整除,那么它就叫做合数。

例如:4、6、8、10、12、14,…都是合数。

在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数。

2.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如,把42分解质因数,即是42=2×3×7。

其中2、3、7叫做42的质因数。

又如,50=2×5×5,2、5都叫做50的质因数。

重点·难点要注意以下几条:(1)1既不是质数,也不是合数。

(2)关于质数1)质数有无限多个。

2)最小的质数是2。

3)在质数中只有2是偶数,其余的质数全是奇数。

4)每个质数只有两个约数:1和它本身。

(3)关于合数1)合数有无限多个。

2)最小的合数是4。

3)每个合数至少有三个约数:1、它本身、其他约数。

例如,8的约数除1和8外,还有2、4,所以8是合数。

学法指导(1)对比一下几种判别质数与合数的方法,可以看出例1方法的优越性。

判别269,用2至268中所有的数试除,要除267个数;用2至268中的质数试除,要除41个数;而用本题的方法,只要除6个数。

(2)将质数按照从小到大的顺序逐一去除一个数,来判断这个数是质数还是合数的方法,有弊病。

如果一个数是质数,在我们试除的过程式中就永远找不到另一个质数是它的约数。

那么,试除的数有什么范围呢?能不能使试除的数少一点呢?请同学们学习例1。

(3)用例1的方法判断一个数是质数还是合数,有着它的优越性,它可以明确试除的质数范围,使试除的数的量进一步减少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.掌握质数与合数的定义 2.能够用特殊的偶质数2与质数5解题 3.能够利用质数个位数的特点解题 4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。

模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。

【答案】74【巩固】 将1999表示为两年质数之和:l 999=口+口,在口中填入质数。

共有多少种表示法?例题精讲知识点拨知识框架5-3-2.质数与合数(二)【解析】 因为两个奇数的和是偶数,所以将1999表示成两个质数的和,这两个质数中必有一个是偶数,因而也就是2,另一个是 1999-2=1997即1999=2十1997,只有一种填法(我们将2+1997与1997+2作为同一种).【答案】一种【例 3】 A ,B ,C 为3个小于20的质数,30A B C ++=,求这三个质数.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为三个质数之和为偶数,所以这三个质数必为两奇一偶,其中偶数只能是2,另两个奇质数之和为28,又因为这三个数都要小于20,所以只能为11和17,所以这三个质数分别是2,11,17.【答案】2,11,17【巩固】 把100分拆成三个质数(只能被1和它本身整除且大于1的自然数叫做质数)的和,共有_____种方法。

【考点】偶质数2 【难度】2星 【题型】填空【关键词】走美杯,四年级,初赛,第6题【解析】 100是个偶数,拆成3个质数之和,而质数中除2以外,其他的都是奇数,3个奇数之和为奇数,所以其中必有2,现在知两个质数之和为98,则可拆成61+37、67+31、19+79。

所以共有3种方法。

【答案】3种【例 4】 已知3个不同质数的和是最小的合数的完全平方,求这3个质数的乘积是多少?【考点】偶质数2 【难度】2星 【题型】解答【解析】 最小的合数是4,其平方为16.我们知道奇数个奇数的和是奇数,所以这3个质数中必然有2,那么其余2个的和是14,只能一个是3一个是11,因此这3个质数的乘积是231166⨯⨯=.【答案】66【例 5】 7个连续质数从大到小排列是a 、b 、c 、d 、e 、f 、g 已知它们的和是偶数,那么d 是多少?【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为7个质数的和是偶数,所以这7个质数不可能都是奇数.我们知道是偶数的质数只有2,因此这7个质数中必有一个是2.又因为2是最小的质数,并且这7个连续质数是从大到小排列的,所以2g =.其他6个数从大到小依次是17、13、11、7、5、3.这样7d =.【答案】7【例 6】 如果a ,b 均为质数,且3741a b +=,则a b +=______.【考点】偶质数2 【难度】3星 【题型】填空【关键词】希望杯,五年级,复赛,第8题,4分【解析】 根据题意a ,b 中必然有一个偶质数2,,当2a =时,5b =,当2b =时不符合题意,所以257a b +=+=. 【答案】7【巩固】 如果a ,b 均为质数,且3d +7b =41,则a +b =________。

【考点】偶质数2 【难度】3星 【题型】填空【关键词】希望杯,六年级,二试,第9题,4分【解析】 根据奇偶性我们可以知道a 、b 中必然有一个是2,若a =2,则b =7,满足题意;若b =2,则a =9,与题意不符。

所以a 为2、b 为7,则a +b =9。

【答案】9【例 7】 已知P ,Q 都是质数,并且11932003P Q ⨯-⨯=,则P Q ⨯=【考点】偶质数2 【难度】3星 【题型】填空【解析】 本题充分考察质数与数字奇偶性知识点的结合。

通过观察发现题目中有2个未知数,但是都是质数,从结果上看2003是一个奇数,那么前面2个乘积必须为1个奇数1个偶数,那么P 和Q 中必须有一个是2才可以。

由大小关系可以发现只能Q 是2,解出P =199,P ×Q =398。

【答案】398【例 8】 a b c 、、都是质数,如果()()342a b b c +⨯+=,那么b = 。

【解析】 由于342是2的倍数,不是4的倍数,所以a b +与b c +为一奇一偶,则a 或者c 为质数2,令2a =,而342=2×3×3×19,则9a b +=或者31957a b +=⨯=或者919171a b +=⨯=,对应的b 为7或者55或者169,只有7是质数,所以b =7。

【答案】7【例 9】 三个质数△、□、○,如果□>△>1,△+□=○,那么△是多少?【考点】偶质数2 【难度】3星 【题型】填空【解析】 除了2以外的质数都是奇数,这样的两个奇数相加必然得偶数不成立,所以△、□必有一个偶质数2,又因为□>△>1,所以△=2【答案】2【例 10】a ,b ,c 都是质数,并且33a b +=,44b c +=, 66cd +=,那么cd = ____ 。

【考点】偶质数2 【难度】3星 【题型】填空【关键词】希望杯,五年级,初赛,第8题,5分【解析】 33a b +=为奇数,所以a=2,b=31,c=13,d=53,那么cd=13×53=689 【答案】689【例 11】 已知P 是质数,21P +也是质数,求51997P +是多少?【考点】偶质数2 【难度】3星 【题型】解答【解析】 P 是质数,2P 必定是合数,而且大于1.又由于21P +是质数,2P 大于1,21P +一定是奇质数,则2P 一定是偶数.所以P 必定是偶质数,即2P =.55199721997P +=+321997=+2029=【答案】2029【巩固】 当p 和 3p +5都是质数时,5p +5= 。

【考点】偶质数2 【难度】3星 【题型】填空【关键词】希望杯,五年级,初赛,第6题,6分【解析】 p 和p 3+5奇偶性不同,所以较小的p 一定是2,所以p 3+5=13,5p +5=37【答案】37【例 12】 P 是质数,10P +,14P +,210P +都是质数.求P 是多少?【考点】偶质数2 【难度】3星 【题型】解答【解析】 由题意知P 是一个奇数,因为10331÷=,14342÷=,所以P 是3的倍数,所以3P =【答案】3【例 13】 4只同样的瓶子内分别装有一定数量的油.每瓶和其他各瓶分别合称一次,记录千克数如下:8,9,10,11,12,13.已知4只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?【考点】偶质数2 【难度】3星 【题型】解答【解析】 由于每只瓶都称了三次,因此记录数据之和是4瓶油(连瓶)重量之和的3倍,即4瓶油(连瓶)共重(8910111213+++++)321÷=(千克)而油重之和及瓶重之和均为质数,所以它们必为一奇一偶,由于2是唯一的偶质数,只有两种可能:⑴ 油重之和为19千克,瓶重之和为2千克,每只瓶重12千克,最重的两瓶内的油为1132122-⨯=(千克).⑵ 油重之和为2千克,瓶重之和为19千克,每只瓶重194千克,最重的两瓶内的油为19713242-⨯=(千克),这与油重之和2千克矛盾.因此最重的两瓶内共有12千克油。

【答案】12【例 14】 三个数,1,3p p p ++都是质数,它们的倒数和的倒数是_______。

【解析】 P 与P+1和+2奇偶性不同,所以P 只能是2,另外两个是3和5,所以它们的倒数和的倒数是130********=++. 【答案】3031【例 15】 用0,1,2,…,9这10个数字组成6个质数,每个数字至多用1次,每个质数都不大于500,那么共有多少种不同的组成6个质数的方法.请将所有方法都列出来.【考点】偶质数2 【难度】3星 【题型】解答【关键词】小学数学夏令营【解析】 除了2以外,质数都是奇数,因为0~9中只有5个奇数,所以如果想组成6个质数,则其中一定有2.又尾数为5的数中只有5是质数,所以5只能单独作为6个质数中的一个数.另4个质数分别以1,3,7,9为个位数,从而列举如下:{2,3,5,7,41,89},{2,3,5,7,61,89},{2,3,5,7,89,401},{2,3,5,7,89,461},{2,3,5,7,61,409},{2,3,5,47,61,89},{2,3,5,41,67,89},{2,3,5,67,89,401},{2,5,7,43,61,89},{2,5,7,61,83,409}.即共有10种不同的方法.【答案】10【例 16】 如果一些不同质数的平均数为21,那么它们中最大的一个数的最大可能值为 .【考点】偶质数2 【难度】4星 【题型】填空【关键词】迎春杯,高年级,复赛,4题【解析】 对于任意一组数,其中大于平均数的超出部分之和一定等于小于平均数的不足部分之和,所以为了使这些质数中最大的数更大,应该尽可能多地取小于21的质数,由于大于21的所有质数都是奇数,所以大于平均数21的超出部分之和一定是偶数,相应的所取的小于21的质数与21的差之和也应该是偶数,所以唯一的偶质数2是不能取的,因为它与21的差为奇数.剩下7个数的和是75,21×8-75=93,小于93的最大的质数是89.当这些质数取3,5,7,11,13,19,89时符合条件.【答案】89模块二、质数5【例 17】 已知n ,6n +,84n +,102n +,218n +都是质数,那么n = 。

相关文档
最新文档