金属冶炼及热加工4大安全技术点(最新版)

金属冶炼及热加工4大安全技术点(最新版)
金属冶炼及热加工4大安全技术点(最新版)

金属冶炼及热加工4大安全技

术点(最新版)

Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.

( 安全管理 )

单位:______________________

姓名:______________________

日期:______________________

编号:AQ-SN-0588

金属冶炼及热加工4大安全技术点(最新

版)

金属冶炼、铸造、锻造和热处理等生产过程中伴随着高温,并散发着各种有害气体、粉尘和烟雾,同时还产生噪声,从而严重地恶化了作业环境和劳动条件。这些作业工序多,体力劳动繁重,起重运输工作量大,因而容易发生各类伤害事故,需要采取针对性的安全技术措施。

一、金属冶炼安全技术

(一)高温与中暑。

金属冶炼操作,如炼钢、炼铁是在千度以上的高温下进行的。高温作业时,人体受高温的影响,出现一系列生理功能改变,如体温调节功能下降。当生产环境温度超过34℃时,很容易发生中暑。如果劳动强度过大,持续劳动时间过长,则更容易发生中暑。严重

时可导致休克。

防止中暑的措施,是合理地设计工艺流程,改进生产设备和操作方法,消除或减少高温、热辐射对人体的影响。这是改善高温作业劳动条件的根本措施,用水或导热系数小的材料进行隔热,也是防暑降温的重要措施。采用机械通风和自然通风,则是经济有效的散热方式。

(二)爆炸与灼烫。

钢铁工厂为了提高效益,降低消耗,常常采用强化冶炼的措施,如喷煤粉和吹氧等,这就使得炼钢、炼铁生产中容易发生钢水、铁水喷溅和爆炸事故。

造成钢水、铁水喷溅、爆炸的原因很多,从原料开始生产出钢、铁的全部生产工艺过程,均隐藏着不安全因素。必须从每一道工艺上加强防范措施。

1.各生产岗位人员必须掌握生产规律,熟悉操作规程,认真观察事故先兆并懂得处置办法。

2.加强原料的管理和挑选工作,严防爆炸品、密封容器进入炉

内。

3.经常检查冷却系统,保护系统畅通。控制好冷却水压和水量,以防止水冷系统强度不够造成钢板烧穿,导致钢液遇水爆炸。

4.炼铁生产车间应严格执行热风炉工作制度,防止由于换炉事故造成热风炉爆炸;炼钢车间要严格执行从补炉、装炉、熔炼到出钢整个生产过程的操作规程,避免由于操作不当造成熔炼过程中的喷溅、爆炸事故。

5.出铁、出钢时,要事先对铁沟、铁水罐、钢水包、地坑和钢锭模进行加热干燥。严防因潮湿而引起爆炸。

(三)煤气中毒

煤气中的主要有害成分为一氧化碳。在炼钢、炼铁生产中,特别是炼铁生产中生产的废气,即高炉煤气,含有很高的一氧化碳,因此在炼钢、炼铁生产中,处理不好容易发生煤气中毒事故。有效的预防办法,是注意加强生产现场的通风、监测、检修和个人防护。

二、铸造安全技术

(一)铸造生产的特点。

把熔融金属注入造型材料和粘剂制成的模型或金属模型中,从而获得成型铸件的制造方法叫铸造。铸造工人与冲天炉、电炉打交道,如果在溶化金属中混有异物或遇水,可引爆炸烫伤事故。铸造生产除采用铸造机械设备外,还大量使用各种起重运输机械,很容易发生机械伤害事故。铸造作业的有些工序手工作业量较大,容易发生碰伤事故。熔化、浇注、落砂等过程会散发出大量的热量,影响工人健康。清砂要使用振动落砂机、滚筒和风动工具,产生很大的噪声,可能引起职业性耳聋。碾砂、回砂、打箱、落砂产生大量粉尘,如果没有防尘措施,工人就容易患矽肺病。在型芯烘干、熔炼、浇注等过程中有油质分解,会散发出丙烯醛蒸气和一氧化碳、二氧化碳等有毒有害气体。如果没有通风措施,可能引起呼吸道发炎、急性结膜炎。

(二)金属熔化的安全技术

1.熔化铸铁的主要设备是冲天炉,其安全操作要领是:

(1)修炉时要注意预防炉衬塌落击伤头部。打炉渣地要防止飞出的碎块击伤眼、脸。工作时要站稳,注意不要掉浇炉底,还要注

金属冶炼及热加工安全的技术

编号:AQ-JS-03985 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 金属冶炼及热加工安全的技术 Safety technology of metal smelting and hot working

金属冶炼及热加工安全的技术 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 金属冶炼、铸造、锻造和热处理等生产过程中伴随着高温,并散发着各种有害气体、粉尘和烟雾,同时还产生噪声,从而严重地恶化了作业环境和劳动条件。这些作业工序多,体力劳动繁重,起重运输工作量大,因而容易发生各类伤害事故,需要采取针对性的安全技术措施。 一、金属冶炼安全技术 (一)高温与中暑。 金属冶炼操作,如炼钢、炼铁是在千度以上的高温下进行的。高温作业时,人体受高温的影响,出现一系列生理功能改变,如体温调节功能下降。当生产环境温度超过34℃时,很容易发生中暑。如果劳动强度过大,持续劳动时间过长,则更容易发生中暑。严重时可导致休克。 防止中暑的措施,是合理地设计工艺流程,改进生产设备和操

作方法,消除或减少高温、热辐射对人体的影响。这是改善高温作业劳动条件的根本措施,用水或导热系数小的材料进行隔热,也是防暑降温的重要措施。采用机械通风和自然通风,则是经济有效的散热方式。 (二)爆炸与灼烫。 钢铁工厂为了提高效益,降低消耗,常常采用强化冶炼的措施,如喷煤粉和吹氧等,这就使得炼钢、炼铁生产中容易发生钢水、铁水喷溅和爆炸事故。 造成钢水、铁水喷溅、爆炸的原因很多,从原料开始生产出钢、铁的全部生产工艺过程,均隐藏着不安全因素。必须从每一道工艺上加强防范措施。 1.各生产岗位人员必须掌握生产规律,熟悉操作规程,认真观察事故先兆并懂得处置办法。 2.加强原料的管理和挑选工作,严防爆炸品、密封容器进入炉内。 3.经常检查冷却系统,保护系统畅通。控制好冷却水压和水量,以防止水冷系统强度不够造成钢板烧穿,导致钢液遇水爆炸。

热加工材料知识点

第1章 金属材料成形基本原理 铸造是指通过熔炼金属,制造铸型,并将熔融金属注入铸型中使之冷却,凝固后获得具有一定形状和性能的铸件的成型方法。 铸造按照工艺方法的不同,分为砂型铸造和特种铸造。 铸件的凝固方式:逐层凝固方式,糊状凝固方式,中间凝固方式。 金属的铸造性能:是指合金是否易于通过铸造方法成形并获得铸件的能力。它反映的是合金在铸造过程中表现出来的综合性的工艺性能,主要包括合金的流动性,收缩性,偏析性和吸气性等。 合金的流动性的影响因素:1)合金的种类,2)合金的化学成分,3)杂质含量。 合金的充型能力的影响因素:1)合金本身的流动性,2)浇注条件(包括浇注温度,浇注速度和充型压力等因素。)3 )铸型条件(铸型的蓄热能力,铸型温度,铸型中的气体)4)铸件结构。 合金收缩:铸造合金从液态到凝固直至冷却到室温的过程中发生的体积和尺寸减小的现象。收缩分为三个阶段:液态收缩,凝固收缩,固态收缩。 影响合金收缩的因素:1)合金的化学成分,2)浇注温度,3)铸型条件。 最典型的铸件断面组织由三个晶区组成:1)表面细晶区,2)柱状晶区,3)中心等轴晶区。 缩孔的形成:趋向于逐层凝固方式结晶的合金,易产生集中缩孔。 缩松的形成:结晶温度范围宽的合金,趋向于糊状凝固,易形成缩松。 缩孔和缩松的防止:1)合理确定内浇道位置及浇注工艺,2)合理使用冒口,冷铁等工艺措施。 铸造应力:热应力和收缩应力。

热应力的形成:由于铸件壁厚不均匀以及散热条件的差异,不同部位冷却速度不同,由此引起不均衡收缩所造成的应力。 收缩应力的形成:铸件在固态收缩时,因受到铸型,型芯,浇冒口,砂箱等外力的阻碍而产生的应力。 减少和消除铸造应力的方法:使铸件的凝固过程符合同时凝固原则。 铸件的裂纹 热裂:热裂是在凝固后期高温下形成的。 防止热裂的主要措施:1)合理设计铸件结构,2)设法改善铸型和型芯的退让性,3)严格限制钢和铸铁中硫的含量,4)选用收缩性小的合金。 冷裂:冷裂是铸件冷却到低温处于弹性状态时,铸造应力超过合金的抗拉强度而产生的。 防止冷裂的主要措施:减少铸造应力和降低合金的脆性 气孔大致可分为侵入性气孔,析出性气孔和反应性气孔。 防止侵入性气孔的主要措施:1)降低铸型材料的发气量,2)增强铸型的排气能力。 防止析出性气孔的主要措施:1)减少合金在熔炼和浇注时的吸气量,2)对金属液进行除气处理,3)增大铸件的冷却速度,4)使铸件在压力下凝固以阻止气体析出。 防止反应性气孔的主要措施:1)清除冷铁,芯撑表面的锈蚀和油污,2)保持干燥。 金属塑性成形:是利用金属在外力作用下所产生的塑性成形,来获得具有一定形状,尺寸和力学性能的制品的加工方法。 单晶体的塑性变形有两种基本方式:滑移和孪生。 金属塑性变形基本规律:1)体积不变规律,2)最小阻力定律。 冷变形加工件的组织与性能 冷塑性变形后金属组织的特点:1)晶粒变形,2)位错密度增加和晶粒碎化,3)形变织构。

金属热加工工艺复习(完全体)资料

金属热加工工艺复习(完全体) 一名词解释: 1.金属液态成形:是一种将金属(一般为合金)浇入铸型型腔,冷却凝固后获得零件 或毛坯的成形工艺。 2.铸造:熔炼金属,制造铸型,并将熔融金属在重力、压力、离心力、电磁力等外力 场的作用下充满铸型,凝固后获得一定形状与性能零件和毛坯生产过程。 3.直浇道窝:在直浇道底部设有半圆形或圆锥台形的窝坑,称为直浇道窝。 4.流动性:指熔融金属的流动能力。它是影响熔融金属充型能力的主要因素之一。 5.冷铁:为增加铸件的局部冷却速度,在砂型、砂芯表面或型腔中安放的激冷物。 6.补贴:为增加冒口补缩效果,沿冒口补缩距离,向着冒口方向铸件断面逐渐增厚的 多余金属。 7.浇注位置:浇注状态下铸件在铸型内所处的位置。 8.分型面:是指两半型(一般为上、下)或多个铸型(多箱造型)相互接触配合的表 面。 9.特种铸造:是指有别于砂型铸造工艺的其它铸造工艺。 10.离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填充铸型而凝固成形的 一种铸造方法。 11.熔模铸造:又称失蜡铸造,用易熔材料(蜡或塑料等)制成精确的可熔性型壳熔模, 并进行蜡模组合,涂以若干层耐火涂料,经干燥、硬化成整体型壳,加热型壳熔失模型,经高温焙烧成耐火型壳,在型壳中浇注铸件的方法。 12.锻造温度:是指开始锻造的温度(始锻温度)和结束锻造的温度(终锻温度)之间 的一段温度区间。 13.始锻温度:锻造温度的上限。 14.终锻温度:锻造温度的下限。 15.锻造成形:锻造成型是一种利用锻压机械对金属坯料施加压力,使其产生 塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。 16.自由锻:自由锻造是利用冲击力或压力使金属在上下砧面间各个方向自由变形,不 受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自 由锻。 17.胎膜锻:胎模锻是在自由锻设备上使用简单的活动模具(称为胎模)生产锻件的方 法 18.模锻:模型锻造简称为模锻,是将加热到锻造温度的金属坯料放到固定在模锻设备 上的锻模模膛内,使坯料承受冲击功或静压力产生塑性变形而获得锻件的方法。 19.拉深:变形区在一拉一压的应力状态作用下,使板料(浅的空心坯)成形为空心件(深 的空心件)而厚度基本不变的加工方法。 20.分模面:是指锻模上模与下模的分界面 21.分模线:分模面预锻件表面的交线称锻件的分模线。分模线是锻件最基本的结构要 素。 22.芯轴扩孔:是将芯轴穿过空心坯料而放在“马架”上,坯料转过一个角度压下一次, 逐渐将坯料的壁厚压薄、内外径扩大。因此,这种扩孔也称为马架上扩孔。

金属冶炼中的安全技术标准版本

文件编号:RHD-QB-K4098 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 金属冶炼中的安全技术 标准版本

金属冶炼中的安全技术标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 金属冶炼、铸造、锻造和热处理等生产过程中伴随着高温,并散发着各种有害气体、粉尘和烟雾,同时还产生噪声,从而严重地恶化了作业环境和劳动条件。这些作业工序多,体力劳动繁重,起重运输工作量大,因而容易发生各类伤害事故,需要采取针对性的安全技术措施。 金属冶炼安全技术 高温与中暑 金属冶炼操作,如炼钢、炼铁是在千度以上的高温下进行的。高温作业时,人体受高温的影响,出现一系列生理功能改变,如体温调节功能下降。当生产

环境温度超过34℃时,很容易发生中暑。如果劳动强度过大,持续劳动时间过长,则更容易发生中暑。严重时可导致休克。 防止中暑的措施,是合理地设计工艺流程,改进生产设备和操作方法,消除或减少高温、热辐射对人体的影响。这是改善高温作业劳动条件的根本措施,用水或导热系数小的材料进行隔热,也是防暑降温的重要措施。采用机械通风和自然通风,则是经济有效的散热方式。 爆炸与灼烫 钢铁工厂为了提高效益,降低消耗,常常采用强化冶炼的措施,如喷煤粉和吹氧等,这就使得炼钢、炼铁生产中容易发生钢水、铁水喷溅和爆炸事故。 造成钢水、铁水喷溅、爆炸的原因很多,从原料开始生产出钢、铁的全部生产工艺过程,均隐藏着不

焊后热处理(PWHT)和焊后消除应力热处理的区别

焊后热处理(PWHT)和焊后消除应力热处理的区别 内容来源网络,由深圳机械展收集整理! 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热

处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。 焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

材料热加工工艺模拟现状及趋势

材料热加工工艺模拟现状及趋势 作者:房贵如 当前,金属材料仍是应用范围最为广泛的机械工程材料,材料热加工(包括铸造、锻压、焊接、热处理等)是机械制造业重要的加工工序,也是材料与制造两大行业的交叉和接口技术。材料经热加工才能成为零件或毛坯,它不仅使材料获得一定的形状、尺寸,更重要的是赋予材料最终的成份、组织与性能。由于热加工兼有成形和改性两个功能,因而与冷加工及系统的材料制备相比,其过程质量控制具有更大的难度。因此,对材料热加工过程进行工艺模拟进而优化工艺设计,具有更为迫切的需求。近二十多年来,材料热加工工艺模拟技术得到迅猛发展,成为该领域最为活跃的研究热点及技术前沿。 引言 1 使金属材料热加工由“技艺”走向“科学”,彻底改变热加工的落后面貌 金属材料热加工过程是极其复杂的高温、动态、瞬时过程,难以直接观察。在这个过程中,材料经液态流动充型、凝固结晶、固态流动变形、相变、再结晶和重结晶等多种微观组织变化及缺陷的产生与消失等一系列复杂的物理、化学、冶金变化而最后成为毛坯或构件。我们必须控制这个过程使材料的成分、组织、性能最后处于最佳状态,必须使缺陷减到最小或将它驱赶到危害最小的地方去。但这一切都不能直接观察到,间接测试也十分困难。 长期以来,基础学科的理论知识难以定量指导材料加工过程,材料热加工工艺设计只能建立在“经验”基础上。近年来,随着试验技术及计算机技术的发展和材料成形理论的深化,材料成形过程工艺设计方法正在发生着质的改变。材料热加工工艺模拟技术就是在材料热加工理论指导下,通过数值模拟和物理模拟,在试验室动态仿真材料的热加工过程,预测实际工艺条件下材料的最后组织、性能和质量,进而实现热加工工艺的优化设计。它将使材料热加工沿此方向由“技艺”走向“科学”,并为实现虚拟制造迈出第一步,使机械制造业的技术水平产生质的飞跃。 2 是预测并保证材料热加工过程质量的先进手段,特别对确保关键大件一次制造成功,具有重大的应用背景和效益 我国重大机电设备研制、生产的一个难点是大件制造;大件制造的关键又是热加工。我国在

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。 铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造

制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分 为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计出型芯头。 收缩余量:由于铸件在浇注后的冷却收缩,制作模样时要加上这部分收缩尺

金属冶炼安全技术(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 金属冶炼安全技术(新版)

金属冶炼安全技术(新版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 (一)高温与中暑。 金属冶炼操作,如炼钢、炼铁是在千度以上的高温下进行的。高温作业时,人体受高温的影响,出现一系列生理功能改变,如体温调节功能下降。当生产环境温度超过34℃时,很容易发生中暑。如果劳动强度过大,持续劳动时间过长,则更容易发生中暑。严重时可导致休克。 防止中暑的措施,是合理地设计工艺流程,改进生产设备和操作方法,消除或减少高温、热辐射对人体的影响。这是改善高温作业劳动条件的根本措施,用水或导热系数小的材料进行隔热,也是防暑降温的重要措施。采用机械通风和自然通风,则是经济有效的散热方式。 (二)爆炸与灼烫 钢铁工厂为了提高效益,降低消耗,常常采用强化冶炼的措施,如喷煤粉和吹氧等,这就使得炼钢、炼铁生产中容易发生钢水、铁水喷溅和爆炸事故。

造成钢水、铁水喷溅、爆炸的原因很多,从原料开始生产出钢、铁的全部生产工艺过程,均隐藏着不安全因素。必须从每一道工艺上加强防范措施。 1.各生产岗位人员必须掌握生产规律,熟悉操作规程,认真观察事故先兆并懂得处置办法。 2.加强原料的管理和挑选工作,严防爆炸品、密封容器进入炉内。 3.经常检查冷却系统,保护系统畅通。控制好冷却水压和水量,以防止水冷系统强度不够造成钢板烧穿,导致钢液遇水爆炸。 4.炼铁生产车间应严格执行热风炉工作制度,防止由于换炉事故造成热风炉爆炸;炼钢车间要严格执行从补炉、装炉、熔炼到出钢整个生产过程的操作规程,避免由于操作不当造成熔炼过程中的喷溅、爆炸事故。 5.出铁、出钢时,要事先对铁沟、铁水罐、钢水包、地坑和钢锭模进行加热干燥。严防因潮湿而引起爆炸。 (三)煤气中毒 煤气中的主要有害成分为一氧化碳。在炼钢、炼铁生产中,特别是炼铁生产中生产的废气,即高炉煤气,含有很高的一氧化碳,因此在炼钢、炼铁生产中,处理不好容易发生煤气中毒事故。有效的预防

冷加工与热加工区别

冷加工,通常指金属的切削加工,即用切削工具从金属材料(毛坯)或工件上切除多余的金属层,从而使工件获得具有一定形状、尺寸精度和表面粗糙度的加工方法。如车削、钻削、铣削、刨削、磨削、拉削等。在金属工艺学中,与热加工相对应,冷加工则指在低于再结晶温度下使金属产生塑性变形的加工工艺,如冷轧、冷拔、冷锻、冲压、冷挤压等。冷加工变形抗力大,在使金属成形的同时,可以利用加工硬化提高工件的硬度和强度。冷加工适于加工截面尺寸小,加工尺寸和表面粗糙度要求较高的金属零件。 热加工,在高于再结晶温度的条件下使金属材料同时产生塑性变形和再结晶的加工方法。热加工通常包括铸造、热扎、锻造和金属热处理等工艺,有时也将焊接、热切割、热喷涂等工艺包括在内。热加工能使金属零件在成形的同时改善它的组织,或者使已成形的零件改变结晶状态以改善零件的机械性能。对于低熔点的金属材料,如铅、锌、锡等,其再结晶温度低,在室温下对它们进行的塑性加工,也属于热加工。 热轧板硬度低,加工容易,延展性能好,强度相对较低,表面质量差点(有氧化\光洁度低),但塑性好,一般为中厚板, 热轧钢板,机械性能远不及冷加工,也次于锻造加工,但有较好的韧性和延展性。 冷轧板:强度高\硬度高, 加工相对困难些,但是不易变形,表面光洁度高,一般为薄板,可以作为冲压用板;由于有一定程度的加工硬化,韧性低,但能达到较好的屈强比,用来冷弯弹簧片等零件,同时由于屈服点较靠近抗拉强度,所以使用过程中对危险没有预见性,在载荷超过许用载荷时容易发生事故。大部分冷轧钢板厚度在4.5mm以下。冷轧板硬度高,,强度较高 中厚板是指厚度4.5-25.0mm的钢板,厚度25.0-100.0mm的称为厚板,厚度超过100.0mm的为特厚板 (1):退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2 ):正火:指将钢材或钢件加热到Ac3或Accm(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3):淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4):回火:指钢件经淬硬后,再加热到临界点AC1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5):调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是 指中碳结构钢和中碳合金结构钢。 (6):渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 退火→将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却(冷却速度最慢),目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。 正火→将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火→将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可

《工程材料和热加工工艺基础》基础题

一章、力学性能 一、填空: 1.材料的硬度分为布氏硬度、洛氏硬度和维氏硬度,其符号分别是HBW 、HR和 HV。 2.金属抗拉强度的符号是Rm ,塑性的指标主要有断后伸长率和断面收缩率。 3.大小、方向或大小和方向都随时发生周期性变化的载荷称为交变载荷。(考证真题) 二、选择: 1.500HBW5/750表示直径为 5 mm的硬质合金压头、在750 Kgf 载荷作用下、保持1~15 S测的硬度值为 500。(考证真题) 2.拉伸试验可测定材料的AC。 A.强度 B.硬度 C.塑性 D.韧性 3.下列力学性能中,C适于成品零件的检验,可不破坏试样。 A. b σ B.A k C.HRC 4.疲劳实验时,试样承受的载荷为 B 。(考证真题) A.静载荷 B.交变载荷 C.冲击载荷 D.动载荷 5.常用塑性的判断依据是 A 。(考证真题) A.断后伸长率和断面收缩率 B.塑性和韧性 C.断面收缩率和塑性 D.断后伸长率和塑性 6.适于测试硬质合金、表面淬火钢及薄片金属硬度的方法是C。(考证真题) A.布氏硬度 B.洛氏硬度 C.维氏硬度 D.以上都可以 7.不适于成品与表面薄片层硬度测量的方法是A。(考证真题) A.布氏硬度 B.洛氏硬度 C.维氏硬度 D.以上都不宜 8.用金刚石圆锥体作为压头可以用来测试B。(考证真题) A.布氏硬度 B.洛氏硬度 C.维氏硬度 D.以上都可以 9.表示金属抗拉强度的符号是C。 A.R eL B.R s C.R m D. 1- σ

10.金属在静载荷作用下,抵抗变形和破坏的能力称为C。 A.塑性 B.硬度 C.强度 D.弹性 三、判断 1.塑性变形能随载荷的去除而消失。(错) 2.所有金属在拉伸实验时都会出现屈服现象。(错) 3.一般情况下,硬度高的材料耐磨性好。(对) 4.硬度测试时,压痕越大(深),材料硬度越高。(错) 5.材料在受力时,抵抗弹性变形的能力成为刚度。(对) 四、计算 某厂购入一批40钢,按标准规定其力学性能指标为:R eL ≥340MPa,Rm≥540MPa,A ≥19%,Z≥45%。验收时取样制成d 0=10mm L =100mm的短试样进行拉伸试验,测得 F eL =31.4KN,Fm=41.7KN,L 1 =62mm,d 1 =7.3mm。请判断这批钢材是否合格。 屈服强度R eL =4F eL /πd 2 抗拉强度Rm=4Fm/πd 2 断后伸长率A=(L ―L 1 )/L 断面收缩率Z=(S ―S 1 )/S =(d 2-d 1 2)/d 2 二章、金属的晶体结构与结晶 一、解释 晶体:晶格:晶胞: 二、填空、选择、 1.金属常见的晶格有体心立方晶格、面心立方晶格、密排六方晶格三种类型。 2.晶体的内部晶格位相完全一致的晶体称为单晶体。外形成多面体的小晶体称为 晶粒;晶粒与晶粒间的界面称为晶界;由许多晶粒组成的晶体称为多晶体。 3.实际属的金晶体缺陷有点缺陷、线缺陷与面缺陷三类。(考证真题) 4.单位体积中包含位错线的总长度称为位错密度。(考证真题) 5.金属结晶过程是一个晶核形成和长大的过程。 6.金属晶粒越细,其力学性能越好。 7.常温下晶粒尺寸越大,金属的变形抗力越差。(考证真题) 8.细化晶粒的办法有提高过冷度、调质处理、附加振动三种。

几种耐磨材料的研究与进展

几种耐磨材料的研究与进展 摘要:为了了解国内耐磨材料的研究与进展情况,本文对近年来耐磨自润滑发展进行了研究。研究表明:(1)在耐磨材料研究和发展中,应充分分析典型磨损工况,了解各种磨损机理所占比重,从而确定对耐磨材料的要求,以进行合理的合金和组织设计。(2)耐磨钢的发展方向在于通过合金化强化基体,提高其起始硬度和屈服强度,以改善低冲击、低应力磨损条件下的耐磨性,扩大其应用范围,并防止变形[1]。(3)低、中合金耐磨钢通过合金设计和适当热处理,获得具有较高硬度,足够韧性,良好耐磨性的组织,可在较大冲击、较高应力的磨料磨损工况条件下使用。 关键词:耐磨材料自润滑摩擦磨损 引言 材料的破坏有3种形式:即断裂、腐蚀和磨损。材料磨损尽管不象另外两种形式那样,很少引起金属工件灾难性的危害,但其造成的经济损失却是相当惊人的。据早期统计,由磨损造成的经济损失,美国约150亿美元/年,西德约100亿马克/年,前苏联约120亿卢布/年。在各类磨损中,磨料磨损又占有重要的地位,在金属磨损总量中占50%,在冶金矿山、建材、电力、农机、煤炭等行业磨料磨损尤为严重因此,研究和发展用于磨料磨损条件下的耐磨材料,以减少金属磨损,对国民经济有重要的意义[2]。 根据各类磨损机理与材料性能的关系,可提出对耐磨材料的常规要求:a、较高硬度、一定塑性;b、足够韧性和脆断抗力;c、高的应变疲劳和剥层疲劳抗力;d、高的淬透性和获得足够深的淬透层;e、良好的工艺性和生产工艺方便易行[3]。 1Fe-20Ni-3.5C自润滑材料 镍基合金具有优良的热稳定性和抗腐蚀性能,在高温发动机和高温结构材料中具有极其重要的应用,近年来的研究表明,含石墨的镍基合金具有良好的自润滑性能,但由于镍的资源较短缺,价格居高不下,限制了材料的应用。用熔炼法制备了Fe含量为20%~60%(质量分数)的镍-铁-石墨-硅合金,该合金具有良好的自润滑性能并显著降低了材料成本,其实验结果表明随着铁含量的增加,合金的自润滑性能逐渐提高, 其中铁含量为60%时,合金干摩擦因数相对较低。进一步增加Fe的含量可以使材料价格进一步降低,但对合金的摩擦磨损性能和机械性能的影响需要进行研究.研究采用熔炼法制备了Fe-20Ni-3.5C合金.随着 铁含量的增加,合金析出碳化物的可能性变大,有可能减少固体润滑剂石墨的含量.硅是一种石墨化元素,可以抑制碳化物的生成,促使碳原子结晶成为石墨,提高合金中固体润滑组元的含量,而且可以固溶于奥 氏体中提高材料的强度,改善材料的摩擦磨损性能.但硅含量的增加会使合金变脆,机械性能降低.因此必须以Fe-20Ni-3.5C合金为基础,研究添加不同含量的硅对合金的凝固组织、力学性能和摩擦磨损性能的影响及其规律: 1)采用熔炼法制备出不同硅含量的Fe-20Ni-3.5C固体自润滑材料,合金组织致密,石墨分布均匀,随着硅含量的增加,结晶的石墨形态由细片状逐渐变为粗片状石墨,当硅含量增至3.5%时,石墨的生长形态趋于等轴球状; 2)随着添加硅量的增加,固溶于合金基体中的硅原子含量增加而碳含量降低,合金的硬度和抗拉强度先提高后降低,冲击韧性则随着合金硬度的降低而升高.当加入Si量达到3.5%时,由于合金基体硬度的降低及石墨的球状化,冲击韧性大幅度提高; 3)合金的磨损率随合金硬度值的提高而降低.硬度的提高,减轻了粘着磨损,降低了磨损率,其中 Fe-20%Ni-3.5%-2.5%Si具有较小的摩擦因数和较低的磨损率,其摩擦因数稳定在0.23左右,磨损形式主要以疲劳磨损为主[4]。 2稀土低合金耐磨钢焊条 在对高锰钢的研究中已经发现:在高应力状态下(如强烈冲击或挤压载荷),高锰钢产生加工硬化,

金属材料与热处理考试复习笔记

热处理复习重点 第一章金属材料基础知识 1. 材料力学性能 (1)材料在外力作用下抵抗变形和破坏的能力称为强度。强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。 (2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。 (3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。 (4)硬度(材料表面局部区域抵抗更硬物体压入的能力) a. 布氏硬度(测较低硬度材料) 用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。HBS(钢球,<450)、HBW(硬质合金球,>650)。 b. 洛氏硬度(测较高硬度材料) 利用一定载荷将交角为120°的金刚石圆锥体或直径为的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。HRA(金刚石圆锥,20~80)、HRB(钢球,20~100)、HRC(金刚石圆锥,20~70) c. 维氏硬度(适用范围较广) 维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。 (5)冲击韧性 材料抵抗冲击载荷作用而不被破坏的能力。通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。 (6)疲劳强度 材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。

2. 铁碳相图 第二章钢的热处理原理 1. 钢的临界温度 A c1——加热时珠光体向奥氏体转变的开始温度 A c3——加热时先共析铁素体全部溶入奥氏体的终了温度 A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度 A r1——冷却时奥氏体向珠光体转变的开始温度 A r3——冷却时奥氏体开始析出先共析铁素体的温度 A rcm——冷却时奥氏体开始析出二次渗碳体的温度 2. 钢在加热时的转变 (1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。 (2)铁素体向奥氏体的转变的速度远比渗碳体溶解速度快的多。所以转变过程中珠光体中总是铁素体首先消失,铁素体全部转化为奥氏体时,可以认为奥氏体长大完成。 (3)影响奥氏体形成速度的因素:加热温度、加热速度、化学成分、原始组织。 (4)加热速度越快,奥氏体形成的开始温度和终了温度越高,而孕育期和转变时间越短,奥氏体形成速度越快。

简述常用热处理工艺的原理与特点

简述常用热处理工艺的原理与特点。 热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。 热处理工艺原理 1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。 3、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。 4、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。 5、调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。 特点:金属热处理是机械制造中的重要工艺之一,金球的热处理工艺与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 比较钢材与非金属材料热处理的异同点。 热处理有金属材料热处理和非金属材料热处理 相同点:热处理的原理基本一样,都是一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 不同点: 1.钢的表面热处理有两大类:一类是表面加热淬火热处理,另一类是化学热处理。 非金属材料的表面热处理:喷漆、着(染)色、抛光、化学镀后再电镀(如ABS)等。 2.金属材料热处理包括:退火、正火、淬火和回火。 非金属材料热处理包括碳纤维预氧化、碳化、石墨化设备,石墨化烧结等;复合材料成形以及空间环境模拟,包括热压罐,热压机,KM系列模拟罐,用户分布于汽车、模具、工具、碳纤维加工和其他高端应用领域。

金属冶炼安全技术示范文本

文件编号:RHD-QB-K6380 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 金属冶炼安全技术示范 文本

金属冶炼安全技术示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 (一)高温与中暑。 金属冶炼操作,如炼钢、炼铁是在千度以上的高温下进行的。高温作业时,人体受高温的影响,出现一系列生理功能改变,如体温调节功能下降。当生产环境温度超过34℃时,很容易发生中暑。如果劳动强度过大,持续劳动时间过长,则更容易发生中暑。严重时可导致休克。 防止中暑的措施,是合理地设计工艺流程,改进生产设备和操作方法,消除或减少高温、热辐射对人体的影响。这是改善高温作业劳动条件的根本措施,用水或导热系数小的材料进行隔热,也是防暑降温的

重要措施。采用机械通风和自然通风,则是经济有效的散热方式。 (二)爆炸与灼烫 钢铁工厂为了提高效益,降低消耗,常常采用强化冶炼的措施,如喷煤粉和吹氧等,这就使得炼钢、炼铁生产中容易发生钢水、铁水喷溅和爆炸事故。 造成钢水、铁水喷溅、爆炸的原因很多,从原料开始生产出钢、铁的全部生产工艺过程,均隐藏着不安全因素。必须从每一道工艺上加强防范措施。 1. 各生产岗位人员必须掌握生产规律,熟悉操作规程,认真观察事故先兆并懂得处置办法。 2. 加强原料的管理和挑选工作,严防爆炸品、密封容器进入炉内。 3. 经常检查冷却系统,保护系统畅通。控制好冷却水压和水量,以防止水冷系统强度不够造成钢板

四种热处理方式

淬火Quenching 钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。 淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。 淬火工艺 将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。 淬火工件的硬度 淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计,测试HRC硬度。淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。 在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。 由于淬火后金属硬而脆,产生的表面残余应力会造成冷裂纹,回火可作为在不影响硬度的基础上,消除冷裂纹的手段之一。 淬火对厚度、直径较小的零件使用比较合适,对于过大的零件,淬火深度不够,渗碳也存在同样问题,此时应考虑在钢材中加入铬等合金来增加强度。 淬火是钢铁材料强化的基本手段之一。钢中马氏体是铁基固溶体组织中最硬的相(表1),故钢件淬火可以获得高硬度、高强度。但是,马氏体的脆性很大,加之淬火后钢件内部有较大的淬火内应力,因而不宜直接应用,必须进行回火。 淬火工艺的应用

机械制造基础工程材料及热加工工艺基础绝密

绝对最全!!!!!!! 工程材料与热加工 拒绝盗版! 第1章材料的力学性能 一、选择题 1.金属材料在静载荷作用下,抵抗变形和破坏的能力称为__C____。 A. 塑性 B. 硬度 C. 强度 D. 弹性 2.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是___C___。 A. HBS B. HRC C. HV D. HBW 3.做疲劳试验时,试样承受的载荷为__B_____。 A. 静载荷 B. 交变载荷 C. 冲击载荷 D. 动载荷 二、填空题 1.金属塑性的指标主要有断后伸长率和断面收缩率两种。 2.金属的性能包括物理性能、化学性能、工艺性能和力学性能。 3.常用测定硬度的方法有压入法、刻划法和回跳法测试法。 4.材料的工艺性能包括铸造性能、锻造性能、焊接性能、切削加工性、热处理性等。 5.零件的疲劳失效过程可分为疲劳裂纹产生、疲劳裂纹扩展、瞬时断裂三个阶段。 三、判断题 1.用布氏硬度测试法测量硬度时,压头为钢球,用符号HBS表示。 ( √) 2.材料的断裂韧度大于材料的应力场强度因子的,材料的宏观裂纹就会扩展而导致材料的断裂。 ( ×) 四、概念及思考题 1.硬度,硬度的表示方法。 答:(1)硬度:材料在表面局部体积内抵抗变形(特别是塑性变形)、压痕或刻痕的能力;(2)硬度的表示方法:①布氏硬度:HBS(钢头:淬火钢球)或HBW (钢头:硬质合金球)②洛氏硬度:HR ③维氏硬度:HV 2.韧性,冲击韧性。3.疲劳断裂4.提高疲劳强度的途径。 第2章金属的晶体结构与结晶 一、名词解释 晶体:是指原子(离子、分子)在三维空间有规则地周期性重复排列的物体; 晶格:是指原子(离子、分子)在空间无规则排列的物体; 晶胞:通常只从晶格中选取一个能完全反应晶格特征的、最小的几何单元来分析晶体中原子的排列规律,这个最小的几何单元成为晶胞; 晶粒:多晶体中每个外形不规则的小晶体; 晶界:晶粒与晶粒间的界面;

不同热加工方法引起的缺陷种类及原因

目录 一、锻造产生的缺陷及原因 (2) 二、铸造产生的缺陷及原因 (5) 三、焊接产生的缺陷及原因 (6) 四、渗氮产生的缺陷及原因 (9) 五、渗氮产生的缺陷及原因 (11) 六、淬火产生的缺陷及原因 (13) 七、退火和正火产生的缺陷及原因 (15) 八、回火产生的缺陷及原因 (16)

不同热加工方法引起的缺陷种类及原因 热加工工艺包括锻造、铸造、焊接、热处理等,由于加工工艺、工件材料及操作者操作熟练程度的不同,会产生许多缺陷。下面就不同热加工方法所引起的缺陷种类及原因进行分析。 一、锻造产生的缺陷及原因 锻造工艺不当产生的缺陷通常有以下几种 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。 产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。 如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯

相关文档
最新文档