(完整版)集合的概念与关系练习题

合集下载

(完整版)集合间的基本关系试题(含答案),推荐文档

(完整版)集合间的基本关系试题(含答案),推荐文档

一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是()A.1 B.2C.3 D.4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+1 2=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k是任意整数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.如果集合A满足{0,2}A⊆{-1,0,1,2},则这样的集合A个数为() A.5 B.4C.3 D.2[答案] C[解析] 集合A 里必含有元素0和2,且至少含有-1和1中的一个元素,故A ={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A ={正方形},B ={平行四边形},C ={四边形},D ={矩形},E ={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对任意c ∈Z 有b =c +1∈Z .对任意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法观察它们之间的关系.15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.[答案] 6[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若AB ,求实数a 的取值范围.[解析] 如图∵A B ,∴a +4≤-1或者a >5.即a ≤-5或a >5.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.[解析] ∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a 4},∵A ⊇B ,∴-a 4≤-1,即a ≥4,所以a 的取值范围是a ≥4.18.A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},a 、x ∈R ,求:(1)使A ={2,3,4}的x 的值;(2)使2∈B ,B A 成立的a 、x 的值;(3)使B =C 成立的a 、x 的值.[解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a=2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。

集合练习题加答案

集合练习题加答案

集合练习题加答案集合是数学中的基本概念之一,它提供了一种描述对象集合的方式。

在集合论中,集合是由一些明确的或不明确的确定的对象构成的整体。

这些对象被称为集合的元素。

集合论是现代数学的基础之一,它在各个数学领域都有广泛的应用。

以下是一些集合练习题,以及相应的答案,供学习者练习和检验自己的理解。

练习题1:确定以下集合的元素。

- A = {x | x 是一个偶数}- B = {y | y > 5}- C = {z | z 是一个质数}答案1:- A的元素是所有偶数,例如2, 4, 6, 8等。

- B的元素是所有大于5的实数。

- C的元素是所有质数,如2, 3, 5, 7, 11等。

练习题2:判断以下集合是否相等。

- X = {1, 2, 3}- Y = {1, 3, 2}答案2:- X和Y是相等的,因为集合的元素是无序的,只考虑元素的种类和数量。

练习题3:计算以下集合的并集。

- A = {1, 2, 3}- B = {3, 4, 5}- C = {2, 5, 6}答案3:- A ∪ B ∪ C = {1, 2, 3, 4, 5, 6}练习题4:计算以下集合的交集。

- D = {1, 2, 3, 4}- E = {3, 4, 5}答案4:- D ∩ E = {3, 4}练习题5:计算集合D的补集,假设全集U包含所有自然数。

- D = {1, 2, 3, 4}答案5:- D' = U - D = {所有自然数除了1, 2, 3, 4}练习题6:如果A = {x | x 是一个偶数},B = {x | x 是一个奇数},计算A和B的差集。

答案6:- A - B = {x | x 是一个偶数但不是奇数},即A本身,因为奇数和偶数是互补的。

练习题7:给定集合F = {x | x 是一个整数,且 -3 ≤ x ≤ 3},计算F的幂集。

答案7:- F的幂集包含F的所有子集,共有2^7个子集,因为F有7个元素(-3, -2, -1, 0, 1, 2, 3)。

(完整版)集合的概念与关系练习题

(完整版)集合的概念与关系练习题

若集合A= {—1,1}, B = {0,2},则集合{z|z= x+ y, x€ A, y€ B}中的元素的个数为(已知集合A是由0, m, m2—3m + 2三个元素组成的集合,且D • 0,2,3 均可M = {(x, y)|xy v 0, x € R , y€ R}是第一象限内的点集 B •第三象限内的点集10 •下列命题:①空集无子集;②任何集合至少有两个子集;③空集是任何集合的真子集;B • S P MC • S P集合的概念与关系练习题1集合{x€ N + |x—3<2}用列举法可表示为A • {0,123,4}B • {123,4}C • {0,123,4,5}D • {123,4,5}2 •给出下列几个关系,正确的个数为① 3 € R:② 0.5D € /Q;③ 0€ N ;④—3€Z ;⑤ 0€ N+.3.下列集合中,结果是空集的是A • {x€ R|x2— 1 =0}C • {(x, y)|/+ y2= 0}4 •将集合x,A •{2,3}5 •下列集合中,{x|x > 6 或x v 1}{xx> 6 且x v 1}x+ y= 5 一丄y | 表示成列举法,正确的是2x —y= 1B •{(2,3)}C •{(3,2)}不同于另外三个集合的是C • {x=1}A. {x|x = 1} B • {y|(y—1)2= 0}6•下列正确表示集合M = { —1,0,1}和N= {xlx2+ x= 0}关系的Venn图是(2,3){1}D•2€ A,则实数m为(集合第四象限内的点集 D •第二、四象限内的点集④若A,贝U心?•其中正确的有11 •集合M = {x|x= 3k—2, 的关系是k€ Z}, P = {y|y= 3n+ 1, n€ Z}, S= {z|z= 6m + 1,m€ Z}之间12 •由下列对象组成的集体属于集合的是•(填序号)①不超过n的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.13•设a, b都是非零实数,丫=合+若+鑒可能取的值组成的集合是________________ •|a| |b| |ab|14•已知集合A是由a —2,2a2+ 5a,12三个元素组成的,且—3€ A,求a.15. ______________________________________________________________________ 已知集合 A = { —1,3,2m —1},集合B = {3 , m2}.若B? A,则实数m= ________________ .16. 如果有一集合含有三个元素____________________ 1, x, x2—x,则实数x的取值范围是•17. 已知集合A = {x|1v x v2}, B={x|x v a},若A B,则实数a的取值范围是__________________ .18. 用列举法表示下列集合:(1) A = {x€ N||x|W 2} = _______ ;(2) B = {x€ Z||x|W 2} = ________ ;(3) C = {(x, y)|x2+ y2= 4, x€ Z , y € Z} = _______ .1 b 1 c 119. 已知集合A={x|x= a+6,a€ Z} , B= {x|x= - —3, b € Z} , C = {x|x=- + -, c€ Z},则A、B、C之间的关系是 __________ .20. 集合A= {x|kx2—8x+ 16= 0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.21. 定义集合运算A*B= {z|z= xy, x€ A, y€ B}.设A = {1,2} , B = {0,2},则集合A*B 的所有元素之和是多少?22. 已知集合A= {x||x—a|= 4}, B = {1,2 , b}.问是否存在实数a,使得对于任意实数b(b^ 1,2)都有A? B若存在,求出对应的a值;若不存在,说明理由.23. 已知集合A ={x|/—3x—10W0},⑴若B? A, B= {x|m+ 1 < x< 2m—1},求实数m的取值范围;(2) 若A? B, B= {x|m—6< x< 2m—1},求实数m的取值范围;(3) 若A = B, B= {x|m—6< x< 2m—1},求实数m的取值范围.24. 已知集合A = {xlx2—3x+ 2< 0} , B= {x|x2—(a + 1)x+ a< 0}.(1) 若A 是B 的真子集,求a 的取值范围;(2) 若B 是A 的子集,求a 的取值范围;⑶若A = B,求a的取值范围.25.已知函数y x22ax 1在1 x 2上的最大值为4,求a 的值.226.求关于x的二次函数y x 2tx 1在2 x 1上的最小值(t为常数)•。

(完整版)集合间的基本关系试题(含答案),推荐文档

(完整版)集合间的基本关系试题(含答案),推荐文档

一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是()A.1 B.2C.3 D.4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+1 2=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k是任意整数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.如果集合A满足{0,2}A⊆{-1,0,1,2},则这样的集合A个数为() A.5 B.4C.3 D.2[答案] C[解析] 集合A 里必含有元素0和2,且至少含有-1和1中的一个元素,故A ={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A ={正方形},B ={平行四边形},C ={四边形},D ={矩形},E ={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对任意c ∈Z 有b =c +1∈Z .对任意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法观察它们之间的关系.15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.[答案] 6[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若AB ,求实数a 的取值范围.[解析] 如图∵A B ,∴a +4≤-1或者a >5.即a ≤-5或a >5.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.[解析] ∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a 4},∵A ⊇B ,∴-a 4≤-1,即a ≥4,所以a 的取值范围是a ≥4.18.A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},a 、x ∈R ,求:(1)使A ={2,3,4}的x 的值;(2)使2∈B ,B A 成立的a 、x 的值;(3)使B =C 成立的a 、x 的值.[解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a=2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。

集合的概念_练习题(1)_

集合的概念_练习题(1)_

集合的概念练习题(1)学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列对象能构成集合的是()A.高一年级全体比较高的同学B.香港市跑的比较快的汽车C.赤峰市所有的高中生D.上海市的高楼2. 设集合A={x|x>2},则()A.3∉AB.√5∈AC.2∈AD.0∈A3. 集合A={(x,y)|x+y=3,x∈N∗,y∈N∗},则集合A为()A.{1,2}B.{(1,2)}C.{(2,1)}D.{(1,2),(2,1)}4. 对于R上的可导函数f(x),满足(x−1)f′(x)≥0,则下列说法错误的是()A.f(x)在(0,+∞)上是增函数B.f(x)在(−∞,0)上是减函数C.当x=1时,f(x)取得最小值D. f(0)+f(2)≥2f(1)5. 已知集合A={a−2, a2+4a, 10},若−3∈A,则实数a的值为()A.−3B.−1C.−3或−1D.无解6. 下列所给对象不能构成集合的是( )A.一个平面内的所有点B.所有小于零的正数C.某校高—(4)班的高个子学生D.某一天到商场买过货物的顾客7. 已知集合A={x|x≤√13},若a=4,则()A.a⊊AB.a∉AC.{a}∉AD.{a}⊊A8. 定义集合A、B的一种运算:A∗B={x|x=x1+x2, x1∈A, x2∈B},若A= {1, 2, 3},B={1, 2},则A∗B中的所有元素之和为()A.21B.18C.14D.99. (3分)下列说法中不正确的是()A.0与{0}表示同一个集合B.集合M={3, 4}与N={(3, 4)}表示同一个集合C.方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 1, 2}D.集合{x|4<x<5 }不能用列举法表示10. 设集合A={−1, a},B={2, b},若A=B,则a+b=________.11. 已知集合A={1, 2},B={(x, y)|x∈A, y∈A, x+y∈A},则B中所含元素的个数为________.12. 若集合A={−1, 0, 1},集合B={x|x=t2, t∈A},用列举法表示B=________.13. 三条直线ax+2y+8=0,4x+3y=10,2x−y=10相交于一点,则实数a的值为________.14. 设A为非空实数集,若∀x,y∈A,都有x+y,x−y,xy∈A,则称A为封闭集.①集合A={−2, −1, 0, 1, 2}为封闭集;②集合A={n|n=2k, k∈Z}为封闭集;③若集合A1,A2为封闭集,则A1∪A2为封闭集;④若A为封闭集,则一定有0∈A.其中正确结论的序号是________.∈N, m∈N},用列举法表示集合A,A=________.15. 已知集合A={m|y=12m16. 已知等差数列{a n}的前n项和为S n,且a2=18−a7,S8=________.17. 由所有奇数组成的集合可用下列哪几个集合表示()(1){x|x=2k+1, k∈Z}(2){x|x=2k−1, k∈Z}(3){x|x=4k±1, k∈Z}(4){...−3, −1, 1, 3, 5...}A.1,2B.1,2,4C.1,2,3D.1,2,3,418. 如图所示,在三棱锥S−BCD中,平面SBD⊥平面BCD,A是线段SD上的点,△SBD为等边三角形,∠BCD=30∘,CD=2DB−4.(1)若SA=AD,求证:SD⊥CA;,求AD的长.(2)若直线BA与平面SCD所成角的正弦值为4√1956519. 已知集合A={x∈R|ax2−3x−4=0}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.参考答案与试题解析集合的概念练习题(1)一、选择题(本题共计 8 小题,每题 3 分,共计24分)1.【答案】C【考点】集合的含义与表示【解析】根据集合元素应满足确定性,分析四个答案中的元素是否满足确定性,即可得到答案.【解答】解:高一年级全体比较高的同学具有不确定性,故构不成集合;香港跑的比较快的汽车具有不确定性,故构不成集合;赤峰市所有的高中生是确定的,故可以构成集合;上海市的高楼具有不确定性,故构不成集合;故选C.2.【答案】B【考点】元素与集合关系的判断【解析】根据集合的表示法,只需判断√5与2的大小.【解答】解:∵√5>2,∴√5∈A.故选B.3.【答案】D【考点】集合的含义与表示【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】集合的含义与表示【解析】此题暂无解析【解答】解:当x≥1时,f′(x)≥0,函数f(x)在[1,+∞)上是增函数,当x<1时,f′(x)≤0,f(x)在(−∞,1)上是减函数,故说法A错误,说法B正确;当x=1时,f(x)取得极小值,也是最小值,说法C正确;f(1)为函数f(x)的最小值,故有f(0)≥f(1),f(2)≥f(1),得f(0)+f(2)≥2f(1),说法D正确.故选A.5.【答案】A【考点】元素与集合关系的判断【解析】由于−3∈A则a−2=−3或a2+4a=−3,求出a的值然后再代入再根据集合中元素的互异性对a进行取舍.【解答】解:∵−3∈A,∴−3=a−2或−3=a2+4a∴a=−1或a=−3,∴当a=−1时,a−2=−3,a2+4a=−3,不符合集合中元素的互异性,故a=−1应舍去;当a=−3时,a−2=−5,a2+4a=−3,满足.∴a=−3.故选A.6.【答案】C【考点】集合的含义与表示【解析】利用集合的元素确定性,逐个判断即可.【解答】解:集合是把一些可以确定的不同对象看做整体.A,"一个平面内的所有点”能构成集合;B,“所有小于零的正数”能构成集合;C,“某校高一(4)班的高个子学生”的标准不确定,不能构成集合;D,“某一天到商场买过货物的顾客”能构成集合.故选C.7.【答案】B【考点】元素与集合关系的判断【解析】利用元素与集合的关系直接求解.【解答】∵集合A={x|x≤√13},a=4,8.【答案】C【考点】元素与集合关系的判断【解析】根据新定义A∗B={x|x=x1+x2, x1∈A, x2∈B},把集合A与集合B中的元素分别代入再求和即可求出答案.【解答】解:∵A∗B={x|x=x1+x2, x1∈A, x2∈B},A={1, 2, 3},B={1, 2},∴A∗B={2, 3, 4, 5},∴A∗B中的所有元素之和为:2+3+4+5=14,故选C.二、多选题(本题共计 1 小题,共计3分)9.【答案】A,B,C【考点】集合的确定性、互异性、无序性元素与集合关系的判断集合的含义与表示【解析】利用元素与集合的关系、集合的性质及其表示法、集合的运算即可判断出.【解答】解:A,0是一个元素(数),而{0}是一个集合,二者是属于与不属于的关系,选项不正确;B,集合M={3, 4}表示数3,4构成的集合,而N={(3, 4)}表示点集,选项不正确;C,集合的元素具有互异性,不允许重复,因此方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 2},选项不正确;D,集合{x|4<x<5}含有无穷个元素,不能用列举法表示,选项正确.故选ABC.三、填空题(本题共计 7 小题,每题 3 分,共计21分)10.【答案】1【考点】集合的相等【解析】根据已知条件便得,a=2,b=−1,所以a+b=1.【解答】解:根据已知条件得:a=2,b=−1,∴a+b=1;故答案为:1.11.【答案】1元素与集合关系的判断【解析】由集合A ={1, 2},求出B ={(x, y)|x ∈A, y ∈A, x +y ∈A}={(1, 1)},由此能求出B 中所含元素的个数.【解答】∵ 集合A ={1, 2},∴ B ={(x, y)|x ∈A, y ∈A, x +y ∈A}={(1, 1)},∴ B 中所含元素的个数为1.12.【答案】{0, 1}【考点】集合的含义与表示【解析】分别令t =−1,1,0,求出相对应的x 的值,从而求出集合B .【解答】解:当t =±1时,x =1,当t =0时,x =0,∴ B ={0, 1}.故答案为:{0, 1}.13.【答案】−1【考点】两条直线的交点坐标【解析】联立{4x +3y =102x −y =10,解得{x =4y =−2,把(4, −2)代入直线ax +2y +8=0,解出即可. 【解答】解:联立{4x +3y =102x −y =10,解得{x =4y =−2, 把(4, −2)代入直线ax +2y +8=0,可得4a −4+8=0,解得a =−1.故答案为:−1.14.【答案】②④【考点】元素与集合关系的判断【解析】由题意,根据封闭集的定义依次对四个命题判断即可.【解答】解:若x =−2,y =−1,则x +y =−3∉A ;故集合A ={−2, −1, 0, 1, 2}为封闭集不正确,即①不正确;若x ,y ∈A ,则x =2k 1,k 1∈Z ,y =2k 2,k 2∈Z ;故x +y =2(k 1+k 2)∈A ;x −y =2(k 1−k 2)∈A ,xy=4k1k2∈A;故②正确;反例A1={n|n=√3k, k∈Z},A2={n|n=√2k, k∈Z};但A1∪A2不是封闭集;故③不正确;若A为封闭集,则取x=y得,x−y=0∈A;故④正确;故答案为:②④.15.【答案】{1, 2, 3, 4, 6, 12}【考点】集合的含义与表示【解析】由题意,令m=1,2,3,4,6,12,求y=12;从而列举表示.m【解答】解:由题意,=12;若m=1,y=12m=6;若m=2,y=12m=4;若m=3,y=12m=3;若m=4,y=12m=2;若m=6,y=12m=1;若m=12,y=12m则集合A={1, 2, 3, 4, 6, 12}.故答案为:{1, 2, 3, 4, 6, 12}.16.【答案】72【考点】等差数列的前n项和【解析】此题暂无解析【解答】此题暂无解答四、解答题(本题共计 3 小题,每题 10 分,共计30分)17.【答案】D【考点】集合的含义与表示【解析】此题暂无解析【解答】此题暂无解答18.【答案】解:解:【考点】集合的含义与表示【解析】此题暂无解析【解答】解:解:“”19.【答案】解:(1)∵ A 中有两个元素,∴ 关于x 的方程ax 2−3x −4=0有两个不等的实数根, ∴ Δ=9+16a >0,且a ≠0,即a >−916且a ≠0. 故所求的取值范围是{a|a >−916且a ≠0};(2)当a =0时,方程为−3x −4=0,x =−43,集合A ={−43}; 当a ≠0时,若关于x 的方程ax 2−3x −4=0有两个相等的实数根, 则A 中只有一个元素,此时a =−916; 若关于x 的方程ax 2−3x −4=0没有实数根, 则A 没有元素,此时a <−916.综上可知,所求的范围是{a|a ≤−916或a =0}.【考点】元素与集合关系的判断【解析】此题暂无解析【解答】解:(1)∵ A 中有两个元素,∴ 关于x 的方程ax 2−3x −4=0有两个不等的实数根, ∴ Δ=9+16a >0,且a ≠0,即a >−916且a ≠0. 故所求的取值范围是{a|a >−916且a ≠0};(2)当a =0时,方程为−3x −4=0,x =−43,集合A ={−43};当a≠0时,若关于x的方程ax2−3x−4=0有两个相等的实数根,则A中只有一个元素,此时a=−9;16若关于x的方程ax2−3x−4=0没有实数根,.则A没有元素,此时a<−916或a=0}.综上可知,所求的范围是{a|a≤−916。

(完整版)集合的概念及表示练习题及答案

(完整版)集合的概念及表示练习题及答案

新课标集合的含义及其表示姓名:、选择题:1.下面四个命题:(1)集合N中的最小元素是1:( 2)若a N,则a N (3) x2的解集为{2 , 2} ; ( 4) 0.7 Q,其中不正确命题的个数为 ( )4xA. 0B. 1C.2D.32.下列各组集合中,表示同一集合的是A. M 3,2 , N 2,3B. 3,2 , N 2,3C. M x, y x y 1 , N y 1D. M 1,2 ,N 1.23.下列方程的实数解的集合为-的个数为(1) 4x2 9y2 4x 12y 5 0;(2)6x20;⑶ 2x 1 23x 2 0;(4)6x2A.1B.2C.3D.44.集合A x 1 0 ,B 6x 10 0 , x Q 4x 5 解集含有3个元素;(3) 0 (4)满足1 x x的实数的全体形成的集合。

其中正确命题的个数是( )A.0B. 1C. 2D.3二. 填空题:一,2x 4 08. 用列举法表示不等式组2x 4 0的整数解集合为1 x 2x 19. 已知集合A x x N,里I N用歹0举法表示集合A为6 x10. 已知集合A a-_41有惟一解,乂列举法表示集合A为x a三、解答题:11. 已知A= 1,a,b , B a, a2,ab,且A=B,求实数a,b ;12. 已知集合A xax2 2x 1 0, x R , a为实数(1)若A是空集,求a的取值范围(2)若A是单元素集,求a的值(3)若A中至多只有一个元素,求a的取值范围D xx为小丁2的质数,其中时空集的有A. 1 个B.2个C.3 个D.4 个5.下列关系中表述正确的是A. 0 x20B. 0 0,0C. 0D. 06.A. 下列表述正确的是(0 B. 1,2 2,1 C. D. 07. 卜面四个命题:(1)集合N中的最小元素是 1 : (2)方程13.设集合M a a x2 y2,a Z(1)请推断任意奇数与集合M的关系(2)关丁集合M你还可以得到一些什么样的结论参考答案:DBBBDBCa>1(2) a=0or1 (3) a=0-一一…- 178. 1,0,1,2 9 0,2,3,4,5 ; 10, 一,2,2 11,a= -1,b=0 ; 12, (1)4or a 113 (1)任意奇数都是集合M的元素(2)略。

(完整版)集合的概念与表示方法习题

(完整版)集合的概念与表示方法习题

集合的概念与表示方法测试卷一、选择题(共15题,每题2分,共30分) 1.给出下列表述:①联合国常任理事国;②充分接近2的实数的全体;③方程 错误!未找到引用源。

的实数根;④全国著名的高等院校. 以上能构成集合的是( ) A.①③ B.①② C.①③④ D.①②③④2. 由 a ²,2-a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是() A 、1 B 、-2 C 、6 D 、23.下列各组对象中不能组成集合的是()A. 直角三角形的全体B. 所有的无理数C. 方程2x-1=0的整数解D. 我班个子较高的同学 4.下列叙述正确的是( ) A. 集合},3|{N x x x ∈<中只有两个元素 B. }1{}012|{2==+-x x xC. 整数集可表示为}{ZD. 有理数集表示为{x x |为有理数集}5.方程组⎩⎨⎧-=-=+11y x y x 的解集是( ) A. {0,1} B. (0,1)C. {(x,y)|x=0,或y=1}D. {(0,1)}6.下列集合表示法正确的是( )A.{1,2,2}B.{全体实数}C.{有理数}D.不等式 x ²-5>0的解集为{x ²-5>0} 7. 设A={a},则下列各式正确的是( ) A 、0∈A B 、a ∉AC 、a ∈AD 、a=A8. 由大于-3且小于11的偶数所组成的集合是( ) A 、{x|-3<x<11,x ∈Q} B 、{x|-3<x<11}C 、{x|-3<x<11,x=2k,k ∈N}D 、{x|-3<x<11,x=2k,k ∈Z} 9. 设集合M ={(1,2)},则下列关系成立是( )。

A 、1∈MB 、2∈MC 、(1,2)∈MD 、(2,1)∈M 10. 集合{x-1,x ²-1,2}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、511. 直角坐标平面内,集合M={(x ,y )丨xy ≥0,x ∈R ,y ∈R }的元素所对应的点是 A 、第一象限内的点 B.第三象限内的点C.第一或第三象限内的点D.非第二、第四象限内的点 12. 下列结论不正确的是( )A 、0∈NB 、错误!未找到引用源。

集合知识点汇总与练习试题

集合知识点汇总与练习试题

集合知识点汇总与练习试题1.1 集合1.1.1 集合的含义与表⽰⼀集合与元素1.集合是由元素组成的集合通常⽤⼤写字母A、B、C,…表⽰,元素常⽤⼩写字母a、b、c,…表⽰。

2.集合中元素的属性(1)确定性:⼀个元素要么属于这个集合,要么不属于这个集合,绝⽆模棱两可的情况。

(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现⼀次。

(3)⽆序性:集合中的元素在描述时没有固定的先后顺序。

3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。

4.集合相等如果构成两个集合的元素⼀样,就称这两个集合相等,与元素的排列顺序⽆关。

⼆集合的分类1.有限集:集合中元素的个数是可数的,只含有⼀个元素的集合叫单元素集合;2.⽆限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做?.三集合的表⽰⽅法1.常⽤数集(1)⾃然数集:⼜称为⾮负整数集,记做N;(2)正整数集:⾃然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表⽰⽅法(1)⾃然语⾔法:⽤⽂字叙述的形式描述集合。

如⼤于等于2且⼩于等于8的偶数构成的集合。

(2)列举法:把集合的元素⼀⼀列举出来,并⽤花括号“{}”括起来表⽰集合的⽅法,⼀般适⽤于元素个数不多的有限集,简单、明了,能够⼀⽬了然地知道集合中的元素是什么。

注意事项:①元素间⽤逗号隔开;②元素不能重复;③元素之间不⽤考虑先后顺序;④元素较多且有规律的集合的表⽰:{0,1,2,3,…,100}表⽰不⼤于100的⾃然数构成的集合。

(3)描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,⼀般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使⽤“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句⼒求简明、准确。

高一数学集合知识点及练习题

高一数学集合知识点及练习题

高一数学集合知识点及练习题由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象。

这次小编给大家整理了高一数学集合知识点及练习题,供大家阅读参考。

高一数学集合知识点(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

(完整版)集合知识点总结及习题,推荐文档

(完整版)集合知识点总结及习题,推荐文档

集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.元素与集合的关系——(不)属于关系(1)集合用大写的拉丁字母A 、B 、C…表示元素用小写的拉丁字母a、b、c…表示(2)若a是集合A的元素,就说a属于集合A,记作a∈A;∉若不是集合A的元素,就说a不属于集合A,记作a A;4.集合的表示方法:列举法与描述法。

(完整版)集合的概念与关系练习题

(完整版)集合的概念与关系练习题

若集合A= {—1,1}, B = {0,2},则集合{z|z= x+ y, x€ A, y€ B}中的元素的个数为(已知集合A是由0, m, m2—3m + 2三个元素组成的集合,且D • 0,2,3 均可M = {(x, y)|xy v 0, x € R , y€ R}是第一象限内的点集 B •第三象限内的点集10 •下列命题:①空集无子集;②任何集合至少有两个子集;③空集是任何集合的真子集;B • S P MC • S P集合的概念与关系练习题1集合{x€ N + |x—3<2}用列举法可表示为A • {0,123,4}B • {123,4}C • {0,123,4,5}D • {123,4,5}2 •给出下列几个关系,正确的个数为① 3 € R:② 0.5D € /Q;③ 0€ N ;④—3€Z ;⑤ 0€ N+.3.下列集合中,结果是空集的是A • {x€ R|x2— 1 =0}C • {(x, y)|/+ y2= 0}4 •将集合x,A •{2,3}5 •下列集合中,{x|x > 6 或x v 1}{xx> 6 且x v 1}x+ y= 5 一丄y | 表示成列举法,正确的是2x —y= 1B •{(2,3)}C •{(3,2)}不同于另外三个集合的是C • {x=1}A. {x|x = 1} B • {y|(y—1)2= 0}6•下列正确表示集合M = { —1,0,1}和N= {xlx2+ x= 0}关系的Venn图是(2,3){1}D•2€ A,则实数m为(集合第四象限内的点集 D •第二、四象限内的点集④若A,贝U心?•其中正确的有11 •集合M = {x|x= 3k—2, 的关系是k€ Z}, P = {y|y= 3n+ 1, n€ Z}, S= {z|z= 6m + 1,m€ Z}之间12 •由下列对象组成的集体属于集合的是•(填序号)①不超过n的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.13•设a, b都是非零实数,丫=合+若+鑒可能取的值组成的集合是________________ •|a| |b| |ab|14•已知集合A是由a —2,2a2+ 5a,12三个元素组成的,且—3€ A,求a.15. ______________________________________________________________________ 已知集合 A = { —1,3,2m —1},集合B = {3 , m2}.若B? A,则实数m= ________________ .16. 如果有一集合含有三个元素____________________ 1, x, x2—x,则实数x的取值范围是•17. 已知集合A = {x|1v x v2}, B={x|x v a},若A B,则实数a的取值范围是__________________ .18. 用列举法表示下列集合:(1) A = {x€ N||x|W 2} = _______ ;(2) B = {x€ Z||x|W 2} = ________ ;(3) C = {(x, y)|x2+ y2= 4, x€ Z , y € Z} = _______ .1 b 1 c 119. 已知集合A={x|x= a+6,a€ Z} , B= {x|x= - —3, b € Z} , C = {x|x=- + -, c€ Z},则A、B、C之间的关系是 __________ .20. 集合A= {x|kx2—8x+ 16= 0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.21. 定义集合运算A*B= {z|z= xy, x€ A, y€ B}.设A = {1,2} , B = {0,2},则集合A*B 的所有元素之和是多少?22. 已知集合A= {x||x—a|= 4}, B = {1,2 , b}.问是否存在实数a,使得对于任意实数b(b^ 1,2)都有A? B若存在,求出对应的a值;若不存在,说明理由.23. 已知集合A ={x|/—3x—10W0},⑴若B? A, B= {x|m+ 1 < x< 2m—1},求实数m的取值范围;(2) 若A? B, B= {x|m—6< x< 2m—1},求实数m的取值范围;(3) 若A = B, B= {x|m—6< x< 2m—1},求实数m的取值范围.24. 已知集合A = {xlx2—3x+ 2< 0} , B= {x|x2—(a + 1)x+ a< 0}.(1) 若A 是B 的真子集,求a 的取值范围;(2) 若B 是A 的子集,求a 的取值范围;⑶若A = B,求a的取值范围.25.已知函数y x22ax 1在1 x 2上的最大值为4,求a 的值.226.求关于x的二次函数y x 2tx 1在2 x 1上的最小值(t为常数)•。

(完整版)集合知识点总结与习题《经典》

(完整版)集合知识点总结与习题《经典》

集合详解集合的含义与表示1、集合的概念把某些特定的对象集在一起就叫做集合. 2、常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). 二、集合间的基本关系 1、子集、真子集、集合相等2、已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.三、集合的基本运算1、交集、并集、补集【经典例题】1.知集合{(,)|,A x y x y=为实数,且}221,x y +={(,)|,B x y x y =为实数,且},A By x =I 则的元素个数为( )A 、0B 、1C 、2D 、3 2.已知集合{{},1,,A B m A B A==⋃=,则m = ( )A 、0或3B 、0或3C 、1或3D 、1或33.A={1,2,3,4},B==⋂∈=B A A n n x x 则},,|{2( ) A,{1,4} B,{2,3} C,{9,16} D,{1,2}4.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则)(B A C U ⋃=( )A .{1,3,4}B .{3,4}C .{3}D .{4}5.已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则( )A .{1}B .{}0,1C .{}0,2D .{}0,1,26.若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=( )A .4B .2C .0D .0或47.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-D .{2,0,2}-8.下列八个关系式①{0}=φ;①φ=0;①φ={φ};①φ∈{φ};①{0}⊇φ;①0∉φ;①φ≠{0};①φ≠{φ}其中正确的个数( )A.4B.5C.6D.7 9.下列各式中,正确的是( ) A.2}2{≤⊆x x B.{}≠<>12x x x 且φC.{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D.{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}练习:一、选择题1.若集合{|1}X x x =>-,下列关系式中成立的为( )A .0X ⊆B .{}0X ∈C .X φ∈D .{}0X ⊆2.已知集合{}2|10,A x x A R φ=+==I 若,则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m 3.下列说法中,正确的是( )A . 任何一个集合必有两个子集;B . 若,A B φ=I则,A B 中至少有一个为φC . 任何集合必有一个真子集;D . 若S 为全集,且,A B S =I 则,A B S ==4.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .φ D .{}1,0,1- 二、填空题 7.已知{}Rx x x y y M ∈+-==,34|2,{}Rx x x y y N ∈++-==,82|2则__________=N M I 。

集合的概念(习题作业)解析版--2023年初升高暑假衔接之高一数学

集合的概念(习题作业)解析版--2023年初升高暑假衔接之高一数学

1.1集合的概念一、单选题1.集合{3213,Z}x x x -<-<∈用列举法表示为()A .{2,1,0,1,2}--B .{1,0,1,2}-C .{0,1}D .{1}【答案】C【分析】直接求出集合中的元素即可.【详解】{}{3213,Z}{12,Z}0,1x x x x x x -<-<∈=-<<∈=.故选:C.2.给出下列关系:①12ÎR R ;③3-∈N ;④3Q -∈.其中正确的个数为()A .1B .2C .3D .4【答案】C【分析】结合数的分类判断即可.【详解】1233-=,为自然数及有理数,③④正确.故选:C.3.若()(){}1,20,0A =-,,则集合A 中的元素个数是()A .1个B .2个C .3个D .4个【答案】B【分析】根据定义直接得到答案.【详解】()(){}1,20,0A =-,中的元素个数是2故选:B4.设集合{}21,3M m m =--,若3M -∈,则实数m =()A .0B .1-C .0或1-D .0或1【答案】C【分析】根据元素与集合的关系,分别讨论213-=-m 和33m -=-两种情况,求解m 并检验集合的互异性,可得到答案.【详解】设集合{}21,3M m m =--,若3M -∈,3M -∈ ,213m ∴-=-或33m -=-,当213-=-m 时,1m =-,此时{}3,4M =--;当33m -=-时,0m =,此时{}3,1M =--;所以1m =-或0.故选:C5.定义集合{}*,,A B z z xy x A y B ==∈∈∣,设集合{}1,0,1A =-,{}1,1,3B =-,则*A B 中元素的个数为()A .4B .5C .6D .7【答案】B【分析】根据集合的新定义求得*A B ,从而确定正确答案.【详解】因为{}1,0,1A =-,{}1,1,3B =-,所以{}*3,1,0,1,3A B =--,故*A B 中元素的个数为5.故选:B.6.已知集合{A x x =≤,a =a 与集合A 的关系是()A .a A ∈B .a A∉C .a A=D .{}a A∈【答案】A【分析】对a =210a <,从而得到a a A ∈.【详解】∵a =∴225510a ==+<=,∴a <,∴a A ∈.故选:A7.已知集合{}4,,2A x y =,{}22,,1B x y =--,若A B =,则实数x 的取值集合为()A .{1,0,2}-B .{2,2}-C .{}1,0,2-D .{2,1,2}-【答案】B【分析】根据集合元素的唯一性分类讨论即可.【详解】因为A B =,所以2A -∈.当2x =-时,21y y =-,得13y =;当22y =-时,则2x =.故实数x 的取值集合为{}2,2-.故选:B8.已知{}{}21,2,1m m -=--,则实数m 等于()A .2B .-1C .2或-1D .4【答案】C【分析】根据两集合相等列出方程,解方程,检验后得到答案.【详解】由已知得,22m m -=,解得2m =或-1,经检验符合题意.故选:C.9.已知集合{3,2,0,1,2,3,7},{,}A B xx A x A =--=∈-∉∣,则B =()A .{0,1,7}B .{1,7}C .{0,2,3}D .{0,1,2,3,7}【答案】B【分析】根据集合的描述法及元素与集合的关系求解.【详解】因为{3,2,0,1,2,3,7}A =--,{,}B xx A x A =∈-∉∣,所以{1,7}B =.故选:B.10.集合{},,A a b c =中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是()A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形【答案】A【分析】根据集合中元素的互异性可得答案.【详解】根据集合中元素的互异性得,,a b b c a c ≠≠≠,故三角形一定不是等腰三角形.故选:A.11.已知集合{}0,1,2,3,4,5,{(,)|,,}A B x y x A y A x y A ==∈∈-∈,则集合B 中所含元素个数为()A .20B .21C .22D .23【答案】B【分析】根据x y -的值分类讨论,即可求出集合B 中所含元素个数.【详解】当0x y -=时,有(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),6个元素;当1x y -=时,有(1,0),(2,1),(3,2),(4,3),(5,4),5个元素;当2x y -=时,有(2,0),(3,1),(4,2),(5,3),4个元素;当3x y -=时,有(3,0),(4,1),(5,2),3个元素;当4x y -=时,有(4,0),(5,1),2个元素;当5x y -=时,有(5,0),1个元素,综上,一共有21个元素.故选:B .12.若集合()220222,10,,2n mn n A m n m n *⎧⎫++⎪⎪==∈∈⎨⎬⎪⎪⎩⎭Z N ,则集合A 的元素个数为()A .4044B .4046C .22021D .22022【答案】B【分析】由已知可得()2023202221=25n n m ++⨯,对n 是偶数和奇数进行分类讨论,对n 的A 的元素的个数.【详解】由题意,()2023202221=25n n m ++⨯,若n 为偶数,21n m ++为奇数,若20232n =,则2022202320225212152n m m +-=⇒-=+∈Z ,以此类推,202325n =⨯,2023225n =⨯,L ,2023202225n =⨯,共2023个n ,每个n 对应一个m ∈Z ;同理,若n 为奇数,21n m ++为偶数,此时05n =、15、L 、20225,共2023个n ,每个n 对应一个m ∈Z .于是,共有4046个n ,每一个n 对应一个m 满足题意.故选:B.二、多选题13.下列各组对象能构成集合的是()A .全体较高的学生B .所有素数C .2021年高考数学难题D .所有正方形【答案】BD【分析】AC 不满足集合的确定性,BD 满足集合的确定性.【详解】A 选项中“比较高”标准不明确,不符合确定性,不能构成集合,A 错误;B 选项,所有素数满足确定性,能构成集合,B 正确;C 选项,“难题”的标准不明确,不符合确定性,不能构成集合,C 错误;D 选项,所有正方形满足确定性,能构成集合,D 正确故选:BD14.以下命题中正确的是()A .所有正数组成的集合可表示为{}0x x >B .大于2020小于2023的整数组成的集合为{}20202023x x <<C .全部三角形组成的集合可以写成{全部三角形}D .N 中的元素比N +中的元素只多一个元素0,它们都是无限集【答案】AD【分析】由集合的概念和集合的表示方法,即可得到答案.【详解】正数均大于0,故所有正数的集合应表示为{|0}x x >,故A 正确;大于2020小于2023的整数组成的集合应表示为{Z |20202023}x x ∈<<或{2021,2022},故B 不正确;全部三角形组成的集合应表示为{三角形}或{|x x 是三角形},故C 不正确;N 为自然数集,N +为正整数集,故N 中的元素比N +中的元素只多一个元素0,它们都是无限集,故D 正确.故选:AD.15.已知集合M 中的元素x满足x a =,其中a ,Z b ∈,则下列选项中属于集合M 的是()A .0BC .211-D .1-【答案】ACD【分析】根据集合M 中的元素x 的性质即可判断.【详解】当0a b ==时,0x =,所以0M ∈,A 正确;当1,1a b =-=-时,1x M =--,C 正确;当1,3a b =-=时,1x M =-∈,D 正确;因为Z a ∈,Z b ∈,故x a =≠M ,B 错误.故选:ACD16.在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类集”,其中{0,1,2,3,4,5}k ∈,记为[]k ,即[]{|6,Z}k x x n k n ==+∈,以下判断不正确的是()A .2022[2]∈B .13[1]-∈C .若[0]a b +∈,则整数,a b 一定不属于同一类集D .若[0]a b -∈,则整数,a b 一定属于同一类集【答案】ABC【分析】由“类集”的定义对选项逐一判断即可得出答案.【详解】对于A ,202263370=⨯+ ,2022[0]∴∈,故A 不正确;对于B ,()13635-=⨯-+ ,13[5]∴-∈,故B 不正确;对于C ,若[0]a b +∈,则整数,a b 可能属于同一类集,比如3[3]a =∈,9[3]b =∈,则12[0]a b +=∈,故C 不正确;对于D ,若[]0a b -∈,则a b -被6除所得余数为0,则整数,a b 被6除所得余数相同,故整数,a b 属于同一类集,故D 正确,故选:ABC .17.下列说法中,正确的是()A的近似值的全体构成集合B .自然数集N 中最小的元素是0C .在数集Z 中,若a ∈Z ,则a -∈Z D .一个集合中可以有两个相同的元素【答案】BC【分析】根据集合的定义以及集合元素的性质逐一判断,即可得到结果.【详解】对于A A 错误;对于B ,由自然数的定义可得B 正确;对于C ,若a ∈Z ,则a -∈Z ,故C 正确;对于D ,由集合的互异性可知,一个集合中不可以有两个相同的元素,故D 错误.故选:BC18.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的取值不可以为()A .2B .3C .0D .2-【答案】ACD【分析】根据2A ∈可得出2m =或2322m m -+=,解出m 的值,然后对集合A 中的元素是否满足互异性进行检验,综合可得结果.【详解】因为集合{}20,,32A m m m =-+,且2A ∈,则2m =或2322m m -+=,解得{}0,2,3m ∈.当0m =时,集合A 中的元素不满足互异性;当2m =时,2320m m -+=,集合A 中的元素不满足互异性;当3m =时,{}0,3,2A =,合乎题意.综上所述,3m =.故选:ACD.19.设集合{}23,2,4A x x x =-+-,且5A ∈,则x 的值可以为()A .3B .1-C .5D .3-【答案】BC【分析】根据元素与集合的关系运算求解,注意检验,保证集合的互异性.【详解】∵5A ∈,则有:若25x +=,则3x =,此时249123x x -=-=-,不符合题意,故舍去;若245x x -=,则=1x -或5x =,当=1x -时,{}3,1,5A =-,符合题意;当5x =时,{}3,7,5A =-,符合题意;综上所述:=1x -或5x =.故选:BC.20.下列说法错误的是()A .在直角坐标平面内,第一、三象限的点的集合为()}{,0x y xy >B |2|0y +=的解集为}{2,2-C .集合()}{,1x y y x =-与}{1x y x =-是相等的D .若}{Z 11A x x =∈-≤≤,则0.5A -∈【答案】BCD【分析】根据集合的定义依次判断即可求解.【详解】对于A ,因为0xy >,所以00x y >⎧⎨>⎩或00x y <⎧⎨<⎩,所以集合为()}{,0x y xy >表示直角坐标平面内第一、三象限的点的集合,故A 正确;对于B |2|0y +=的解集为()}{2,2-,故B 错误;对于C ,集合()}{,1x y y x =-表示直线1y x =-上的点,集合}{1x y x =-表示函数1y x =-的定义域,所以集合()}{,1x y y x =-与}{1x y x =-不相等,故C 错误;对于D ,}{}{Z 111,0,1A x x =∈-≤≤=-,所以0.5A -∉,故D 错误.故选:BCD.21.若对任意x A ∈,1A x∈,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是()A .{}1,1-B .1,22⎧⎫⎨⎬⎩⎭C .{}21x x >D .{}0x x >【答案】ABD【分析】根据“影子关系”集合的定义逐项分析即可.【详解】根据“影子关系”集合的定义,可知{}1,1-,1,22⎧⎫⎨⎬⎩⎭,{}0x x >为“影子关系”集合,由{}21x x >,得{1x x <-或}1x >,当2x =时,{}2112x x ∉>,故不是“影子关系”集合.故选:ABD 22.关于x 的方程241x k x x x x-=--的解集中只含有一个元素,则k 的可能取值是()A .4-B .0C .1D .5【答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为240x x k +-=;根据方程解集中仅含有一个元素可分成三种情况,由此可解得k 所有可能的值.【详解】由已知方程得:2100x x x -≠⎧⎨-≠⎩,解得:0x ≠且1x ≠;由241x k x x x x-=--得:240x x k +-=;若241x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程240x x k +-=有且仅有一个不为0和1的解,1640k ∴∆=+=,解得:4k =-,此时240x x k +-=的解为2x =-,满足题意;②方程240x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0400k +⨯-=得:=0k ,240x x ∴+=,此时方程另一根为4x =-,满足题意;③方程240x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1410k +⨯-=得:5k =,2450x x ∴+-=,此时方程另一根为5x =-,满足题意;综上所述:4k =-或0或5.故选:ABD三、填空题23.已知集合{}22,33A a a =++,且1A ∈,则实数a 的值为____________.【答案】1-或2-【分析】根据元素与集合的关系求解.【详解】因为1A ∈,{}22,33A a a =++,所以2331a a ++=,解得1a =-或2a =-,故答案为:1-或2-24.用列举法表示集合{}4|M x x =-∈∈=N N ___________.【答案】{}0,1,2,3,4【分析】根据题意可得x N ∈且04x ≤≤,再分别令0,1,2,3,4x =进行判断即可.【详解】由题意可得x N ∈且04x ≤≤,当0x =时,44x -=当1x =时,43x -=,符合题意;当2x =时,42x -=,符合题意;当3x =时,41x -=,符合题意;当4x =时,40x -=,符合题意,综上,{}{}4|0,1,2,3,4M x x =-∈∈=N N .故答案为:{}0,1,2,3,4.25.已知{}(1,2)(,)230x y x ay ∈+-=,则a 的值为______.【答案】12/0.5【分析】根据元素与集合的关系,把点坐标代入直线方程运算即可求得a 的值.【详解】因为{}(1,2)(,)230x y x ay ∈+-=,所以2230a +-=,解得:12a =,故答案为:12.26.设集合6ZN 2A x x ⎧⎫=∈∈⎨⎬+⎩⎭,则用列举法表示集合A 为______.【答案】{1,0,1,4}-【分析】根据自然数集N 与整数集Z 的概念分析集合A 中的元素即可.【详解】要使6N 2x ∈+,则2x +可取1,2,3,6,又Z x ∈,则x 可取1,0,1,4-,故答案为:{}1,0,1,4-.四、解答题27.含有三个实数的集合2,,b A a a a ⎧⎫=⎨⎬⎩⎭,若0A ∈且1A ∈,求20222022a b +的值.【答案】1【分析】利用集合中元素的互异性可求解.【详解】由0A ∈,可知0a ≠,故20a ≠,所以0,ba=解得=0b ,又1A ∈可得21a =或=1a ,当=1a 时21a =,与集合中元素的互异性矛盾,所以21a =且1a ≠,所以1a =-,故1a =-,=0b ,所以202220221a b =+.28.已知集合()2{|10}A x x p x q =+-+,()()2{|111}B x x p x q x =-+-+=+,当{}2A =时,求集合B .【答案】{3B =【分析】根据集合和元素的关系解出,p q 的值,代入()()2111x p x q x -+-+=+,解一元二次方程即可.【详解】因为{}2A =,所以()()222120140p q p q ⎧+-⨯+=⎪⎨--=⎪⎩,解得34p q =-⎧⎨=⎩,代入()()2111x p x q x -+-+=+得()()213141x x x ---+=+,整理得2670x x -+=,解得3x =±所以{3B =.29.已知集合2{|320,R,R}A x ax x x a =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭(2)a 的值为0或98,当0a =时23A ⎧⎫=⎨⎬⎩⎭,当98a =时43A ⎧⎫=⎨⎬⎩⎭(3)9{0},8∞⎡⎫⋃+⎪⎢⎣⎭【分析】(1)A 是空集,则方程为二次方程,且方程无实根;(2)A 中只有一个元素,则方程为一次方程,或方程为二次方程且方程有两个相同的根;(3)A 中至多有一个元素,则方程为一次方程,或方程为二次方程且至多一个实根.【详解】(1)A 是空集,0a ∴≠且Δ0<,980a ∴-<,解得98a >,a ∴的取值范围为:98+∞(,);(2)当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎩⎭,当0a ≠时,Δ0=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭,综上所求,a 的值为0或98,当0a =时,集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时,集合43A ⎧⎫=⎨⎬⎩⎭;(3)由12(),()可知,当A 中至多有一个元素时,98a ≥或0a =,a ∴的取值范围为:{}90[8+∞ ).30.已知集合(){}2R |1210A x a x x =∈--+=,a 为实数.(1)若集合A 是空集,求实数a 的取值范围;(2)若集合A 是单元素集,求实数a 的值;(3)若集合A 中元素个数为偶数,求实数a 的取值范围.【答案】(1){}2a a >(2)1a =或2a =.(3){|2a a ≠且1}a ≠【分析】(1)若集合A 是空集,要满足二次方程()21210a x x --+=无解;(2)若集合A 是单元素集,则方程()21210a x x --+=为一次方程或二次方程Δ0=;(3)若集合A 中元素个数为偶数,则A 中有0个或2个元素,二次方程()21210a x x --+=无解或两不相同的解.【详解】(1)若集合A 是空集,则()()210Δ2410a a -≠⎧⎪⎨=---<⎪⎩,解得2a >.故实数a 的取值范围为{}2a a >.(2)若集合A 是单元素集,则①当10a -=时,即1a =时,1{R |210}{}2A x x =∈-+==,满足题意;②当10a -≠,即1a ≠时,()()2Δ2410a =---=,解得2a =,此时{}{}2|2101A x x x =∈-+==R .综上所述,1a =或2a =.(3)若集合A 中元素个数为偶数,则A 中有0个或2个元素.当A 中有0个元素时,由(1)知2a >;当A 中有2个元素时,210,Δ(2)4(1)0a a -≠⎧⎨=--->⎩解得2a <且1a ≠.综上所述,实数a 的取值范围为{|2a a ≠且1}a ≠.。

集合的概念与集合关系练习题及答案

集合的概念与集合关系练习题及答案

集合的概念与集合关系练习题及答案集合的概念与集合间关系练习题一.选择题1.给出下列关系:① 12R ∈;② Q ;③3N +-?;④.Q 其中正确的个数为().A .1个B .2个C .3个D .4个2.满足条件{1,2,3}?≠M ?≠{1,2,3,4,5,6}的集合M 的个数是() A 、8 B 、7 C 、6 D 、5 3.若集合{}0|2≤=x x A ,则下列结论中正确的是()A 、A=0B 、0A ?C 、?=AD 、A ??4.下列四个写法中①{}{}2,1,00∈,②{}0≠,③{}{}0,2,12,1,0?,④?∈0,错误的写法个数是()A 、1个B 、2个C 、3个D 、4个5.方程组-=-=+11y x y x 的解集是()A {}0,1x y ==B {}1,0D {}(,)|01x y x y ==或 6.已知全集?∈∈-=Z a N a a M 且56|,则M=( ) A 、{2,3} B 、{1,2,3,4} C 、{1,2,3,6} D 、{-1,2,3,4}7.集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是()A 、1-≤aB 、1≤aC 、1-≥aD 、1≥a8. 若},13|{Z n n a a A ∈+==,},23|{Z n n a b B ∈-==, },16|{Z n n a c C ∈+==,则A 、B 、C 的关系是()(A )A B C ;(B )A B=C ;(C )A=B C ;(D )A=B=C 。

9.A ⊙B ={z ︳z = xy (x+y ),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为(A )0 (B )6 (C )12 (D )1810.已知集合M={x|x=a 2-3a +2,a ∈R},N={x|x=b 2-b ,b ∈R},则M ,N 的关系是()A 、M ≠?NB 、M ≠?NC 、M=ND 、不确定11.集合M={1,2,3,4,5}的子集是()A 、15B 、16C 、3112.设集合P={3,4,5}.Q={4,5,6,7}.令P*Q=(){},,a b a p b Q ∈∈,则P*Q 中元素的个数是 ( )A. 3B. 7C. 10D. 12二、填空题13.已知A ={x |x <3},B ={x |x <a }(1)若B ?A ,则a 的取值范围是______(2)若A B ,则a 的取值范围是______14 已知{}{}22|2004(2)400x x a x a +?++-==,则a = .15. 已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围;若至少有一个元素,则a 的取值范围。

1.1.1集合的概念练习测试题

1.1.1集合的概念练习测试题

1.1集合的概念 〖帮你读书〗
1.集合的概念:有某些的对象组成的叫做集合,简称;组成集合的对象叫做这个集合的。

2.集合的表示:一般采用表示集合,
3.采用表示集合中的元素。

4.几个常用数集的表示:自然数集记作;正整数集记作;整数集记作;有理数集记作;实数集记作;空集记作。

5.集合与元素之间的关系:如果a 是集合
A 的元素,就说a A ,记作,
6.如果a 不是集合A 的元素,就说a A ,记作,
7.集合的分类:含有元素的集合,叫做有限集,含有无限多个元素的集合叫做,不含叫空集,记作:.
〖疑难解惑〗
1.只含有元素0的集合是空集吗?
〖技能训练〗
1.用符号""""∉∈
或填空: (1)3.14R(2)2R (3)21
N(4)-2N (5)3Q(6)
πR
2.选择题:
(1) 下列对象能组成集合的是();
A,大于5的自然数
B.一切很大的树
C.班上个子很高的同学
D.班上考试分数很高的同学
(2) 下列对象不能组成集合的是().
A.不大于8的自然数
B.很接近于1的数
C.班上身高超过1.8米的同学
D.班上数学小测中得分在85分以上的同学。

3.下列对象能否组成集合?若能组成集合,判断哪些是有限集?哪些是无限极?那些事空集?
(1).某班学习成绩好的同学;
(2)绝对值不小于3的所有整数;
4.判断下列集合是有限集、无限集还是空集:
(1)所有大于3且小于4的实数;
(2)的解集方程0652
=--x x .
(3)。

集合的概念练习题(内含详细答案)

集合的概念练习题(内含详细答案)

集合的概念练习题(内含详细答案)集合的概念练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列选项中,表示同一集合的是()A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}C.A={x|–1< p="">2.下列各项中,不能组成集合的是()A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素5.下列关于集合的命题正确的有()①很小的整数可以构成集合②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;③1,2,|-|,0.5,这些数组成的集合有5个元素④空集是任何集合的子集A.0个B.1个C.2个D.3个x+=的实数解”中,能够表6.在“①个子较高的人;②所有的正方形;③方程260示成集合的是()A .②B .③C .①②③D .②③二、填空题7.已知集合A ={x ,,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______.8.定义集合A -B ={x|x∈A,且x ?B},若集合A ={x|2x +1>0},集合B ={x|<0},则集合A -B =____________.9.在数集{}0,1,2x -中,实数x 不能取的值是______. 10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为___________________________________.三、解答题11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.答案1.下列选项中,表示同一集合的是A .A={0,1},B={(0,1)}B .A={2,3},B={3,2}C .A={x|–1< p="">D .A=?,【答案】B【解析】【分析】利用集合相等的定义直接求解.【详解】在A中,A={0,1}是数集,B={(0,1)}是点集,二者不表示同一集合,故A错误;在B中,A={2,3},B={3,2},集合中的元素具有无序性,所以两个集合相等,表示同一集合,故B正确;在C中,A={x|–1< p="">【点睛】本题考查集合相等的判断,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.下列各项中,不能组成集合的是A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明【答案】B【解析】【分析】根据集合的三要素:确定性、互异性、无序性得到选项.【详解】集合中的元素具有确定性,老人的标准不确定,元素不能确定,故所有的老人不能构成集合,故选B.【点睛】本题考查集合中元素满足的三要素:确定性、互异性、无序性.3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④【答案】D【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.选D4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素【答案】C【解析】【分析】根据集合的含义逐一分析判断即可得到答案【详解】选项A,不满足确定性,故错误选项B,不大于3的自然数组成的集合是,故错误选项C,满足集合的互异性,无序性和确定性,故正确选项D,数1,0,5,,,,组成的集合有5个元素,故错误故选C【点睛】本题考查了集合的含义,利用其确定性、无序性、互异性进行判断,属于基础题。

集合练习题含答案

集合练习题含答案

集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。

- 答案:集合是由一些确定的、不同的元素所组成的整体。

集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。

2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。

- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。

3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。

- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。

A∩B={2, 3},表示A和B中共有的元素集合。

4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。

- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。

5. 证明题:证明对于任意集合A,A⊆A。

- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。

因为集合A中的元素自然属于A本身,所以A⊆A。

6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。

求至少喜欢一门科目的学生人数。

- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。

根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。

7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。

- 答案:A∩(B∪C)不为空集。

因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。

数学集合练习题初中

数学集合练习题初中

数学集合练习题初中1. 集合的基本概念- 定义集合A={1,2,3},集合B={2,3,4},求A∩B(A与B的交集)。

- 已知集合C={x|x是小于10的正整数},求C的元素个数。

2. 集合的运算- 给定集合D={1,3,5,7}和集合E={4,5,6,7},计算D∪E(D与E的并集)。

- 集合F={x|x是2的倍数且x<20},集合G={x|x是3的倍数且x<20},求F∩G(F与G的交集)。

3. 集合的包含关系- 判断集合H={1,2,3}是否是集合I={1,2,3,4,5}的子集。

- 集合J={x|x是4的倍数},集合K={x|x是8的倍数},判断K是否是J的子集。

4. 集合的相等性- 集合L={x|x是质数},集合M={2,3,5,7},判断L和M是否相等。

- 集合N={x|x是6的因数},集合O={1,2,3,6},判断N和O是否相等。

5. 集合的补集- 集合P={x|x是小于15的正整数},求P的补集,即所有不属于P 的正整数集合。

- 集合Q={x|x是小于20的奇数},求Q的补集,即所有不属于Q的小于20的整数集合。

6. 集合的幂集- 集合R={1,2},求R的幂集,即包含R所有子集的集合。

7. 集合的元素个数- 集合S={x|x是9的因数},求S的元素个数。

- 集合T={x|x是15的倍数且x<100},求T的元素个数。

8. 集合的表示方法- 用描述法表示集合U={x|x是10以内的奇数}。

- 用列举法表示集合V={x|x是5的倍数,且1≤x≤50}。

9. 集合的运算性质- 证明对于任意集合A和B,有A∩(B∪C)=(A∩B)∪(A∩C)。

- 证明对于任意集合A和B,有A∪(B∩C)=(A∪B)∩(A∪C)。

10. 集合的应用题- 一个班级有30名学生,其中15人参加了数学竞赛,10人参加了物理竞赛,5人同时参加了数学和物理竞赛。

求至少参加一项竞赛的学生人数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的概念与关系练习题
1.集合{x ∈N +|x -3<2}用列举法可表示为
( )
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{0,1,2,3,4,5}
D .{1,2,3,4,5} 2.给出下列几个关系,正确的个数为
( )
①3∈R ;②0.5D ∈/Q ;③0∈N ;④-3∈Z ;⑤0∈N +. A .0
B .1
C .2
D .3 3.下列集合中,结果是空集的是
( )
A .{x ∈R |x 2-1=0}
B .{x |x >6或x <1}
C .{(x ,y )|x 2+y 2=0}
D .{x |x >6且x <1}
4.将集合⎩⎪⎨⎪⎧
(x ,y )|⎩⎪⎨
⎪⎧⎭
⎪⎬⎪
⎫x +y =52x -y =1表示成列举法,正确的是
( )
A .{2,3}
B .{(2,3)}
C .{(3,2)}
D .(2,3) 5.下列集合中,不同于另外三个集合的是
( )
A .{x |x =1}
B .{y |(y -1)2=0}
C .{x =1}
D .{1}
6.下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是
( )
7.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( ) A .5
B .4
C .3
D .2
8.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )
A .2
B .3
C .0或3
D .0,2,3均可 9.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R }是
( )
A .第一象限内的点集
B .第三象限内的点集
C .第四象限内的点集
D .第二、四象限内的点集
10.下列命题:①空集无子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ∅⊆,则A ≠∅.其中正确的有
( ) A .0个
B .1个
C .2个
D .3个
11.集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间
的关系是
( )
A . S P M ⊆⊆
B . S P M =⊆
C .S P M ⊆=
D . P M S =⊆
12.由下列对象组成的集体属于集合的是________.(填序号)
①不超过π的正整数;
②本班中成绩好的同学;
③高一数学课本中所有的简单题;
④平方后等于自身的数.
13.设a,b都是非零实数,y=a
|a|+b
|b|+ab
|ab|可能取的值组成的集合是________.
14.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.
15.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________. 16.如果有一集合含有三个元素1,x,x2-x,则实数x的取值范围是________.
17.已知集合A={x|1<x<2},B={x|x<a},若A B
,则实数a的取值范围是________.18.用列举法表示下列集合:
(1)A={x∈N||x|≤2}=________;
(2)B={x∈Z||x|≤2}=________;
(3)C={(x,y)|x2+y2=4,x∈Z,y∈Z}=________.
19.已知集合A={x|x=a+1
6,a∈Z},B={x|x=
b
2-
1
3,b∈Z},C={x|x=
c
2+
1
6,c∈Z},则
A、B、C之间的关系是________.
20.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.
21.定义集合运算A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和是多少?
22.已知集合A={x||x-a|=4},B={1,2,b}.问是否存在实数a,使得对于任意实数b(b≠1,
b ≠2)都有A ⊆B .若存在,求出对应的a 值;若不存在,说明理由.
23.已知集合A ={x |x 2-3x -10≤0},
(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.
24.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.
(1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.
25.已知函数2
21y x ax =++在12x -≤≤上的最大值为4,求a 的值.
26.求关于x 的二次函数2
21y x tx =-+在21x -≤≤上的最小值(t 为常数).。

相关文档
最新文档