短程硝化反硝化脱氮技术的研究进展

合集下载

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术引言近年来,随着城市化进程的加快和人口的迅速增长,污水处理厂在城市环境中扮演着至关重要的角色。

污水中氮的浓度过高,容易造成水体富营养化,影响水质,对水生生物和人类健康产生不利影响。

因此,对污水中氮的有效去除成为了污水处理工艺的重要研究方向。

背景氮是一种不可替代的生物元素,对生物体的生长和发育具有重要影响。

然而,过高浓度的氮对水体环境产生负面影响。

目前,世界上使用最广泛的氮去除方法是硝化和反硝化。

传统的污水处理工艺采用全程硝化反硝化技术,即将氨氮通过好氧硝化作用转化为亚硝酸盐,再通过厌氧反硝化作用转化为氮气,从而实现氮的去除。

然而,全程硝化反硝化技术存在几个问题:首先,硝化和反硝化两个过程分开进行,需要两个不同的环境条件,增加了处理工艺的复杂性;其次,亚硝酸盐容易被氧化为硝酸盐,导致氮的去除效率下降;最后,传统工艺通常需要较长的停留时间和大量的废液处理。

短程硝化反硝化生物脱氮技术的原理短程硝化反硝化技术克服了传统全程硝化反硝化的一些不足,在氮的去除效率和处理效果上具有一定的优势。

短程硝化反硝化生物脱氮技术是同时进行硝化和反硝化过程的一种处理方法。

通过合理调节反应器的操作条件和控制意图,可以实现在同一反应器中达到硝化和反硝化的目的。

短程反应器通常使用拟氧条件,提供带氧和无氧环境,从而满足硝化和反硝化反应的需求。

短程硝化反硝化生物脱氮技术的核心是合理控制和利用硝化反硝化菌的转化能力。

传统的全程硝化反硝化中硝化菌主要通过氨氧化过程将氨氮转化为亚硝酸盐,然后反硝化菌将亚硝酸盐通过反硝化过程转化为氮气。

而短程硝化反硝化则是通过单一菌株或混合菌株的双重能力实现硝化和反硝化,从而达到了节约空间和提高氮去除效率的目的。

应用案例短程硝化反硝化生物脱氮技术已经在一些污水处理厂得到了应用,并取得了良好的效果。

以某污水处理厂为例,该处理厂采用了短程硝化反硝化生物脱氮技术,取得了显著的效果。

短程硝化反硝化的研究详解

短程硝化反硝化的研究详解

短程硝化反硝化的研究进展摘要短程硝化反硝化技术主要用于处理高氨氮质量浓度和低C/N比的污水。

成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化。

本文探讨了短程硝化反硝化的机理并对氨氧化菌的分子生物学研究进行了分析,同时探讨了A/SBR工艺的应用。

关键词短程硝化反硝化氨氧化菌A/SBR1 引言近年来,随着工业化和城市化进程的不断提高,大量氮、磷等营养物质进入水体,水体富营养化的现象日益严重,由于常规的活性污泥工艺硝化作用不完全,反硝化作用则几乎不发生,总氮的去除率仅在10%~30%之间,出水中还含有大量的氮和磷[1]。

因此,只有对常规的活性污泥法进行改进,加强其生物脱氮功能,才能解决日益突出的受纳水体“富营养化”问题。

目前,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷。

随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高。

短程硝化反硝化技术对于处理这种污水在经济和技术上均具有较高的可行性。

短程硝化反硝化技术已成为脱氮领域研究的热点。

其研究内容主要集中在实现氨氧化菌在反应器的优势积累、构造适于氨氧化菌长期稳定生长并抑制亚硝酸氧化菌的最佳环境因素、优化过程控制模式实现持续稳定的短程硝化等。

2 短程硝化反硝化的机理生物脱氮包括硝化和反硝化两个反应过程。

第一步是由氨氧化菌( ammonium oxidition bacteria,AOB) 将NH4-N氧化NO-2-N的亚硝化过程;第二步是由亚硝酸氧化菌( nitrite oxidition bacteria,NOB) 将NO-2-N氧化为NO-3-N的过程。

然后通过反硝化作用将产生的NO-3-N经由NO-2-N、NO或N2O转化为N2,NO-2-N 是硝化和反硝化两个过程的中间产物。

V oets等(1975)在处理高浓度氨氮废水的研究中,发现了硝化过程NO-2-N积累的现象,首次提出了短程硝化反硝化生物脱氮的概念[2]。

短程硝化反硝化技术研究进展

短程硝化反硝化技术研究进展

短程硝化反硝化技术研究进展短程硝化反硝化技术是一种能够高效去除废水中氨氮的技术,近年来在废水处理领域受到了广泛关注。

本文将对短程硝化反硝化技术的定义、原理、应用以及研究进展进行综述,并分析其存在的问题和未来发展方向。

一、短程硝化反硝化技术的定义与原理短程硝化反硝化技术是一种利用微生物将废水中的氨氮转化为硝酸盐,然后经过反硝化作用将硝酸盐还原为氮气的过程。

这一过程通常发生在同一容器或同一系统中,通过提高氨氮转化效率和减少氮素排放量来实现废水的高效处理。

短程硝化反硝化技术的原理主要基于厌氧颗粒污泥技术。

在一个薄膜生物反应器中,通过在厌氧区内添加适量的反硝化菌,并在硝化区内供氧,实现了氨氮的转化和去除。

在硝化区,氨氮被氧化为亚硝酸盐,然后通过膜壁进入反硝化区进行反硝化过程。

通过这种方式,可以在相对较短的距离内完成硝化和反硝化过程,提高氨氮的去除效率。

二、短程硝化反硝化技术的应用1. 市政废水处理:短程硝化反硝化技术可用于大型污水处理厂的废水处理过程中。

通过优化系统操作条件和生物反应器设计,可以高效去除废水中的氨氮,并减少对环境的负面影响。

2. 工业废水处理:短程硝化反硝化技术也可以应用于工业废水处理。

例如,在农业养殖行业中,废水中的氨氮是一种主要的污染物,使用短程硝化反硝化技术可以有效降低氨氮排放量,减少水体的污染。

三、短程硝化反硝化技术研究进展1. 进一步提高氨氮去除率:目前,研究人员正致力于优化短程硝化反硝化技术,进一步提高氨氮去除率。

一种方法是改进厌氧区内菌群的结构和功能,提高其对氨氮的吸附和转化能力。

另一种方法是优化氧化区内的条件,提高硝化菌对氨氮的氧化效率。

2. 深入研究硝化反硝化菌的特性:硝化反硝化菌是短程硝化反硝化技术中的关键微生物。

深入研究这些菌的特性和代谢途径,对于提高技术的应用效果和改进反应器性能具有重要意义。

一些研究表明,通过工程菌群,可提高菌群的氨氮转化效率。

3. 探索新型反应器设计和操作策略:新型反应器设计和操作策略是进一步发展短程硝化反硝化技术的关键。

SBR法短程硝化反硝化生物脱氮工艺的研究

SBR法短程硝化反硝化生物脱氮工艺的研究
R atr(B ,n i ue ep s blyo H riga aa trojdcrat ee drl eias tde naheigsotc t iict n ec o S R)adds ssh os it f s v sprme g ci n .Ish s l s is c i n r u tf ai c t i i p e n et u e v it s o u o v h — nr i o
【 摘 耍】 本试验选用 S k 作为反应 器, 究有机物氧化 、 B 研 生物脱氮过程中 p 变化规律 以及 p H H作为反应过程指示参数的 可能性 , 探讨低
溶 解氧 选择 抑 制 来 实现 短 程硝 化一反硝 化 。
【 关键词 】B 脱氮;H; 示参数 ; S R; p 指 短程硝化一 反硝化 ; 温度影响
【 src] hstei s de nterg lt n fp vr t n dr g ognc oiain ii iga d d ntfigi eun ig B th AbtatT i h s t iso h euai so H ai i ui rai xdt ,ntf n n ei i n n Sq ecn ac s u o ao n o ry ry
化 规律 , 在 此 基 础 上 探讨 p 作 为 过 程 指 示 参数 的 可行 性 。 并 H 12 探 索并 实 现 常 温 下 活 性 污 泥 的短 程 硝 化 反 硝 化 -
4 j L
5 13 ● 3 口 ]
通 过 控制 反 应 器 中 的溶 解 氧 浓 度 , 生亚 硝 酸菌 和硝 酸 菌对 溶 解 产
1 试 验 研 究 的 主 要 内容
23 实 验 装 置 . 实 验 采 用 圆柱 形 有 机玻 璃 柱 作 为 S R 反应 器 ,其 直 径 为 1 c B 5m,

短程硝化反硝化脱氮技术的研究进展

短程硝化反硝化脱氮技术的研究进展

4 个属组成。近年来 , 通过对硝化菌 1SR A的核酸探针测试表 6rN
明 : 成 亚 硝 态 氮 氧 化 的 优 势 菌 种 为 硝 化 螺 菌 属 而 非 硝 化 杆 菌 完 属 。亚 硝 化 菌 和 硝 化 菌 生 化特 性 比较 见表 l 。 表 1 亚 硝 化 菌 和硝 化 茵 主要 生化 特 征 比较 亚 硝 化 菌 自养 性 需 氧性 世代时 间 / h 产 率 系 数 Y / mg 胞 / 细 m 基质) g 氧 饱 和 常 数 K/ mg L ( /) 专 性 硝 化 菌 兼 性
最适温度 / ℃
最适 p H值 有 毒 物 质
2 5~3 ℃ 0
75 . .~80 敏 感
2 ~3 ℃ 5 0
75~ . . 8O 较 为 敏 感
河南科技 2 1 .上 79 0 01

● ■ 一 ■ ● ■ 一 一 蠢 ■ ■ ■ 瓣 ■ ■ ● 纛 ■ 囊 一 鼍纛 鬈 糕
氮 ( j 弋 N!
菌属( iooou )总共 有 l 种亚硝化细菌 。廖 雪义等 从土壤 N t slb s , r 5
中分 离到 一株 亚 硝化 速率 较高 的菌 株 , 定 为亚硝 化单 胞菌 鉴
属 ( ioo o a p , Nt sm nss ) 发现 该菌 株能 同时进行硝 化和 反硝化作 r
般 条 件 下 实现 短程 硝化 反硝 化是 比较 困难 的 短程 硝化 反硝 化 02~ . . 04 1 . . 2~1 5
技术的关键是将 硝化控制在亚 硝化 阶段 , 即是对 亚硝化菌 和 也
硝 化 菌 的 控 制 : 因此 , 何 实 现 短 程 硝 化 成 为 国 内 外 学 者 对 短 如 程硝 化反 硝 化 技 术 的 研 究 重 点 , 究 方 向可 概 括 为 2 面 : 方 研 方 一

短程硝化-反硝化生物脱氮技术研究

短程硝化-反硝化生物脱氮技术研究

个生物脱氮过程通过 N 一 N O —N 十 2 这样的
Байду номын сангаас途径完 成 .
2 短程硝化 一反硝 化新工艺优势
由图 l 以 明显 看 出 , 可 由于短 程 硝化 一反 硝
化比 全 程 硝 化 减 少 了 N — N O ; O 和 N — ( N , ( 这使 得短 程硝化 ~反 硝化具有 以下优 点 : ① 在硝 化阶段 减 少 了 N 一+N 一的过程 , O2 降低 了耗氧量 , 少了能耗 ; 减 ② 在 反 硝 化 阶段 减 少 了 N ’ N 的过 ; O 一 (
力并避免亚硝酸盐对生物的毒害作用. 但是, 在废 水 脱氮 中 , 全程 硝化 并非必 要 , 氨氧化成 亚硝酸 把
盐 ( 一 N ) N} O 也能取 得相 同效果 . 短 程硝化 反 硝化 生物 脱 氦 , 是抑 制 硝 酸 菌 就 的细菌 活性 , 硝化 阶段控制 在亚 硝酸 阶段 , 整 把 使
维普资讯
第 l 卷 第2 9 期 20 0 7年 4月
沈 阳 大 学 学 报
J OURNAL OF S HENYANG UNI VERS TY I
Vo .9, . 11 No 2 Ap . 2007 r
文章编号 :10 —25 2 0 )20 7 —4 0 89 2 (0 70 —0 40
分别 为 70 . 6 5 .. .~8 5和 .-75
制硝化过程停止在 H 0 阶段 . N 2 传统 硝化过程是 由亚硝酸菌 和 硝 酸菌 协 同完 成 的 , 由于这 两 类细
菌在开放 的生 态 系 统 中形 成 较 为 紧 密 的互 生关 系 , 氨氧化为 硝酸 , 将 因此完 全的亚 硝酸 化是不 可

《2024年短程硝化反硝化生物脱氮技术》范文

《2024年短程硝化反硝化生物脱氮技术》范文

《短程硝化反硝化生物脱氮技术》篇一一、引言随着工业化和城市化的快速发展,水体富营养化问题日益严重,其中氮污染成为了一个亟待解决的问题。

短程硝化反硝化生物脱氮技术作为一种新兴的污水处理技术,因其高效、节能等优点,受到了广泛关注。

本文将详细介绍短程硝化反硝化生物脱氮技术的基本原理、应用现状及发展趋势。

二、短程硝化反硝化生物脱氮技术的基本原理短程硝化反硝化生物脱氮技术是一种通过控制硝化过程,使氨氮氧化为亚硝酸盐氮,然后进行反硝化反应,将亚硝酸盐氮还原为氮气的生物脱氮技术。

该技术主要包括短程硝化阶段和反硝化阶段两个过程。

1. 短程硝化阶段:在一定的环境条件下,通过控制氨氧化细菌的活性,使氨氮仅被氧化为亚硝酸盐氮,而不再进一步氧化为硝酸盐氮。

这一过程需要控制适宜的pH值、温度、溶解氧等环境因素。

2. 反硝化阶段:在缺氧环境下,通过反硝化细菌的作用,将亚硝酸盐氮还原为氮气。

这一过程需要提供足够的碳源和适宜的电子受体。

三、短程硝化反硝化生物脱氮技术的应用现状短程硝化反硝化生物脱氮技术在国内外得到了广泛应用。

该技术具有脱氮效率高、能耗低、污泥产量少等优点,尤其适用于低C/N比污水处理。

在实际应用中,该技术常与其他生物脱氮技术结合使用,如AAO(厌氧-好氧)工艺、UCT(University of Cape Town)工艺等。

此外,该技术还可应用于垃圾渗滤液、养殖废水等高氨氮废水的处理。

四、短程硝化反硝化生物脱氮技术的发展趋势随着科学技术的不断发展,短程硝化反硝化生物脱氮技术也在不断进步。

未来,该技术将朝着以下几个方面发展:1. 技术优化:通过改进工艺流程、提高设备性能等手段,进一步提高短程硝化反硝化生物脱氮技术的效率。

2. 自动化控制:利用现代信息技术和自动化控制技术,实现短程硝化反硝化生物脱氮技术的自动化控制,提高操作管理的便捷性。

3. 组合工艺:将短程硝化反硝化生物脱氮技术与其他污水处理技术相结合,形成组合工艺,以提高整体处理效果。

生物膜法短程硝化反硝化研究进展

生物膜法短程硝化反硝化研究进展

生物膜法短程硝化反硝化研究进展生物膜法(包括MOVABR、MBBR等)是一种通过在生物载体表面固定生物膜并利用膜内外不同的微环境来实现硝化反硝化的处理方式。

近年来,生物膜法短程硝化反硝化技术得到了广泛应用和研究,取得了一系列突破性进展。

本文将从以下四个方面介绍生物膜法短程硝化反硝化研究的最新进展。

首先,生物膜法短程硝化反硝化技术的应用范围得到了拓展。

最初,生物膜法主要应用于污水处理领域,但近年来已经开始在其他领域得到应用。

例如,一些研究者将生物膜法应用于海水淡化过程中的硝化反硝化处理,取得了良好的效果。

此外,生物膜法还可以应用于废气处理中的硝化反硝化过程,如生物燃料电池中NH3的处理等。

其次,生物膜的制备和固定技术有了明显的改进。

生物膜的制备和固定是生物膜法短程硝化反硝化的核心环节。

近年来,研究者们提出了一些新的方法来制备和固定生物膜。

例如,将载体表面改性为亲水性或疏水性,实现生物膜的快速形成和固定。

此外,还有研究者使用纳米材料等新材料来改善生物膜的稳定性和活性。

第三,生物膜法短程硝化反硝化的反应机理得到了进一步的研究。

生物膜法短程硝化反硝化是通过在生物载体表面固定生物膜来实现的。

近年来,研究者们通过对膜内外微环境的测量和观察,深入了解了硝化反硝化过程中的微生物行为和相互关系。

这些研究为优化和改进生物膜法提供了理论依据。

最后,生物膜法短程硝化反硝化技术与其他处理技术的结合也取得了一些突破。

生物膜法短程硝化反硝化技术与物理化学处理技术的结合,如曝气、精细筛选等,可以进一步提高硝化反硝化的效率和稳定性。

此外,还有研究者将生物膜法与其他硝化反硝化技术结合,如生物接触氧化法和低温硝化反硝化法等,取得了双重优势。

综上所述,生物膜法短程硝化反硝化技术在应用范围、生物膜制备和固定、反应机理以及与其他处理技术的结合等方面取得了一系列的研究进展。

然而,仍然存在一些挑战需要解决,如提高硝化反硝化的效率和稳定性、降低运行成本等。

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术随着城市化进程的不断加快和人口的不断增加,废水处理成为城市环境建设中的一项关键任务。

废水中的氮污染成为严重的环境问题,对水生态系统和人类健康造成了威胁。

因此,寻找高效、经济、可持续的氮污染控制技术变得尤为重要。

短程硝化反硝化生物脱氮技术是一种先进的废水处理技术,可以高效地去除废水中的氮污染物。

其原理是通过调节废水处理系统中的氧气供应条件和生物菌群的运行状态,实现氨氮在较短的时间内从废水中转化为氮气的过程。

这项技术的核心是利用硝化和反硝化两步反应,将废水中的氨氮转化为较为稳定的氮气。

在硝化过程中,废水中的氨氮通过细菌的氧化作用转化为硝酸盐氮,而在反硝化过程中,废水中的硝酸盐氮通过细菌的还原作用转化为氮气。

通过这两个步骤的有机结合,可以高效去除硝酸盐氮和氨氮。

短程硝化反硝化生物脱氮技术具有许多优点。

首先,其技术流程相对简单,操作方便。

其次,该技术过程中的能耗较低,成本相对较低。

另外,短程硝化反硝化生物脱氮技术对氮污染的去除率高,处理效果好,能够将废水中的氮成分降到国家标准以内。

同时,该技术还可以减少化学药剂的使用,降低化学药剂对环境的污染。

然而,短程硝化反硝化生物脱氮技术仍然面临一些挑战和问题。

首先,该技术对于废水中的有机物浓度要求较高,当有机物浓度较低时,可能会导致废水处理效果不佳。

其次,由于生物反应器中的生物菌群对外界环境的影响较为敏感,当环境条件发生变化时,可能导致生物菌群的运行状态发生不稳定,进而影响整个处理系统的效果。

因此,为了更好地应对这些问题,我们需要采取一系列的优化措施。

首先,可以通过提高废水有机物浓度、调整操作参数、增加气体供应以及提高生物菌群的抗冲击能力等措施,来提高技术的处理效果。

其次,可以采用生物膜反应器等工艺改进手段,来提高处理系统的稳定性和抗干扰能力。

总之,短程硝化反硝化生物脱氮技术是一种高效、经济、可持续的废水处理技术,对解决废水中的氮污染问题具有重要意义。

短程反硝化-厌氧氨氧化脱氮工艺研究进展

短程反硝化-厌氧氨氧化脱氮工艺研究进展

短程反硝化-厌氧氨氧化脱氮工艺研究进展短程反硝化-厌氧氨氧化脱氮工艺研究进展近年来,随着环境保护意识的提高和水污染问题的日趋严重,废水处理技术也在不断地发展和创新。

其中,短程反硝化-厌氧氨氧化脱氮工艺成为研究的热点之一。

本文将对短程反硝化-厌氧氨氧化脱氮工艺的研究进展进行探讨。

短程反硝化-厌氧氨氧化脱氮工艺是一种将反硝化与厌氧氨氧化过程结合起来,通过控制氮素代谢过程中的微生物群落来实现高效去除污水中的氮化物。

该工艺能够将废水中的氨氮直接转化为氮气排放,从而有效地解决氮污染问题。

短程反硝化-厌氧氨氧化脱氮工艺相比传统的硝化-反硝化工艺具有能耗低、操作简便、处理效率高等优点。

因此,越来越多的研究者开始对该工艺进行深入研究。

短程反硝化-厌氧氨氧化脱氮工艺的核心是微生物群落的调控。

通过优化微生物群落的构成和比例,可以实现废水的高效去氮。

研究者们发现,在艳菌门、硝化细菌门和厌氧氨氧化细菌门等微生物群落中的种类和数量的变化会直接影响工艺的去氮效果。

因此,通过筛选和培养适宜的微生物群落,可以进一步优化短程反硝化-厌氧氨氧化脱氮工艺。

另外,研究者们还通过改变不同水质条件下的操作参数,来探索最佳的反应条件。

例如,影响微生物群落组成的温度、pH值、厌氧/好氧时间比等。

经过多次实践和优化,研究者们逐步确定了最佳的操作参数范围,以实现高效去氮。

此外,新型材料的应用也成为短程反硝化-厌氧氨氧化脱氮工艺研究的一个重要方向。

例如,纳米材料的引入可以增加微生物固定的表面积,从而提高去氮效率。

此外,微生物固定化技术的应用也可以增强微生物活性,降低不良环境对微生物活性的影响。

最后值得一提的是,工艺的运行与控制也非常关键。

合理控制厌氧、好氧周期,坚持稳定操作,能够有效改善工艺的运行效果。

定期测量关键参数如溶解氧、氨氮、硝氮等浓度,及时调整操作以保持良好的去氮效果。

总而言之,短程反硝化-厌氧氨氧化脱氮工艺因其高效、低能耗的特点在废水处理领域得到了广泛的研究和应用。

生物脱氮新技术研究进展

生物脱氮新技术研究进展

生物脱氮新技术研究进展随着环境保护意识的不断提高,生物脱氮技术作为一种环保节能的新型污水处理技术,越来越受到人们的。

本文将介绍生物脱氮新技术的研究背景和意义、研究进展、优缺点和发展前景,以期为相关领域的研究提供参考。

生物脱氮是指利用微生物或植物等生物手段,通过硝化和反硝化作用将废水中的氨氮和硝酸盐等含氮化合物转化为无害的氮气,从而达到废水治理和资源化的目的。

生物脱氮技术主要包括活性污泥法、生物膜法、反硝化菌法等。

这些技术均利用微生物菌群进行硝化和反硝化作用,将废水中的氨氮转化为氮气。

近年来,随着生物技术的不断发展,生物脱氮新技术也层出不穷。

下面介绍几种生物脱氮新技术的研究进展。

短程硝化反硝化技术是指在同一个反应器内,通过控制反应条件,使硝化作用和反硝化作用相继进行。

该技术可以大幅度减少反应器体积,提高反应效率,同时还可以降低能耗。

研究结果表明,短程硝化反硝化技术对氨氮和总氮的去除率均高于传统的活性污泥法。

厌氧氨氧化技术是指利用厌氧微生物将氨氮和亚硝酸盐转化为氮气的过程。

该技术的反应条件温和,无需曝气供氧,具有较高的氮去除率和能源利用率。

研究结果表明,厌氧氨氧化技术对高浓度氨氮废水的处理效果较好,但在低浓度氨氮废水处理中可能受到抑制。

悬浮生长植物脱氮技术是指利用水生植物如荷花、水葫芦等吸收废水中的氨氮,并通过植物体内的转化作用将其转化为氮气。

该技术具有投资少、操作简单、无需外加能源等优点,在低浓度氨氮废水中具有较好的处理效果。

研究结果表明,悬浮生长植物脱氮技术可以降低废水中的氨氮浓度,同时还可以改善水体生态环境。

生物脱氮新技术在氨氮和总氮的去除率、反应效率、能源利用率等方面均优于传统活性污泥法等生物脱氮技术。

但是,这些新技术尚存在一些缺点,如短程硝化反硝化技术需要控制精确的反应条件,厌氧氨氧化技术对废水的预处理要求较高,悬浮生长植物脱氮技术仅适用于低浓度氨氮废水的处理。

因此,在实际应用中,需要根据具体情况选择适合的生物脱氮技术。

短程硝化反硝化生物脱氮工艺影响因素研究现状

短程硝化反硝化生物脱氮工艺影响因素研究现状

两类硝化细菌活性及硝化产物的影响也不同。在 13℃~16℃下污
水中硝化细菌活性受到抑制,能够出现亚硝酸盐氮积累的现象。
16℃~32℃时,硝化反应的产物主要为硝酸盐氮,亚硝酸盐氮较少,
反硝化反应是在缺氧或无氧条件下由微生物将亚硝态氮和硝 基本上没有发现亚硝酸盐氮的积累。而温度继续升高,当超过 32℃
态氮转化为氮气的过程。反硝化菌包括螺旋菌属、反硝化杆菌属等, 时,又发现亚硝酸盐氮积累的现象[6]。
艺在实际运行时带来许多问题[1]。
pH 值也是硝化反应的重要因素之一:本身硝化细菌对 PH 值就
2 生物脱氮理论的突破
有一个要求,同时 pH 值对游离氨浓度又很大影响,因为废水中的
在以往的研究过程中,认为亚硝化和硝化细菌的属性相似,在 氨氮随 pH 值不同分别以分子态和离子态形式存在,分细菌科[2]。随之科学技术的进步 对硝酸菌的抑制要强于亚硝酸菌。因此,控制 pH 值在适当的范围
亚硝化细菌将含氮化合物转化为亚硝态氮过程;亚硝化细菌包括亚
3 短程硝化反硝化生物脱氮工艺的研究现状
硝酸盐螺旋杆菌属、亚硝酸盐球菌属、亚硝酸盐单胞菌属等;第二阶
目前,对 SCND 工艺的研究,主要体现在控制温度、溶解氧、PH
段为硝化反应由硝化细菌将亚硝态氮进一步转化为硝态氮的过程。 值三方面影响因素,三个影响因素的影响研究现状如下:
反硝化细菌可以利用污水中的分子氧、硝态氮、亚硝态氮以作为电
国内学者王淑莹等[4-5]通过控制水温在 30℃~32℃成功实现了
子受体,利用有机物作为碳源及电子供体提供能力。具体反应式如 SCND 工艺,较系统的分析了温度变化对 SCND 的影响。研究结果发
下:
现,水温保持在 30℃时得到的短程硝化,当在 20.5℃~24.5℃时,硝

炼油催化剂废水短程硝化反硝化脱氮技术研究

炼油催化剂废水短程硝化反硝化脱氮技术研究

炼油催化剂废水短程硝化反硝化脱氮技术研究张彤;郭智慧;马天奇;孔繁鑫;郭春梅;陈进富【期刊名称】《当代化工》【年(卷),期】2017(46)9【摘要】With the country's emphasis on environmental protection, wastewater discharge standards of refining industry are gradually being upgraded.Emission standard of pollutants for petroleum refiningindustry(GB 31570-2015)first put forward higher demands on total nitrogen emission limit to petrochemical industry, which has been implemented since July 1, 2017. For wastewater from refinery catalyst production, the removal of total nitrogen (TN) with lower cost is a difficult problem we are facing today because of its low C/N. In this paper, taking wastewater from refinery catalyst production as a research object, basedon high salinity and low C/N characteristics of the wastewater, SBR reactor was used to carry out short range nitrification denitrification technology experiment on the wastewater under real-time control. The result showed that NH4+-N and TNN removal rates respectively reached 96.9% and 99.8% under the real-time control, while the nitrite accumulation rate (NAR) was 98.1%. At the same time, the demand for carbon source in the denitrification stage,NaAc/TNN was 3.1:1.%随着国家对环境保护的重视,炼化行业废水排放标准也在逐步升级,《石油炼制工业污染物排放标准》(GB 31570-2015)首次对石化行业总氮排放限值提出了要求,并于2017年7月1日起正式实施.对于炼油催化剂废水,由于其低C/N比,低成本总氮(TN)脱除是其难题.本文以催化剂生产废水为研究对象,结合该废水高含盐、低C/N比的特点,在SBR反应器内采用实时控制的方式,采用短程硝化反硝化脱氮技术对模拟催化剂废水进行实验研究.实验结果表明:在实时控制条件下,低C/N比的含盐催化剂废水稳定运行时NH 4+-N和TNN(TNN为亚硝酸盐和硝酸盐之和)去除率分别达到96.9%和99.8%,硝化出水亚硝酸盐积累率NAR平均为98.1%,同时反硝化阶段对碳源需求:醋酸钠(NaAc)/TNN为3.1:1,节省了大量碳源.【总页数】4页(P1737-1740)【作者】张彤;郭智慧;马天奇;孔繁鑫;郭春梅;陈进富【作者单位】中国石油大学(北京)化学工程学院,北京 102249;世纪九如(北京)环境科技股份有限公司,北京 101102;延长石油集团研究院,陕西西安 710075;中国石油大学(北京)化学工程学院,北京 102249;中国石油大学(北京)化学工程学院,北京102249;中国石油大学(北京)化学工程学院,北京 102249【正文语种】中文【中图分类】TE624.9【相关文献】1.高氨氮低碳废水短程硝化-反硝化脱氮过程研究 [J], Ali Ibrah Landi;蒋明;林大泉;仝明;鲁军2.玉米淀粉废水强化混凝与反硝化脱氮除磷技术研究 [J], 郭晓娅;年跃刚;闫海红;殷勤;高鹏;陈光伟3.炼油催化剂废水冲击下短程硝化SBBR工艺性能研究 [J], 马宪梁;赵庆良;丁晶;王琨;陈扬;胡威夷4.短程硝化工艺在炼油催化剂废水中的中试研究 [J], 高洋;张树德;杨雪莹;刘毅;杨宏5.高氮豆制品废水的短程硝化反硝化脱氮技术及其过程控制 [J], 高大文;彭永臻;王庆;王淑莹;王鹏因版权原因,仅展示原文概要,查看原文内容请购买。

《2024年城市污水生物脱氮除磷技术的研究进展》范文

《2024年城市污水生物脱氮除磷技术的研究进展》范文

《城市污水生物脱氮除磷技术的研究进展》篇一一、引言随着城市化进程的加速,城市污水问题日益突出,特别是含氮、含磷污水的排放对水环境的污染越来越受到关注。

传统的物理、化学处理技术虽可实现一定的污水处理效果,但成本高、处理过程复杂,且可能产生二次污染。

因此,发展绿色、高效的生物脱氮除磷技术成为当前研究的热点。

本文将就城市污水生物脱氮除磷技术的研究进展进行详细阐述。

二、城市污水生物脱氮技术研究1. 传统生物脱氮技术传统生物脱氮技术主要依靠硝化与反硝化过程,通过在反应器中培养特定菌群,利用这些菌群的代谢活动完成氮的去除。

然而,传统技术往往存在处理效率低、能耗大等问题。

2. 新型生物脱氮技术(1)短程硝化反硝化技术:该技术通过控制反应条件,使硝化过程停留在亚硝酸盐阶段,减少了反应步骤,提高了脱氮效率。

(2)同步硝化反硝化技术:该技术通过优化反应器设计,使硝化与反硝化过程在同一反应器中同时进行,提高了空间利用率和脱氮效率。

三、城市污水生物除磷技术研究1. 传统生物除磷技术传统生物除磷技术主要依靠聚磷菌的过量摄磷行为实现除磷。

然而,该技术受水质、水温等因素影响较大,除磷效果不稳定。

2. 新型生物除磷技术(1)强化生物除磷技术:通过向反应器中投加特定物质或调节pH值等手段,强化聚磷菌的摄磷能力,提高除磷效率。

(2)组合生物除磷技术:将生物除磷技术与物理、化学方法相结合,形成组合式处理工艺,提高除磷效果和稳定性。

四、城市污水生物脱氮除磷技术的发展趋势1. 集成化技术:将多种生物处理技术进行集成,形成集成化处理系统,提高处理效率和稳定性。

2. 智能化控制:利用现代信息技术和自动化控制技术,实现污水处理过程的智能化控制,提高处理效果和降低能耗。

3. 绿色环保材料的应用:开发绿色、环保的生物载体和填料,提高生物反应器的性能和稳定性。

4. 强化技术研究:针对不同地区、不同类型污水的特点,开展强化技术研究,提高脱氮除磷效果和适应性。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。

其中,氮、磷等营养物质的排放对水环境造成了严重污染。

因此,研究并发展新型的生物脱氮除磷技术,对于保护水环境、实现水资源的可持续利用具有重要意义。

本文将就城市污水处理中新型生物脱氮除磷技术的研究进展进行详细阐述。

二、城市污水处理现状及挑战城市污水处理主要包括物理、化学和生物处理等多种方法。

其中,生物处理法因其处理效率高、成本低等优点被广泛应用。

然而,传统的生物脱氮除磷技术面临着诸多挑战,如处理效率不高、能耗大、易产生二次污染等问题。

因此,研究新型的生物脱氮除磷技术成为当前的重要课题。

三、新型生物脱氮技术研究进展(一)A2/O工艺改进A2/O(厌氧-缺氧-好氧)工艺是目前应用最广泛的生物脱氮技术。

针对其处理效率及能耗等问题,研究者们通过优化运行参数、改进工艺流程等方式,提高了A2/O工艺的脱氮效果。

(二)短程硝化反硝化技术短程硝化反硝化技术通过控制硝化过程,使氨氮直接转化为氮气,避免了传统硝化过程中产生的中间产物,提高了脱氮效率。

近年来,该技术在城市污水处理中得到了广泛应用。

(三)新型微生物脱氮技术新型微生物脱氮技术主要利用特定的微生物或酶,通过生物强化、生物膜等技术,提高脱氮效率。

例如,利用反硝化细菌的代谢过程,实现高效脱氮。

四、新型生物除磷技术研究进展(一)厌氧-好氧交替运行技术厌氧-好氧交替运行技术通过控制污水在厌氧和好氧条件下的交替运行,使聚磷菌在好氧条件下大量摄取磷,实现除磷效果。

该技术具有操作简单、成本低等优点。

(二)生物膜法除磷技术生物膜法除磷技术利用生物膜的吸附、截留和生物降解作用,将污水中的磷去除。

该技术具有处理效果好、污泥产量少等优点。

(三)新型微生物除磷技术新型微生物除磷技术主要利用特定的微生物或酶,通过生物强化、基因工程等技术,提高除磷效率。

该技术为未来城市污水处理提供了新的思路和方法。

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术是一种新型的污水处理技术,可以高效地去除污水中的氮污染物,具有技术简单、运行稳定等特点。

本文将从介绍短程硝化反硝化生物脱氮技术的原理和流程、应用和优势、发展前景等方面进行展开。

一、短程硝化反硝化生物脱氮技术的原理和流程短程硝化反硝化生物脱氮技术是基于微生物菌群的协同作用而实现的一种脱氮过程。

它通过合适的操作条件和控制策略,促进污水处理系统内的硝化和反硝化反应,使污水中的氨氮转化为亚硝态氮和硝态氮,再进一步转化为氮气释放到大气中。

短程硝化反硝化生物脱氮技术的流程通常分为硝化阶段和反硝化阶段。

在硝化阶段,将进入系统的氨氮通过硝化细菌作用转化为亚硝态氮或硝态氮。

然后,在反硝化阶段,利用特定的微生物将亚硝态氮或硝态氮还原为氮气,并最终释放到大气中。

二、短程硝化反硝化生物脱氮技术的应用和优势短程硝化反硝化生物脱氮技术在污水处理领域得到了广泛的应用。

它适用于处理含有高浓度氨氮的污水,如农业养殖废水、城市污水和工业废水等。

与传统的生物脱氮技术相比,短程硝化反硝化生物脱氮技术具有以下优势:1. 技术简单易行:采用短程硝化反硝化生物脱氮技术,无须引入额外的化学药剂和设备,仅需调节系统的氧化还原电位、温度和pH值等操作条件即可实现高效的脱氮效果。

2. 能耗低:短程硝化反硝化生物脱氮技术采用生物方法进行氮污染物的处理,相较于传统的物理和化学方法,具有更低的能耗和运行成本。

3. 运行稳定:短程硝化反硝化生物脱氮技术中的微生物菌群具有较强的适应能力和生物活性,能够在不同的环境条件下保持较高的活性和稳定性,使得污水处理系统能够长期稳定运行。

4. 减少对环境的负荷:短程硝化反硝化生物脱氮技术将氮污染物转化为氮气释放到大气中,减少了对水体和土壤的氮负荷,对环境的影响较小。

三、短程硝化反硝化生物脱氮技术的发展前景短程硝化反硝化生物脱氮技术作为一种新型的污水处理技术,具有较为广阔的发展前景。

短程硝化反硝化技术研究进展

短程硝化反硝化技术研究进展

短程硝化反硝化技术研究进展短程硝化反硝化技术研究进展近年来,水体污染问题日益严重,尤其是水体中氮污染的问题引起了人们的广泛关注。

氮污染主要是由于工业排放、农业活动和生活废水中的氮化合物过多导致的。

氮污染会对水体生态系统造成极大的危害,因此控制和处理水体中的氮污染问题迫在眉睫。

短程硝化反硝化技术被认为是一种有效去除水体中氨氮和硝酸盐氮的方法,在水体污染治理中具有重要的应用价值。

短程硝化反硝化技术是近年来兴起的一种新型废水处理技术,该技术主要基于硝化细菌和反硝化细菌的作用。

在短程硝化反硝化过程中,硝化细菌将氨氮快速氧化为硝酸盐氮,而反硝化细菌则将硝酸盐氮还原为氮气排放至大气中。

相较于传统的硝化反硝化工艺,短程硝化反硝化技术具有处理效率高、占地面积小、能耗低等优势。

因此,短程硝化反硝化技术受到了广泛的研究和应用。

在短程硝化反硝化技术的研究中,主要关注以下几个方面:厌氧硝化技术、好氧反硝化技术、硝化反硝化过程的微生物群落结构和功能等。

厌氧硝化技术是相对较新的短程硝化反硝化技术,其主要利用反硝化细菌在无氧条件下对硝酸盐氮进行还原,从而产生亚氮和氨氮。

好氧反硝化技术则是在常规硝化反硝化过程中引入了好氧环节,通过好氧环节中的反硝化细菌对硝酸盐氮进行还原,从而实现氮化合物的去除。

这两种新技术不仅提高了短程硝化反硝化过程的效率,还减少了能耗和设备投资成本。

另外,研究人员还关注短程硝化反硝化过程中的微生物群落结构和功能。

短程硝化反硝化过程涉及到许多不同类型的微生物,包括硝化细菌、反硝化细菌以及其他共存微生物。

研究微生物群落结构和功能对于进一步了解短程硝化反硝化过程的机制和优化技术具有重要意义。

通过对微生物群落的研究,可以发现一些关键微生物种群,从而指导工艺的改进和优化。

此外,一些新型材料的引入也为短程硝化反硝化技术的发展提供了新的可能性。

例如,利用纳米材料作为载体可以增加微生物附着表面积,提高短程硝化反硝化过程中细菌的附着量,进而提高处理效率。

《2024年短程硝化反硝化技术研究进展》范文

《2024年短程硝化反硝化技术研究进展》范文

《短程硝化反硝化技术研究进展》篇一一、引言随着环境保护意识的逐渐加强,污水处理技术在不断进步与发展。

短程硝化反硝化技术作为新兴的污水处理技术,具有其独特的优势和广阔的应用前景。

该技术主要通过控制硝化反应的过程,使其仅进行到亚硝酸盐阶段,即所谓的“短程”过程,随后进行反硝化反应,以达到去除氮的目的。

本文旨在探讨短程硝化反硝化技术的原理、应用及研究进展。

二、短程硝化反硝化技术原理短程硝化反硝化技术主要涉及两个过程:硝化过程和反硝化过程。

在硝化过程中,氨氮在亚硝酸盐菌的作用下被氧化为亚硝酸盐;在反硝化过程中,亚硝酸盐在厌氧条件下被还原为氮气,从而达到去除氮的目的。

短程硝化反硝化技术的关键在于控制硝化过程仅进行到亚硝酸盐阶段,这需要通过对反应条件的精确控制来实现。

三、短程硝化反硝化技术的应用短程硝化反硝化技术广泛应用于污水处理、脱氮除磷等领域。

由于该技术具有反应速度快、能耗低、污泥产量少等优点,因此在污水处理领域具有广泛的应用前景。

此外,该技术还可与其他生物脱氮技术相结合,如厌氧氨氧化、同步硝化反硝化等,以提高脱氮效率。

四、短程硝化反硝化技术研究进展近年来,短程硝化反硝化技术的研究取得了显著的进展。

首先,在反应器设计方面,研究者们设计出了各种类型的反应器,如序批式反应器、流化床反应器等,以提高短程硝化反硝化的效率和稳定性。

其次,在反应条件控制方面,研究者们通过优化pH 值、温度、溶解氧等参数,实现了对短程硝化反硝化过程的精确控制。

此外,关于短程硝化反硝化技术的机理研究也取得了重要的进展,为该技术的进一步应用提供了理论依据。

五、未来展望未来,短程硝化反硝化技术将进一步得到发展和完善。

首先,研究者们将继续优化反应器设计,提高短程硝化反硝化的效率和稳定性。

其次,关于反应条件控制的研究将更加深入,以实现更加精确的控制。

此外,结合其他生物脱氮技术,如厌氧氨氧化、同步硝化反硝化等,将进一步提高短程硝化反硝化技术的脱氮效率。

不同工艺的短程硝化反硝化过程研究

不同工艺的短程硝化反硝化过程研究


为横坐标,以
为纵坐标,对式(6)进行线性拟合,
结果如图3-3所示,直线的截距为 ,斜率为

据图求得:
Vmax=0.00066 mgNO2--N/(mgVSS·h)
KSSN+SSN+KNKS=66.157
图3-3 短程反硝化动力学模型参数分析
不同工艺的短程硝化反硝化过程研究
2、运行情况及动力学分析 (2)短程反硝化过程动力学参数的计算
反硝化过程受双重基质的限制,在短程反硝化过程中,基质降 解受NO2-浓度和有机物浓度的限制,假设反硝化过程符合Monod方 程,因此用双重Monod模型方程来描述:
(4)
带入缺氧区物料平衡方程
得 取倒数
(5) (6)
不同工艺的短程硝化反硝化过程研究
2、运行情况及动力学分析
(2)短程反硝化过程动力学参数的计算
不同工艺的短程硝化反硝化过程研究
2、反硝化过程模型构建及参数测定
• 亚硝酸盐降解总方程 • 反硝化平衡方程
不同工艺的短程硝化反硝化过程研究
2、反硝化过程模型构建及参数测定
• 亚硝盐降解方程 • 整理得
不同工艺的短程硝化反硝化过程研究
2、反硝化过程模型构建及参数测定
• 第一步:控制KNO<< SNO; KS<< S » SNO/(KNO+ SNO)≈1; S/ (KS+ S)≈1 » (-1)/XH · dSNO/dt= qN 可确定qN
(0)
式中: YH,N —反硝化菌产率系数; u —反硝化菌最大比增殖速率,h-1; KN —亚硝酸盐氮的半饱和常数,mg·L-1; SN—BAF 反硝化过程中不同时刻亚硝酸盐氮浓度,mg·L-1; S—投加碳源浓度(COD),mg·L-1; KS—有机物的半饱和常数,mg ·L-1; X—BAF 反应器的当量生物膜的量,mg·L-1;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[收稿日期] 2010-01-13短程硝化反硝化脱氮技术的研究进展冯灵芝(上海农林职业技术学院,上海松江:201600)摘 要:短程硝化反硝化是一种新型生物脱氮技术,具有降低能耗、节省碳源和减少污泥产量等优点。

本文简要介绍了短程硝化反硝化脱氮技术的原理,对亚硝化菌、硝化菌和反硝化菌的研究现状进行了综述,讨论了温度、DO 、pH 值、泥龄等参数对实现短程硝化的影响,并提出了今后的研究方向。

关键词:短程硝化反硝化;生物脱氮;亚硝酸盐生物脱氮是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。

目前应用广泛的A/O 、SBR 、氧化沟等脱氮工艺就是在此理论基础上开发的,但这些脱氮工艺普遍存在氨氮负荷过高而引起的出水不达标、消耗有机物,产生剩余污泥多,消耗能源多等问题。

自1975年Voet [1] 发现在硝化过程中HNO 2积累的现象并首次提出短程硝化反硝化脱氮以来,短程硝化反硝化作为一种新型脱氮技术得到广泛的关注。

1 短程硝化反硝化的脱氮机理及优势生物脱氮包括硝化和反硝化两个阶段,主要涉及亚硝化菌、硝化菌和反硝化菌三类微生物。

传统生物脱氮途径如图1所示。

图1 传统生物脱氮途径短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。

该技术具有很大的优势[2]:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。

2 短程硝化反硝化技术的研究进展亚硝酸盐很不稳定,硝化菌的作用下很快氧化成硝酸盐,一般条件下实现短程硝化反硝化是比较困难的。

短程硝化反硝化技术的关键是将硝化控制在亚硝化阶段,也即是对亚硝化菌和硝化菌的控制。

因此,如何实现短程硝化成为国内外学者对短程硝化反硝化技术的研究重点,研究方向可概括为两方面:一方面从微生物学角度,筛选培养出高效亚硝化菌和硝化菌,研究其生化特征;另一方面从脱氮工艺的运行效果来研究运行参数对短程硝化的影响。

氨 (NH 3、NH 4+) 硝酸盐 (NO 3—)亚硝酸盐 (NO 2—) 氮气(N 2) 亚硝化硝化 反硝化 反硝化2.1微生物种类及特性研究进展目前的研究发现,亚硝化菌为硝化杆菌科的5个属:亚硝化单胞菌属(Nitrosomonas )、亚硝化螺菌属(Nitrosospira )、亚硝化球菌属(Nitrosococcus )、亚硝化弧菌属(Nitrosovibrio )、亚硝化叶状菌属(Nitrosolobus ),总共有15个种的亚硝化细菌[3]。

廖雪义等[4]从土壤中分离到一株亚硝化速率较高的菌株,鉴定为亚硝化单胞菌属(Nitrosomonas sp ),发现该菌株能同时进行硝化和反硝化作用。

硝化菌主要由硝化杆菌属(Nitrobacter )、硝化球菌属(Nitrococcus )、硝化螺菌属(Nitrospira )和硝化刺菌属(Nitrospina )4个属组成。

近年来,通过对硝化菌16SrRNA 的核酸探针测试表明:完成亚硝态氮氧化的优势菌种为硝化螺菌属而非硝化杆菌属[5]。

亚硝化菌和硝化菌生化特性比较见表1。

表1 亚硝化菌和硝化菌主要生化特征比较亚硝化菌 硝化菌 自养性专性 兼性 需氧性严格好氧,在低氧下能生长 严格好氧 世代时间/h8-12(Nitrosococcus ) 8-24(Nitrosospira )8h-几天 产率系数Y/(mg 细胞/mg 基质)0.04-0.13 0.02-0.07 氧饱和常数K/(mg/L )0.2-0.4 1.2-1.5 最适温度/℃25-30℃ 25-30℃ 最适pH 值7.5-8.0 7.5-8.0 有毒物质 敏感 较为敏感反硝化菌大多数为兼性异养菌,最适pH 范围为6.5-7.5,适宜温度20-40℃。

到目前为止,已分离出60多种反硝化菌,主要分布于3个属:假单胞菌属(Pseudomonas )、产碱菌属(Alcaligenes )和芽孢杆菌(Bacillus )。

有研究发现部分异养反硝化菌由于酶系统的缺乏,只能将3NO N --还原成2NO N --[6];也有人[7]通过定向筛选法驯化得到了以亚硝酸盐为电子受体的反硝化菌。

2.2短程硝化运行参数的研究进展2.2.1温度亚硝酸菌和硝酸菌对温度变化的敏感性不同,由不同温度下两种菌群的增长速率(见图2)可知,高温条件下,硝化菌的生长速度明显低于亚硝化菌,利用该动力学特征可实现短程硝化。

但目前,对于影响短程硝化的具体温度说法不一致:郑平等[8]认为,温度高于20℃,亚硝化菌的最大比生长速率就会超过硝化菌,而且温度越高,相差越大。

因此,将温度控制在20℃以上,就会出现亚硝酸盐的积累。

袁林江等[9]认为,12℃~14℃下活性污泥中的亚硝酸盐氧化菌活性受到严重抑制,出现HNO2的积累;15℃~30℃内,亚硝酸盐可完全被氧化为硝酸盐;温度超过30℃时又出现HNO2的积累。

高大文等[10]认为,28℃是控制温度实现短程硝化反硝化生物脱氮工艺的临界温度,即如果反应器温度低于此临界温度,则短程硝化会逐渐转变为全程硝化。

图2 不同温度下亚硝化菌和硝化菌的增长速率2.2.2 pH值pH值对短程硝化的影响主要表现在两方面:一方面亚硝化菌对于pH值有一个最佳生长环境;另一方面pH值对游离氨浓度有很大影响,高pH值下,废水中游离氨所占比例增加,而分子态游离氨氮对硝化菌的抑制要强于亚硝化菌[11]。

于徳爽等[12]在中温(20-30℃)条件下,通过控制进水的PH值为7.5-8.8来实现亚硝态氮的积累,且平均亚硝化率达到95%以上。

很多研究者发现虽然调节pH值能够一定程度上抑制硝化菌以实现短程硝化,但对于长期运行的短程硝化反应器,把pH值作为关键参数可能无法达到稳定的亚硝酸盐积累[13]。

2.2.3溶解氧DOBernet[14]认为亚硝化菌和硝化菌对氧的亲和力不同,在低DO(<1.0mg/L)时,亚硝化菌和硝化菌的增长速率都会由于溶解氧的下降而下降,但是硝化菌的下降要比亚硝化菌快(当DO为0.5mg/L时,亚硝化菌增值速率为正常值的60%,而硝化菌不超过正常值的30%[15]),使亚硝化菌成为主体,实现亚硝态氮的累积。

为了证明DO作为短程硝化控制因素的可行性,Bernet利用生物膜反应器进行试验,结果表明,在DO<0.5mg/L的条件下可以实现短程硝化,出水NO2-N累积率90%以上。

低溶解氧的情况下,有利于亚硝化反应的进行,也有利于反硝化的进行。

张朝升等[16]采用SBR处理模拟城市污水,在常温(20-25℃),DO=0.5-1mg/L条件下,实现了短程同步硝化反硝化,氨氮的去除率达到95%~97%,总氮的去除率达到82%~85%。

OLAND工艺就是先在限氧条件下(0.1-0.3mg/L),实现氨氮的部分亚硝化并实现亚硝酸盐氮的浓度积累,接着进行厌氧氨氧化反应,从而达到去除含氮污染物的目的。

该工艺的关键是控制溶解氧浓度。

低溶解氧虽能实现亚硝酸盐的积累,但易引起活性污泥易发生解体和丝状菌膨胀[17-18],其对氨氧化细菌和亚硝化细菌活性减低的影响还需进一步研究。

2.2.4泥龄控制泥龄实现短程硝化的前提是亚硝化菌的生长速率明显高于硝化菌的生长速率,亚硝化菌的最小停留时间小于硝化菌的最小停留时间。

通过控制系统的泥龄处于亚硝化菌和硝化菌最小停留时间之间,使亚硝化菌具有较高的浓度而硝化菌被自然淘汰,维持稳定的亚硝酸氮的积累。

荷兰Delft技术大学开发的SHARON工艺就是利用高温(30-35℃)高pH值下,亚硝化菌的增长速率高于硝化菌,控制短泥龄(1-1.5d)使硝化菌逐渐被“淘洗”掉,实现亚硝酸积累[19]。

2.2.5有机物浓度有机物对短程硝化的影响主要表现在异养菌与硝化菌对DO的争夺。

当温度和pH适合,DO和氨供给充足,有机物浓度对硝化作用不造成影响;但当DO不足,有机物浓度高时,由于异养菌对水中DO的争夺强于硝化菌,硝化菌的生长繁殖会受到抑制,硝化作用受到影响。

傅金祥等[19]研究发现C/N=6.1时,可实现较高的亚硝酸盐积累。

2.2.6投加抑制剂抑制剂是一种对敏感的细菌产生选择性抑制的化学物质,在短程硝化影响因素中研究较多是游离氨FA、高浓度盐、氧化剂。

Anthonisen等[20]研究认为游离氨浓度在0.1~1.0mg/L 时就会抑制硝化菌活性,而当浓度达到10~150mg/L时才会抑制亚硝化菌活性。

于徳爽等[12]在采用SBR工艺处理城市污水中发现,增加水中盐度对硝化菌的增殖有明显的抑制而对亚硝化菌没有影响。

Hynens等发现,在废水中加入5mmol/L的氯酸钠可抑制硝化菌的活性,而对亚硝化菌无影响[21]。

但也有学者认为,硝化菌对抑制剂有一定的适应能力,仅依靠投加抑制剂不能实现短程硝化的持久稳定运行。

3 结语短程硝化-反硝化脱氮技术应用于高温高氨废水(污泥消化上清液和垃圾渗滤液等)的处理是可行的,温度、DO、pH值、泥龄是工艺运行的重要控制参数。

但将短程硝化反硝化技术应用于城市污水处理,并取得较好的脱氮效果,还存在一定的局限性。

在实际应用中,如何针对各种废水的水质特点,找到重要影响因子,或综合考虑水温、DO、pH值、泥龄等运行参数,使短程硝化稳定地持续,且不会对环境产生二次污染等,还有待进一步的研究和探索。

参考文献[1] V otes J P.Removal of nitrogen from highly nitrogenous wastewater[J] .JW-PCF, 1975,47(4),pp.394-398[2] 孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2004年[3] 布坎南(Buchanan,R.E.).伯杰细菌鉴定手册[M].北京:科学出版社,1984.[4] 廖雪义,蓝荣.亚硝化细菌的分离及初步鉴定[J].生物技术,2008,18(6):50-52[5] 叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006[6] 徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社,1996[7] 张云霞,周集体,袁守志.高效亚硝酸型反硝化菌生长特性及脱氮研究[J].大连理工大学学报,2009,49(2):180-185[8] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004[9] 袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31[10] 高大文,彭永臻,王淑莹.短程硝化生物脱氮工艺的稳定性[J].环境科学,2005,26(1):63-67[11] 刘秀红,王淑莹,高大文等.短程硝化的实现、维持与过程控制的研究现状[J].环境污染治理技术与设备,2004,5(12):7-11[12] 于徳爽,彭永臻,张相忠等.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,19(1):40-42[13] G Ruiz,D Jeison,R Chamy.Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J].Water Research,2003,37:1371-1377[14] BERNET N,PENG D C,DELGENES J-P, et al.Nitrification at low oxygen concentration in biofilm reactor[J].J Environ Eng ASCE,2001,127(3):266-271[15] LAANBROEK H J,GERARDS S.Competition for limiting amounts of oxygen between nitrosomanas European and Nitrobacteria winogradskyi grown in mixed continuous cultures[J].Archives ofMicrobiology,1993,159:453-459[16] 张朝升,章文菁,方茜等.DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J].环境工程学报,2009,3(3):413-416[17] 张小玲,王志盈,彭党聪等.低溶解下活性污泥法的短程硝化研究[J].中国给水排水,2003,19(7):1-4[18] 高大文,彭永臻,王淑盈.不同方式实现短程硝化反硝化生物脱氮工艺的比较[J].中国环境科学,2005,24(5):618-622[19] 傅金祥,徐岩岩.碳氮比对短程硝化反硝化的影响[J].沈阳建筑大学学报(自然科学版),2009,25(4):728-731[20] ANTHONISEN A C,LOEHR R C,PARKASAM,TBS.Inhibition of nitrification by ammonia and nitrous acid[J].JWPCE,1976,48(5):835-860[21] 叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006Research Advances in Biological Nitrogen Removal by ShortcutNitrification- DenitrificationFeng Lingzhi(Shanghai Vocational and Technical College of Agriculture and Forestry,Songjiang,Shanghai,201600)Abstract:Shortcut nitrification-denitrification is a new bio-denitrification technology,it has a lot of advantages such as reducing consumption of energy, saving carbon and reducing sludgeproduction and so on. This paper briefly introduces the principle of shortcut nitrification-denitrification,reviews the research status of nitrite bacteria,nitrobacteria and denitrifying bacteria,the influence of the realization of nitrification by operating parameters such as temperature,DO,pH,sludge age is discussed,and the future studying directions of shortcut nitrification and denitrification are put forward in the end .Key words:shortcut nitrification-denitrification,biological nitrogen removal,nitrite。

相关文档
最新文档