2019年平顶山市数学高考模拟试题(及答案)

合集下载

2019年高考数学模拟试题含答案(3)

2019年高考数学模拟试题含答案(3)
2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)
2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019 年高考数学模拟试题含 答案(3)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您 的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)的全部内容。
如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回.
一.选择题:本大题共 12 个小题,每小题 5 分,共 60 分。在每小题给出的四个选项中只
有一项是符合题目要求的
1.已知集合 A {x x2 2x 3 0}, B {2,3,4} ,则 (CR A) B =
数学科答案(理科)
一、选择题 1—5 ACADD 6—10 ABCBC 11—12 BA
高三数学(理)科试题(第 7 页 共 6 页)
2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)
二、填空题 13。45 14。3
15.65
16.
3或 4
3 6
三、解答题
17. 解:(1)因为{an}是等差数列且公差为 d,所以 an an1 d(n 2).。.。..。。。。。1

河南省2019年高考数学一模试卷(解析版)(理科)

河南省2019年高考数学一模试卷(解析版)(理科)

2019年河南省平顶山市高考数学一模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x||x|<1 },B={x|≥1},则A∪B=()A.(﹣1,1]B.[﹣1,1]C.(0,1)D.(﹣∞,1]2.若复数(1+2i)(1+ai)是纯虚数(i为虚数单位),则实数a的值是()A.﹣2 B.C.﹣D.23.某几何体的三视图如图所示,它的表面积为()A.66πB.51πC.48πD.33π4.下列说法正确的是()A.“∀x∈R,e x>0”的否定是“∃x∈R,使e x>0”B.若x+y≠3(x,y∈R),则x≠2或y≠1C.“x2+2x≥ax(1≤x≤2)恒成立”等价于“(x2+2x)min≥(ax)max(1≤x≤2)”D.“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题5.已知向量=(1,﹣2),=(1,1),→→→-=b a m , =+λ,如果→→⊥n m ,那么实数λ=( )A .4B .3C .2D .16.若对于任意的x >0,不等式≤a 恒成立,则实数a 的取值范围为( )A .a ≥B .a >C .a <D .a ≤7.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为( )A .B .C .D . 8.若执行如图所示程序框图,则输出的s 值为( )A .﹣2016B .2016C .﹣2017D .20179.高为5,底面边长为4的正三棱柱形容器(下有底)内,可放置最大球的半径是( )A .B .2C .D .10.已知点p(x,y)满足过点p(x,y)向圆x2+y2=1做两条切线,切点分别是点A和点B,则当∠APB最大时,的值是()A.2 B.3 C.D.11.过双曲线﹣=1(a>0,b>0)的右焦点D作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.12.已知f(x)是定义在(0,+∞)的函数.对任意两个不相等的正数x1,x2,都有>0,记a=,b=,c=,则()A.a<b<c B.b<a<c C.c<a<b D.c<b<a二、填空题(共4小题,每小题5分,满分20分)13.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a﹣3),则实数a的值为.14.若的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为.15.在△ABC中,a=3,b=2,∠B=2∠A,则c=.16.已知函数f(x)=.若a>0,则函数y=f(f(x))﹣1有个零点.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知S n为数列{a n}的前n项和,且2S n=3a n﹣2(n∈N*).(Ⅰ)求a n和S n;(Ⅱ)若b n=log3(S n+1),求数列{b2n}的前n项和T n.18.(12分)某校高一共录取新生1000名,为了解学生视力情况,校医随机抽取了100名学生进行视力测试,并得到如下频率分布直方图.(Ⅰ)若视力在4.6~4.8的学生有24人,试估计高一新生视力在4.8以上的人数;(Ⅱ)校医发现学习成绩较高的学生近视率较高,又在抽取的100名学生中,对成绩在前50名的学生和其他学生分别进行统计,得到如右数据,根据这些数据,校医能否有超过95%的把握认为近视与学习成绩有关?(Ⅲ)用分层抽样的方法从(Ⅱ)中27名不近视的学生中抽出6人,再从这6人中任抽2人,其中抽到成绩在前50名的学生人数为ξ,求ξ的分布列和数学期望.19.(12分)如图,在四棱锥P﹣ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.(Ⅰ)求证:平面DPC⊥平面BPC;(Ⅱ)求二面角C﹣PD﹣B的余弦值.20.(12分)如图,点P为圆E:(x﹣1)2+y2=r2(r>1)与x轴的左交点,过点P作弦PQ,使PQ与y轴交于PQ的中点D.(Ⅰ)当r在(1,+∞)内变化时,求点Q的轨迹方程;(Ⅱ)已知点A(﹣1,1),设直线AQ,EQ分别与(Ⅰ)中的轨迹交于另一点Q1,Q2,求证:当Q在(Ⅰ)中的轨迹上移动时,只要Q1,Q2都存在,且Q1,Q2不重合,则直线Q1Q2恒过定点,并求该定点坐标.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.请考生从(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.(Ⅰ)将曲线C的极坐标方程化为参数方程:(Ⅱ)如果过曲线C上一点M且斜率为﹣的直线与直线l:y=﹣x+6交于点Q,那么当|MQ|取得最小值时,求M点的坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若f(x)≥﹣对任意实数x恒成立,求a的取值范围.参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x||x|<1 },B={x|≥1},则A∪B=()A.(﹣1,1]B.[﹣1,1]C.(0,1)D.(﹣∞,1]【考点】并集及其运算.【分析】分别求出集合A、B的范围,取并集即可.【解答】解:集合A={x||x|<1 }=(﹣1,1),B={x|≥1}=(0,1],则A∪B=(﹣1,1],故选:A.【点评】本题考查了集合的并集的运算,考查不等式问题,是一道基础题.2.若复数(1+2i)(1+ai)是纯虚数(i为虚数单位),则实数a的值是()A.﹣2 B.C.﹣D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数(1+2i)(1+ai)=1﹣2a+(2+a)i是纯虚数,则1﹣2a=0,2+a≠0,解得a=.故选:B.【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.3.某几何体的三视图如图所示,它的表面积为()A.66πB.51πC.48πD.33π【考点】由三视图求面积、体积.【分析】由几何体的三视图可知,该几何体是一组合体,上部为半球体,直径为6.下部为母线长为5的圆锥,分别求面积,再相加即可.【解答】解:由几何体的三视图可知,该几何体是一组合体,上部为半球体,直径为6.下部为母线长为5的圆锥.半球表面积为2π×32=18π圆锥的侧面积为π×3×5=15π所以所求的表面积为π+15π=33π故选D.【点评】本题考查由三视图考查由三视图还原几何体直观图,求几何体的表面积,属于基础题.4.下列说法正确的是()A.“∀x∈R,e x>0”的否定是“∃x∈R,使e x>0”B.若x+y≠3(x,y∈R),则x≠2或y≠1C.“x2+2x≥ax(1≤x≤2)恒成立”等价于“(x2+2x)min≥(ax)max(1≤x≤2)”D.“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题【考点】命题的真假判断与应用.【分析】A,“∀x∈R,e x>0”的否定是“∃x∈R,使e x≤0”;B,命题“若x+y≠3(x,y∈R),则x≠2或y≠1”的逆否命题是:“若x=2且y=1,则x+y=3“为真命题,故原命题为真命题;C,例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2x max=4;D,a=0时,函数f(x)=ax2+2x﹣1只有一个零点;【解答】解:对于A,“∀x∈R,e x>0”的否定是“∃x∈R,使e x≤0”,故错;对于B,命题“若x+y≠3(x,y∈R),则x≠2或y≠1”的逆否命题是:“若x=2且y=1,则x+y=3“为真命题,故原命题为真命题,故正确;对于C,例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2x max=4,故错;对于D ,原命题的逆命题为:若函数f (x )=ax 2+2x ﹣1只有一个零点,则a=﹣1“,∵a=0时,函数f (x )=ax 2+2x ﹣1只有一个零点,故错; 故选:B【点评】本题考查了命题真假的判定,属于基础题.5.已知向量=(1,﹣2),=(1,1),→→→-=b a m , =+λ,如果→→⊥n m ,那么实数λ=( ) A .4 B .3 C .2 D .1【考点】数量积判断两个平面向量的垂直关系.【分析】先利用平面向量坐标运算法则求出,,再由⊥,利用向量垂直的条件能求出实数λ.【解答】解:∵向量=(1,﹣2),=(1,1),→→→-=b a m , =+λ, ∴→m =(0,﹣3),=(1+λ,﹣2+λ), ∵→→⊥n m ,∴=0﹣3(﹣2+λ)=0,解得λ=2. 故选:C .【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.6.若对于任意的x >0,不等式≤a 恒成立,则实数a 的取值范围为( )A.a≥B.a>C.a<D.a≤【考点】基本不等式.【分析】由x>0,不等式=,运用基本不等式可得最大值,由恒成立思想可得a的范围.【解答】解:由x>0,=,令t=x+,则t≥2=2当且仅当x=1时,t取得最小值2.取得最大值,所以对于任意的x>0,不等式≤a恒成立,则a≥,故选:A.【点评】本题考查函数的恒成立问题的解法,注意运用基本不等式求得最值,考查运算能力,属于中档题.7.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A. B. C. D.【考点】古典概型及其概率计算公式.【分析】白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:.抓出白球,抓入白球,概率是,再把这2个概率相加,即得所求.【解答】解:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:.抓出白球,抓入白球,概率是=,故所求事件的概率为=,故选C.【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.8.若执行如图所示程序框图,则输出的s值为()A.﹣2016 B.2016 C.﹣2017 D.2017【考点】程序框图.【分析】由程序框图求出前几次运行结果,观察规律可知,得到的S 的结果与n的值的关系,由程序框图可得当n=2017时,退出循环,由此能求出结果.【解答】解:模拟程序的运行,可得n=1,s=0满足条件n<2017,执行循环体,s=﹣1,n=2满足条件n<2017,执行循环体,s=﹣1+3=2,n=3满足条件n<2017,执行循环体,s=﹣1+3﹣5=﹣3,n=4满足条件n<2017,执行循环体,s=﹣1+3﹣5+7=4,n=5满足条件n<2017,执行循环体,s=﹣5,n=6满足条件n<2017,执行循环体,s=6,n=7…满足条件n<2017,执行循环体,s=﹣2015,n=2016满足条件n<2017,执行循环体,s=2016,n=2017不满足条件n<2017,退出循环,输出s的值为2016.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.9.高为5,底面边长为4的正三棱柱形容器(下有底)内,可放置最大球的半径是()A.B.2 C.D.【考点】棱柱的结构特征.【分析】由题中条件知高为5,底面边长为4的正三棱柱形容器(下有底)内,可放置最大球的半径,即为底面正三角形的内切圆的半径,然后解答即可.【解答】解:由题意知,正三棱柱形容器内有一个球,其最大半径为rr即为底面正三角形的内切圆半径,∵底面边长为4的r=2故选B.【点评】本题考查棱柱的结构特征、球的性质,考查学生空间想象能力,解答的关键是构造球的大圆沟通条件之间的联系.10.已知点p(x,y)满足过点p(x,y)向圆x2+y2=1做两条切线,切点分别是点A和点B,则当∠APB最大时,的值是()A.2 B.3 C.D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据数形结合求确定当α最小时,P的位置,利用向量的数量积公式,求解即可.【解答】解:作出不等式组对应的平面区域如图,要使∠APB最大,则P到圆心的距离最小即可,由图象可知当OP垂直直线x+y﹣2=0时P到圆心的距离最小,此时|OP|==2,|OA|=1,设∠APB=α,则sin=,=此时cosα=,•=••=.故选:D.【点评】本题主要考查线性规划的应用,考查学生分析解决问题的能力,利用数形结合是解决本题的关键.11.过双曲线﹣=1(a>0,b>0)的右焦点D作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】根据题意直线AB的方程为y=(x﹣c)代入双曲线渐近线方程,求出A的坐标,进而求得B的表达式,代入双曲线方程整理求得a和c的关系式,进而求得离心率.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.【点评】本题主要考查了双曲线的简单性质.解题的关键是通过分析题设中的信息,找到双曲线方程中a和c的关系.12.已知f(x)是定义在(0,+∞)的函数.对任意两个不相等的正数x1,x2,都有>0,记a=,b=,c=,则()A.a<b<c B.b<a<c C.c<a<b D.c<b<a【考点】函数单调性的性质.【分析】由题意可得函数是(0,+∞)上的增函数,比较大小可得0.32<30.2<log25,故可得答案.【解答】解:∵f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有>0,∴函数是(0,+∞)上的增函数,∵1<30.2<3,0<0.32<1,log25>2,∴0.32<30.2<log25,∴c<a<b.故选:C.【点评】本题主要考查利用函数的单调性比较大小,考查学生对指数函数、对数函数性质的运用能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a﹣3),则实数a的值为.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】直接利用正态分布的对称性,列出方程求解即可.【解答】解:由题意可知随机变量ξ~N(2,4),满足正态分布,对称轴为μ=2,P(ξ>a+2)=P(ξ<2a﹣3),则:a+2+2a﹣3=4,解得a=.故答案为.【点评】本题考查正态分布的基本性质的应用,考查计算能力.14.若的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为.【考点】二项式系数的性质.【分析】求出展开式的通项,令r=2求出展开式第3项的二项式系数,列出方程求出n;令二项式中的x=1求出展开式的所有项的系数和.【解答】解:展开式的通项为当r=2时是展开式中第3项的二项式系数为C n2=15解得n=6令二项式中的x=1得展开式中所有项的系数之和为.故答案为:.【点评】本题考查了二项式这部分的两个重要的题型:求展开式的特定项、求展开式的系数和问题.15.在△ABC中,a=3,b=2,∠B=2∠A,则c=5.【考点】余弦定理.【分析】由∠B=2∠A,得到sinB=sin2A=2sinAcosA,利用正弦定理化简将a与b的值代入求出cosA的值,利用余弦定理列出关系式,将a,b,cosA的值代入即可求出c的值.【解答】解:∵∠B=2∠A,∴sinB=sin2A=2sinAcosA,利用正弦定理化简得:b=2acosA,把a=3,b=2代入得:2=6cosA,即cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即9=24+c2﹣8c,解得:c=5或c=3,当c=3时,a=c,即∠A=∠C,∠B=2∠A=2∠C,∴∠A+∠C=∠B,即∠B=90°,而32+32≠(2)2,矛盾,舍去;则c=5.故答案为:5【点评】此题考查了正弦、余弦定理,以及二倍角的正弦函数公式,熟练掌握定理是解本题的关键.16.已知函数f(x)=.若a>0,则函数y=f(f(x))﹣1有3个零点.【考点】根的存在性及根的个数判断.【分析】函数y=f(f(x))﹣1=0,求出f(x)的值,然后利用分段函数的表达式求解x的值,推出结果.【解答】解:函数y=f(f(x))﹣1,令f(f(x))﹣1=0,当f(x)>0时,可得log2f(x)=1,解得f(x)=2,则log2x=2,解得x=4,ax+1=2,解得x=(舍去).当f(x)<0,可得af(x)+1=1,解得f(x)=0,则log2x=0,解得x=1,ax+1=0,解得x=﹣.所以函数的零点3个.故答案为:3.【点评】本题考查分段函数的应用,函数的零点个数的求法,考查转化思想以及计算能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2017•平顶山一模)已知S n为数列{a n}的前n项和,且2S n=3a n﹣2(n∈N*).(Ⅰ)求a n和S n;(Ⅱ)若b n=log3(S n+1),求数列{b2n}的前n项和T n.【考点】数列的求和.【分析】(Ⅰ)由2S n=3a n﹣2可求得a1=2;当n≥2时,a n=3a n﹣1,从而可知数列{a n}是首项为2,公比为3的等比数列,继而可得a n和S n;(Ⅱ)由(Ⅰ)知S n=3n﹣1,从而可得b n=n,b2n=2n,利用等差数列的求和公式即可求得数列{b2n}的前n项和T n.【解答】解:(Ⅰ)∵2S n=3a n﹣2,∴n=1时,2S1=3a1﹣2,解得a1=2;当n≥2时,2S n﹣1=3a n﹣1﹣2,∴2S n﹣2S n﹣1=3a n﹣3a n﹣1,∴2a n=3a n﹣3a n﹣1,∴a n=3a n﹣1,∴数列{a n}是首项为2,公比为3的等比数列,∴a n=2•3n﹣1,S n==3n﹣1,(Ⅱ)∵a n=2•3n﹣1,S n=3n﹣1,∴b n=log3(S n+1)=log33n=n,∴b2n=2n,∴T n=2+4+6+…+2n==n2+n.【点评】本题考查数列的求和,着重考查等比数列的判定与通项公式、求和公式的应用,突出考查等差数列的求和,属于中档题.18.(12分)(2017•平顶山一模)某校高一共录取新生1000名,为了解学生视力情况,校医随机抽取了100名学生进行视力测试,并得到如下频率分布直方图.(Ⅰ)若视力在4.6~4.8的学生有24人,试估计高一新生视力在4.8以上的人数;(Ⅱ)校医发现学习成绩较高的学生近视率较高,又在抽取的100名学生中,对成绩在前50名的学生和其他学生分别进行统计,得到如右数据,根据这些数据,校医能否有超过95%的把握认为近视与学习成绩有关?(Ⅲ)用分层抽样的方法从(Ⅱ)中27名不近视的学生中抽出6人,再从这6人中任抽2人,其中抽到成绩在前50名的学生人数为ξ,求ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(Ⅰ)利用频率分布表,求出前四组学生的视力在4.8以下的人数,然后求解视力在4.8以上的人数.(Ⅱ)求出k 2,即可说明校医有超过95%的把握认为近视与成绩有关. (Ⅲ)依题意,6人中年级名次在1~50名和951~1000名的分别有2人和4人,所以ξ可取0,1,2.求出概率,顶点分布列,然后求解期望即可.【解答】解:(Ⅰ)由图可知,前四组学生的视力在4.8以下,第一组有0.15×0.2×100=3人,第二组有0.35×0.2×100=7人,第三组1.35×0.2×100=27人,第四组有24人.…(2分) 所以视力在4.8以上的人数为人. (Ⅱ),因此校医有超过95%的把握认为近视与成绩有关.…(8分)(Ⅲ)依题意,6人中年级名次在1~50名和951~1000名的分别有2人和4人,所以ξ可取0,1,2.,,,ξ的分布列为…(10分)ξ的数学期望.…(12分)【点评】本题考查频率分布直方图以及概率的求法,分布列以及期望的求法,考查转化思想以及计算能力.19.(12分)(2017•平顶山一模)如图,在四棱锥P﹣ABCD中,CB ⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.(Ⅰ)求证:平面DPC⊥平面BPC;(Ⅱ)求二面角C﹣PD﹣B的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)分别取PC,PB的中点E,F,连结DE,EF,AF,证明AF⊥EF,AF⊥PB.推出AF⊥平面BPC,然后证明DE⊥平面BPC,即可证明平面DPC⊥平面BPC.….(Ⅱ)解法1:连结BE,说明BE⊥CP,推出BE⊥平面DPC,过E作EM⊥PD,垂足为M,连结MB,说明∠BME为二面角C﹣PD﹣B的平面角.在△PDE中,求解即可.解法2:以A为坐标原点,建立空间直角坐标系,求出相关点的坐标,求出平面PDC和面PBC的法向量,由空间向量的数量积求解二面角C ﹣PD﹣B的余弦值即可.【解答】(本小题满分12分)解:(Ⅰ)证明:如图,分别取PC,PB的中点E,F,连结DE,EF,AF,由题意知,四边形ADEF为矩形,∴AF⊥EF.…(2分)又∵△PAB为等边三角形,∴AF⊥PB.又∵EF∩PB=F,∴AF⊥平面BPC.…又DE∥AF.∴DE⊥平面BPC,又DE⊂平面DPC,∴平面DPC⊥平面BPC.…(Ⅱ)解法1:连结BE,则BE⊥CP,由(Ⅰ)知,BE⊥平面DPC,过E作EM⊥PD,垂足为M,连结MB,则∠BME为二面角C﹣PD﹣B的平面角.…(7分)由题意知,DP=DC=,PC=,∴,∴,∴在△PDE中,.…(10分)又,∴,∴.…(12分)(Ⅱ)解法2:如图,以A为坐标原点,建立空间直角坐标系,则,A(0,0,0),B(0,2,0),,C(0,2,2),D(0,0,1).,,.…(8分)设平面PDC和面PBC的法向量分别为,,由,得,令y=﹣1得;由,得,令a=1得.…(10分)∴二面角C﹣PD﹣B的余弦值为.…(12分)【点评】本题考查平面与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•平顶山一模)如图,点P为圆E:(x﹣1)2+y2=r2(r>1)与x轴的左交点,过点P作弦PQ,使PQ与y轴交于PQ的中点D.(Ⅰ)当r在(1,+∞)内变化时,求点Q的轨迹方程;(Ⅱ)已知点A(﹣1,1),设直线AQ,EQ分别与(Ⅰ)中的轨迹交于另一点Q1,Q2,求证:当Q在(Ⅰ)中的轨迹上移动时,只要Q1,Q2都存在,且Q1,Q2不重合,则直线Q1Q2恒过定点,并求该定点坐标.【考点】直线与抛物线的位置关系;抛物线的标准方程.【分析】(Ⅰ)设Q(x,y),则PQ的中点,由题意DE⊥DQ,得,代入坐标得答案;(Ⅱ)分别设出Q、Q1、Q2的坐标,结合A,Q,Q1共线,E,Q,Q2共线可把Q1、Q2的坐标用Q的坐标表示,得到线Q1Q2的方程,再由直线系方程可得直线Q1Q2恒过定点,并求该定点坐标.【解答】(Ⅰ)解:设Q(x,y),则PQ的中点,∵E(1,0),∴,.在圆E中,∵DE⊥DQ,∴,则.∴点Q的轨迹方程y2=4x(x≠0);(Ⅱ)证明:设Q(t2,2t),,,则直线Q1Q2的方程为(t1+t2)y﹣2x﹣2t1t2=0.由A,Q,Q1共线,得,从而(,否则Q1不存在),由E,Q,Q2共线,得,从而(t≠0,否则Q2不存在),∴,,∴直线Q1Q2的方程化为t2(y﹣4x)+2t(x+1)+(y+4)=0,令,得x=﹣1,y=﹣4.∴直线Q1Q2恒过定点(﹣1,﹣4).【点评】本题考查直线与抛物线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,考查计算能力,属中档题.21.(12分)(2015•新课标Ⅱ)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m 的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.请考生从(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程]22.(10分)(2017•平顶山一模)在直角坐标系xOy中,以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.(Ⅰ)将曲线C的极坐标方程化为参数方程:(Ⅱ)如果过曲线C上一点M且斜率为﹣的直线与直线l:y=﹣x+6交于点Q,那么当|MQ|取得最小值时,求M点的坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2化为普通方程,再转化为参数方程即可.(Ⅱ)设斜率为的直线与l的夹角为γ(定值),M到l的距离为d,令,则,利用三角函数的有界限求解最小值即可.【解答】解:(Ⅰ)∵,∴,∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的普通方程为,∴曲线C的参数方程为(α为参数).(Ⅱ)方法一:设斜率为的直线与l的夹角为γ(定值),M到l的距离为d,则,所以d取最小值时,|MQ|最小.令,则,当时,d最小.∴点M的坐标为.(Ⅱ)方法二:设斜率为的直线与l的夹角为γ(定值),M到l的距离为d,则,∴d取最小值时,|MQ|最小.∴,M是过圆心垂直于l的直线与圆(靠近直线l端)的交点.由,得或(舍去).∴点M的坐标为.【点评】本题考查参数方程、极坐标方程、普通方程的互化,以及应用,直线参数方程的几何意义的运用.属于中档题.[选修4-5:不等式选讲]23.(2017•平顶山一模)已知函数f(x)=|x﹣2|+|x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若f(x)≥﹣对任意实数x恒成立,求a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(Ⅰ)去掉绝对值符号,然后求解不等式即可解不等式f(x)>5;(Ⅱ)利用绝对值的几何意义,求出f(x)的最小值,利用恒成立,转化不等式求解即可.【解答】(本小题满分10分)解:(Ⅰ)原不等式可化为:或或…(3分)解得:x<﹣2或x>3,所以解集为:(﹣∞,﹣2)∪(3,+∞).…(Ⅱ)因为|x﹣2|+|x+1|≥|x﹣2﹣(x+1)|=3,…(7分)所以f(x)≥3,当x≤﹣1时等号成立.所以f(x)min=3.又,故.…(10分)【点评】本题考查函数的恒成立,函数的最值的求法,绝对值不等式的几何意义的应用,考查转化思想以及计算能力.。

2019-2020学年河南省平顶山市第四中学高三数学理模拟试卷含解析

2019-2020学年河南省平顶山市第四中学高三数学理模拟试卷含解析

2019-2020学年河南省平顶山市第四中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 是三角形的一个内角,且,则方程所表示的曲线为()A.焦点在x轴上的椭圆 B.焦点在y轴上的椭圆C.焦点在x轴上的双曲线 D.焦点在y轴上的双曲线参考答案:C2. 已知集合,,则()(A)(B)(C)(D)参考答案:C因为,,所以,选C.3. 在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为()A.30°B.45°C.60°D.90°参考答案:C【考点】异面直线及其所成的角.【专题】常规题型.【分析】连接C1B,D1A,AC,D1C,将MN平移到D1A,根据异面直线所成角的定义可知∠D1AC为异面直线AC和MN所成的角,而三角形D1AC为等边三角形,即可求出此角.【解答】解:连接C1B,D1A,AC,D1C,MN∥C1B∥D1A∴∠D1AC为异面直线AC和MN所成的角而三角形D1AC为等边三角形∴∠D1AC=60°故选C.【点评】本小题主要考查异面直线所成的角、异面直线所成的角的求法,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.4. 设S n是数列{a n}的前n项和,且S n=﹣a n,则a n=()A.B.C.D.参考答案:D【考点】数列递推式.【分析】由已知数列递推式求出首项,进一步得到(n≥2).可得数列{a n}是以为首项,以为公比的等比数列,代入等比数列的通项公式得答案.【解答】解:由,取n=1,得,即.当n≥2时,a n=S n﹣S n﹣1=,即(n≥2).∴数列{a n}是以为首项,以为公比的等比数列,则.故选:D.【点评】本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.5. 若且角的终边经过点,则点的横坐标是()A. B. C. D.参考答案:D6. 若g(x)=,则g(g())=()A.﹣ln2 B.1 C.D.2参考答案:C【考点】函数的值.【专题】函数的性质及应用.【分析】根据分段函数的表达式,直接代入求值即可.【解答】解:由分段函数可知,g()=ln<0,∴g(g())=g(ln)=,故选:C.【点评】本题主要考查分段函数的应用,注意分段函数自变量取值的范围.7. 方程表示的曲线是A. 一个圆和一条直线B. 一个圆和一条射线C. 一个圆D. 一条直线参考答案:D8. 已知三个数a=0.60.3,b=log0.63,c=lnπ,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.b<c<a D.b<a<c参考答案:D【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:三个数a=0.60.3∈(0,1),b=log0.63<0,c=lnπ>1,∴c>a>b.故选:D.9. 若定义域为R的函数f(x)不是奇函数,则下列命题中一定为真命题的是()A.?x∈R,f(﹣x)≠﹣f(x)B.?x∈R,f(﹣x)=f(x)C.?x0∈R,f(﹣x0)=f(x0)D.?x0∈R,f(﹣x0)≠﹣f(x0)参考答案:D【考点】2K:命题的真假判断与应用;2H:全称命题;2I:特称命题.【分析】利用奇函数的定义,结合命题的否定,即可得到结论.【解答】解:∵定义域为R的函数f(x)是奇函数,∴?x∈R,f(﹣x)=﹣f(x),∵定义域为R的函数f(x)不是奇函数,∴?x0∈R,f(﹣x0)≠﹣f(x0)故选D.【点评】本题考查函数的奇偶性,考查命题的否定,属于基础题.10. 数列{a n}满足a1=1,a2=,并且a n(a n﹣1+a n+1)=2a n+1a n﹣1(n≥2),则该数列的第2015项为( )A.B.C.D.参考答案:C考点:数列递推式.专题:等差数列与等比数列.分析:利用递推关系式推出{}为等差数列,然后求出结果即可.解答:解:∵a n(a n﹣1+a n+1)=2a n+1a n﹣1(n≥2),∴a n a n﹣1+a n a n+1=2a n+1a n﹣1(n≥2),两边同除以a n﹣1a n a n+1得:=+,即﹣=﹣,即数列{}为等差数列,∵a1=1,a2=,∴数列{}的公差d=﹣=1,∴=n,∴a n=,即a2015=,故选:C.点评:本题考查数列的递推关系式的应用,判断数列是等差数列是解题的关键,考查计算能力,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 已知圆C的圆心为(0,1),直线与圆C相交于A,B两点,且,则圆C的半径为.参考答案:圆心到直线的距离。

河南省平顶山市杨楼乡中学2019年高三数学文模拟试卷含解析

河南省平顶山市杨楼乡中学2019年高三数学文模拟试卷含解析

河南省平顶山市杨楼乡中学2019年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)= 的最小正周期为()A.B.xC.2D.4参考答案:D2. 若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=( )A.B.﹣C.D.﹣参考答案:C【考点】三角函数的恒等变换及化简求值.【专题】三角函数的求值.【分析】先利用同角三角函数的基本关系分别求得sin(+α)和sin(﹣)的值,进而利用cos(α+)=cos[(+α)﹣(﹣)]通过余弦的两角和公式求得答案.【解答】解:∵0<α<,﹣<β<0,∴<+α<,<﹣<∴sin(+α)==,sin(﹣)==∴cos(α+)=cos[(+α)﹣(﹣)]=cos(+α)cos(﹣)+sin(+α)sin(﹣)=故选C【点评】本题主要考查了三角函数的恒等变换及化简求值.关键是根据cos(α+)=cos[(+α)﹣(﹣)],巧妙利用两角和公式进行求解.3. 已知集合A={},B={},设U=R,则A(B)等于(A) [3,+) (B) (-1,0](C) (3,+) (D) [-1,0]参考答案:B4. 复数z满足(1+i)z=3+i,则复数z在复平面内所对应的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(﹣1,2)D.(2,﹣1)参考答案:D考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.解答:解:由(1+i)z=3+i,得,∴复数z在复平面内所对应的点的坐标是(2,﹣1).故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.5. 如图,正方形ABCD中,M、N分别是BC、CD的中点,若则()A. 2B.C.D.参考答案:D试题分析:取向量作为一组基底,则有,所以又,所以,即.6. 如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为A. 2B.C.D. 3参考答案:D可在正方体中画出该三棱锥的直观图,进而算出其最长棱长为.故选D.7. 在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是A. B. C. D.参考答案:8. 已知集合,,则等于M∩N=A.B.{1} C.{0,1} D.{-1,0,1}参考答案:B由题得M={x|0<x<2},所以={1},故答案为:B9. 在△ABC中,若a=4,b=3,cosA=,则B=( )A.B.C.或πD.π参考答案:A考点:余弦定理.专题:解三角形.分析:cosA=,A∈(0,π),可得,由正弦定理可得:,即可得出sinB.而a>b,可得A>B.即可得出.解答:解:∵cosA=,A∈(0,π),∴=.由正弦定理可得:,∴sinB===.∵a>b,∴A>B.∴B为锐角,∴.故选:A.点评:本题考查了正弦定理的应用、同角三角函数基本关系式,考查了计算能力,属于基础题.10. 将1﹑2﹑3﹑4四个数字随机填入右方2×2的方格中﹐每个方格中恰填一数字﹐但数字可重复使用﹒试问事件「A方格的数字大于B方格的数字﹑且C方格的数字大于D方格的数字」的机率为()A.B.C.D.参考答案:B【考点】古典概型及其概率计算公式.【专题】应用题;概率与统计.【分析】根据题意,在图中的四个方格中填入数字的方法种数共有43种,对于A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,由组合数公式计算可得其填法数目,对于另外两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得填入A方格的数字大于B方格的数字的填法种数,利用古典概型的概率计算公式求概率,同理可求C方格的数字大于D方格的数字的概率,即可求出A方格的数字大于B方格的数字﹑且C方格的数字大于D方格的数字的机率.【解答】解:根据题意,在图中的四个方格中填入数字的方法种数共有44=256种,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有C42=6种情况,对于另外两个方格,每个方格有4种情况,则共有4×4=16种情况,则填入A方格的数字大于B方格的数字的不同的填法共有16×6=96种,则填入A方格的数字大于B方格的数字的概率为P==.同理C方格的数字大于D方格的数字的概率为P==,∴A方格的数字大于B方格的数字﹑且C方格的数字大于D方格的数字的机率为=故选:B.【点评】本题考查古典概型及其概率计算公式,考查排列、组合的运用,注意题意中数字可以重复的条件,这是易错点,此题是基础题,也是易错题.二、填空题:本大题共7小题,每小题4分,共28分11. 在△ABC中,若,,则 .参考答案:略12. 以双曲线的右焦点为焦点,顶点在原点的抛物线的标准方程是 . 参考答案:13. 在中,若,且,则__________.参考答案:由题意结合可知点O是△ABC的垂心,,则:,设边AB的中点为D,如图所示,由于,则,结合平面向量数量积的定义有:.14. (5分)(2015?泰州一模)袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为.参考答案:【考点】:古典概型及其概率计算公式.【专题】:排列组合.【分析】:从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,根据概率公式计算即可解:从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色相同只有2种,故从中任取两个球,则这两个球颜色相同的概率P==;故答案为:.【点评】:本题考查了古典概型概率的问题,属于基础题15. 设是正项数列,=___________.参考答案:16. 设关于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的实根分别为x1,x2和x3,x4,若x1<x3<x2<x4,则实数a的取值范围为.参考答案:()考点:根与系数的关系.专题:函数的性质及应用.分析:由x2﹣ax﹣1=0得ax=x2﹣1,由x2﹣x﹣2a=0得2a=x2﹣x,在同一坐标系中作出两个函数得图象,继而得出关系式求解即可.解答:解:由x2﹣ax﹣1=0得ax=x2﹣1,①由x2﹣x﹣2a=0得2a=x2﹣x,②由①可得2a=2x﹣,作出函数y=x2﹣x和y=2x﹣的函数图象如下图:∵x1<x3<x2<x4∴x2﹣x=2x﹣整理得:,即,即解得:x=1或x=当x=1﹣时,a=∴点评:本题主要考查函数中零点与系数的关系,在考试中经常作为选择填空出现,属于中档题.17. 设其中成公比为的等比数列,成公差为1的等差数列,则的最小值是 .参考答案:略三、解答题:本大题共5小题,共72分。

河南省平顶山市第二高级中学2019-2020学年高三数学文模拟试题含解析

河南省平顶山市第二高级中学2019-2020学年高三数学文模拟试题含解析

河南省平顶山市第二高级中学2019-2020学年高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 从中任取个数字, 可以组成没有重复数字的三位数共有()A. 个B. 个C. 个D.个参考答案:C略2. 将函数向左平移个单位后得函数,则在上的取值范围是()A. [-2,2]B. [3,4]C. [0,3]D. [0,4]参考答案:D【分析】按照图象的平移规律,写出的表达式,利用正弦函数的图象,求出在上的取值范围.【详解】因为函数向左平移个单位后得函数,所以,,故本题选D. 【点睛】本题考查了正弦型函数的平移、以及闭区间上正弦型函数的最值问题,正确求出平移后的函数解析式,是解题的关键.3. 下列结论错误的是A.命题“若,则”与命题“若则”互为逆否命题;B.命题,命题则为真;C.若为假命题,则、均为假命题.D.“若则”的逆命题为真命题;参考答案:D4. 已知,给出下列四个命题:P1:?(x,y)∈D,x+y≥0;P2:?(x,y)∈D,2x﹣y+1≤0;;;其中真命题的是()A.P1,P2 B.P2,P3 C.P3,P4 D.P2,P4参考答案:D【考点】2K:命题的真假判断与应用.【分析】画出约束条件不是的可行域,利用目标函数的几何意义,求出范围,判断选项的正误即可.【解答】解:的可行域如图,p1:A(﹣2,0)点,﹣2+0=﹣2,x+y的最小值为﹣2,故?(x,y)∈D,x+y≥0为假命题;p2:B(﹣1,3)点,﹣2﹣3+1=﹣4,A(﹣2,0),﹣4﹣0+1=﹣3,C(0,2),0﹣2+1=﹣1,故?(x,y)∈D,2x﹣y+1≤0为真命题;p3:C(0,2)点, =﹣3,故?(x,y)∈D,≤﹣4为假命题;p4:(﹣1,1)点,x2+y2=2.故?(x,y)∈D,x2+y2≤2为真命题.可得选项p2,p4正确.故选:D.5. 已知随机变量服从正态分布,且,则A.B.C.D.参考答案:A6. 如果执行如图所示的程序框图,输入,则输出的值为A.-2 B.-1 C.D.0参考答案:C7. 定义在R上的函数满足当,,则下列结论中正确的是()A. B. C.D.参考答案:D略8. 执行右图所示的程序框图,则输出的值为()A、 B、 C、 D、参考答案:B9. 已知集合A={x∈R|﹣1<x<1},B={x∈R|x?(x﹣2)<0},那么A∩B=()A.{x∈R|0<x<1} B.{x∈R|0<x<2} C.{x∈R|﹣1<x<0} D.{x∈R|﹣1<x<2} 参考答案:A【考点】交集及其运算.【分析】先分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={x∈R|﹣1<x<1},B={x∈R|x?(x﹣2)<0}={x|0<x<2},∴A∩B={x∈R|0<x<1}.故选:A.10. 已知函数在区间上单调递增,则的最大值为()A. B. 1 C. 2 D. 4参考答案:C【分析】由可得,利用可得结果.【详解】当时,,因为函数在区间上单调递增,正弦函数在上递增,所以可得,解得,即的最大值为2,故选C.【点睛】本题主要考查正弦函数单调性的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 若实数x,y满足,则的最小值为______.参考答案:-3【分析】画出不等式组所表示的平面区域,结合图象,确定目标函数的最优解,代入即可求解.【详解】由题意,画出不等式组所表示的平面区域,如图所示,目标函数,可化为直线,直线过点A时,此时直线在y轴上的截距最小,目标函数取得最小值,又由,解得,所以目标函数的最小值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.12. 如果函数,,关于的不等式对于任意恒成立,则实数的取值范围是.参考答案:略13. 已知x>0,y>0,且=1,则2x+3y的最小值为____参考答案:14. 已知函数f(x)=cos2x,若将其图象沿x轴向左平移a个单位(a>0),所得图线关于原点对称,则实数a的最小值为.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据y=Asin(ωx+φ)的图象变换规律,余弦函数的对称性可得结论.【解答】解:将函数f(x)=cos2x图象沿x轴向左平移a个单位(a>0),所得函数解析式为:y=cos(2x+2a),由于所得图象关于原点对称,所以:2a=kπ+,k∈Z,解得:a=+,k∈Z,a>0,所以:实数a的最小值为.故答案为:.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,余弦函数的图象和性质的应用,属于基础题.15. 下列命题正确的是___________(写序号)①命题“ ”的否定是“ ”:②函数的最小正周期为“ ”是“”的必要不充分条件;③ 在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“ ”参考答案:①②16. 已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是_____________.参考答案:17. 已知p:?x∈[,],2x<m(x2+1),q:函数f(x)=4x+2x+1+m﹣1存在零点,若“p 且q”为真命题,则实数m的取值范围是.参考答案:(,1)【考点】复合命题的真假.【分析】分别求出p,q为真时的m的范围,取交集即可.【解答】解:已知p:?x∈[,],2x<m(x2+1),故m>,令g(x)=,则g(x)在[,]递减,故g(x)≤g()=,故p为真时:m>;q:函数f(x)=4x+2x+1+m﹣1=(2x+1)2+m﹣2,令f(x)=0,得2x=﹣1,若f(x)存在零点,则﹣1>0,解得:m<1,故q为真时,m<1;若“p且q”为真命题,则实数m的取值范围是:(,1),故答案为:(,1).【点评】本题考查了复合命题的判断,考查函数恒成立问题以及指数函数的性质,是一道中档题.三、解答题:本大题共5小题,共72分。

河南省平顶山市2019-2020学年高考数学质量跟踪监视试题

河南省平顶山市2019-2020学年高考数学质量跟踪监视试题

2019-2020学年高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.622x x ⎛⎫- ⎪⎝⎭的展开式中,含3x 项的系数为( ) A .60-B .12-C .12D .602.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若复数12z i =+,2cos isin ()z ααα=+∈R ,其中i 是虚数单位,则12||z z -的最大值为( )A 1BC 1D 4.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件6.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1B .2C .3D .47.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<8.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( ) A .13i +B .13i -C .13i -+D .13i --9.在ABC 中,已知9AB AC ⋅=,sin cos sin B A C =,6ABCS=,P 为线段AB 上的一点,且CA CBCP x y CACB=⋅+⋅,则11x y +的最小值为( )A .7123+B .12C .43D .5124+10.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为K ,点P 为抛物线上任意一点KPF ∠的平分线与x 轴交于(,0)m ,则m 的最大值为( )A .322- B .233- C .23- D .22-11.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .1512.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2e - D .4e- 二、填空题:本题共4小题,每小题5分,共20分。

〔精品〕2019年河南省普通高中高考数学模拟试卷及解析(理科)(3月份)

〔精品〕2019年河南省普通高中高考数学模拟试卷及解析(理科)(3月份)

2019年河南省普通高中高考数学模拟试卷(理科)(3月份)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A ={0,1,2,3},B ={y|y =x 2+1,x ∈R },P =A ∩B ,则P 的子集个数为()A .4B .6C .8D .162.(5分)已知复数z 满足(1+i )z =(i 为虚数单位),则复数z 在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)某超市2018年12个月的收入与支出数据的折线图如图所示,根据该折线图,下列说法正确的是()A .该超市2018年的12个月中11月份的收益最高B .该超市2018年的12个月中1月份和3月份的收益最低C .该超市2018年上半年的总收益高于下半年的总收益D .该超市2018年下半年的总收益比上半年的总收益增长了约71.4%4.(5分)下列命题是真命题的是()A .?x 0∈(0,+∞),3<log 3x 0B .若a >b ,则am 2>bm2C .已知A ,B 为△ABC 的两个内角,若A >B ,则sinA >sinBD .函数y =f (1+x )的图象与函数y =f (1﹣x )的图象关于直线x =1对称5.(5分)函数y =的图象大致为()A.B.C.D.6.(5分)已知a=log23?log34,则(ax+)6的展开式中的常数项为()A.15B.60C.120D.2407.(5分)若正方体ABCD﹣A1B1C1D1的棱长为3,E为正方体内任意一点,则AE的长度大于3的概率等于()A.1﹣B.1﹣C.1﹣D.1﹣8.(5分)已知某空间几何体的三视图如图所示,则该几何体的体积为()A.3B.C.D.19.(5分)已知△ABC的三边长分别为a,b,c,面积为S,且a 2+b2﹣c2=4S,c=1,则b﹣a的最大值为()A.B.2C.3D.10.(5分)已知△ABC的顶点A,B在抛物线y 2=2px(p>0)上,顶点C为该抛物线的焦点,则满足条件的正三角形个数为()A.1B.2C.3D.411.(5分)已知奇函数f(x)是定义在R上的增函数,g(x)=sin?f(x),若a=g(﹣log26.1),b=g(20.9),c=g(2),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a12.(5分)已知函数f(x)=3sin(ωx+φ),(ω>0,0<φ<),f(﹣)=0,f()=f(x),且函数f(x)在区间()上单调,则ω的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2019年河南省郑州、平顶山高考数学二模试卷(理科)含答案

2019年河南省郑州、平顶山高考数学二模试卷(理科)含答案

2017年高中毕业年级第二次质量预测数学(理科)试题卷 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数()()n f n i n N *=∈,则集合(){}|z z f n =的元素个数为A. 4B. 3C. 2D.无数 2.设0.533,log 2,cos2x y z ===,则A. z x y <<B. y z x <<C. z y x <<D.x z y <<3.要计算1111232017++++ 的结果,下面的程序框图中的判断框内可以填入的是 A. 2017n < B. 2017n ≤ C. 2017n > D.2017n ≥4.某几何体的三视图如图所示,其中俯视图是扇形,则该几何体的体积为 A.163π B. 3π C. 29π D. 169π5.下列命题是真命题的是A. x R ∀∈,函数()()sin 2f x x ϕ=+都不是偶函数B.,R αβ∃∈,使得()cos cos cos αβαβ+=+C. 向量()()2,1,1,0a b ==-,则a 在b 方向上的投影是2D.“1x ≤”是“1x ≤”的既不充分也不必要条件6.在区间[]1,e 上任取实数a ,在区间[]0,2上任取实数b ,使函数()214f x ax x b =++有两个相异零点的概率为 A.()121e - B. ()141e - C. ()181e - D.()1161e -7.已知数列{}n a 满足()11122,,,n n n n a a a n a m a n S +-=-≥==为数列{}n a 的前n 项和,则2017S 的值为A. 2017n m -B. 2017n m -C.mD.n8.已知实数,x y 满足261y x x y x ≥+⎧⎪+≤⎨⎪≥⎩,则22z x y =-+的最小值是A. 6B. 5C. 4D.39.已知空间四边形ABCD 满足3,7,11,9AB BC CD DA ====,则AC BD ⋅ 的值为A. -1B. 0C.212 D.33210.将数字124467重新排列后得到不同的偶数的个数为A. 72B. 120C. 192D.24011.已知P 为双曲线2214y x -=上任意一点,过P 点向双曲线的两条渐近线分别作垂线,垂足分别为A,B 则PA PB 的值为A. 4B.5C.45 D.与点P 的位置有关 12.已知函数()sin 2cos xf x x=+,如果当0x >时,若函数()f x 的图象恒在直线y kx =的下方,则k 的取值范围是A. 13⎡⎢⎣⎦B.1,3⎡⎫+∞⎪⎢⎣⎭C. ⎫+∞⎪⎪⎣⎭D. ⎡⎢⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.正方体的八个顶点中,有四个恰好为一个正四面体的顶点,则正方体的表面积与正四面体的表面积之比为 .14.已知幂函数y x α=的图象过点()3,9,则8a x ⎛ ⎝的展开式中x 的系数为 .15.过点()1,0P -作直线与抛物线28y x =相交于A,B 两点,且2PA AB =,则点B 到该抛物线焦点的距离为 .16.等腰ABC ∆中,,AB AC BD =为边AC 上的中线,且3BD =,则ABC ∆的面积的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)已知数列{}n a 的前n 项和为n S ,12a =,且满足()111.2n n S a n n N *+=++∈ (1)求数列{}n a 的通项公式; (2)若()3log 1n n b a =-,设数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为nT ,求证:3.4n T <18.(本题满分12分)如图,三棱柱111ABC A B C -中,各棱长均相等,,,D E F 分别是棱11,,AB BC AC 的中点. (1)求证://EF 平面1ACD ; (2)若三棱柱111ABC A B C -为直三棱柱,求直线BC 与平面1ACD 所成角的正弦值.19.(本题满分12分)某公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标,有测量结果得到如下所示的频率分布直方图:(1)求直方图中a 的值;(2)偶频率分布直方图可以认为,这种产品的质量指标Z 服从正态分布()2200,12.2N ,试计算数据落在()187.8,212.2上的概率;(3)设生产成本为y ,质量指标为x ,生产成本与质量指标之间满足函数关系0.4,2050.880,205x x y x x ≤⎧=⎨->⎩,假设同组中的每个数据用该组区间的右端点值代替,试求生产成本的平均值.20.(本题满分12分)已知椭圆()2220x y m m +=>,以椭圆内一点()2,1M 为中点作弦AB,设线段AB 的中垂线与椭圆相交于C,D 两点; (1)求椭圆的离心率;(2)试判断是否存在这样的m,使得A,B,C,D 在同一圆上,并说明理由.21.(本题满分12分)已知函数()()()2ln ,.2a f x x x x g x x ax a R =-=-∈ (1)若()f x 和()g x 在()0,+∞上有相同的单调区间,求a 的取值范围;(2)令()()()()h x f x g x ax a R =--∈,若()h x 在定义域内有两个不同的极值点. (Ⅰ)求a 的取值范围;(Ⅱ)设两个极值点分别为12,x x ,证明:212x x e ⋅>.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

河南省平顶山市高考数学模拟试卷(理科)

河南省平顶山市高考数学模拟试卷(理科)

河南省平顶山市高考数学模拟试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知集合A={x|x2+2x﹣3<0},集合B={x|x﹣a<0},若A⊆B,则a的取值范围是()A . a≤1B . a≥1C . a<1D . a>12. (2分) (2017高二下·深圳月考) 复数(其中为虚数单位)的共轭复数在复平面内对应的点所在象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2015高三下·湖北期中) 执行下面的程序框图,如果输入的t=0.01,则输出的n=()A . 5B . 6C . 7D . 84. (2分)设,则“”是“函数为偶函数”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分) (2016高一下·抚州期中) 若Sn是等差数列{an}的前n项和,a2+a10=4,则S11的值为()A . 12B . 18C . 22D . 446. (2分) (2019高一上·昌吉月考) 函数f(x)=x2+2x(x∈[-2,1])的值域是()A .B .C .D .7. (2分) (2019高一下·佛山月考) 已知向量,若对任意的,恒成立,则必有().A .B .C .D .8. (2分)已知某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .9. (2分)已知实数满足,则目标函数的最小值为()A .B . 5C . 6D . 710. (2分)双曲线的一个焦点坐标为,则双曲线的渐近线方程为()A .B .C .D .11. (2分) (2019高三上·葫芦岛月考) 已知函数的值域为,函数,则的图象的对称中心为()A .B .C .D .12. (2分)若方程的根在区间上,则k的值为()A . -1B . 1C . -1或2D . -1或1二、填空题 (共4题;共4分)13. (1分) (2018高二上·赣榆期中) 抛物线的准线方程是________.14. (1分)长宽高分别为5cm、4cm、3cm的长方体的顶点均在同一球面上,则该球的表面积是________ cm2 .15. (1分) (2017高一下·启东期末) 一个三角形的两个内角分别为30°和45°,如果45°角所对的边长为8,那么30°角所对的边长是________.16. (1分)设函数f(x)= ,函数y=f[f(x)]﹣的零点个数为________.三、解答题 (共7题;共70分)17. (10分)(2017·滨州模拟) 已知函数f(x)=sin(2x+ )+cos(2x+ )+sin2x(1)求函数f(x)的单调递减区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f()= ,a=2,b= ,求c的值.18. (10分) (2017高二上·枣强期末) 如图,已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=BC=2,AA1=4.(1)当E是棱CC1的中点时,求证:CF∥平面AEB1;(2)在棱CC1上是否存在点E,使得二面角A﹣EB1﹣B的大小是45°?若存在,求出CE的长,若不存在,请说明理由.19. (15分)(2017·宁化模拟) 我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表:(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.20. (10分) (2016高三上·嘉兴期末) 已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B 到焦点的距离为2.(1)求椭圆的标准方程;(2)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0,0),求x0的取值范围.21. (10分)(2018·银川模拟) 已知函数(1)求函数的单调区间;(2)设函数,若对于,使成立,求实数的取值范围.22. (5分)在直角坐标系中xOy,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中圆C的方程为ρ=4cosθ,设圆C与直线l交于A、B两点;若点P的坐标为(1,0).求:|PA|+|PB|.23. (10分)(2017·九江模拟) 已知函数f(x)=log2(|x+1|+|x﹣1|﹣a)(1)当a=3时,求函数f(x)的定义域;(2)若不等式f(x)≥2的解集为R,求实数a的最大值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22、答案:略23-1、23-2、。

河南省平顶山市高考数学考前模拟试卷(文科)

河南省平顶山市高考数学考前模拟试卷(文科)

河南省平顶山市高考数学考前模拟试卷(文科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高一上·聊城月考) 全集 ,集合,则集合的子集个数为()A . 1B . 3C . 8D . 42. (2分)已知i是虚数单位,则在复平面内对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)非零向量使得成立的一个充分非必要条件是()A .B .C .D .4. (2分)在区间[-2,3]上任取一个数a,则函数f(x)=x2-2ax+a+2有零点的概率为()A .B .C .D .5. (2分)过x2+y2=10x内一点(5,3)有n条弦,它们的长度构成等差数列,最小弦长为数列首项a1 ,最长的弦长为数列的末项an ,若公差d∈,则n的取值范围是()A . n=4B . 5≤n≤7C . n>7D . n∈{正实数}6. (2分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1 , F2 ,过F2的直线与椭圆交于A、B 两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为()A .B . 2﹣C . ﹣2D . ﹣7. (2分) (2017高三上·邯郸模拟) 我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A . ①i≤7?②s=s﹣③i=i+1B . ①i≤128?②s=s﹣③i=2iC . ①i≤7?②s=s﹣③i=i+1D . ①i≤128?②s=s﹣③i=2i8. (2分)(2017·黑龙江模拟) 已知,且,则sin2α的值为()A .B .C .D .9. (2分) (2020高二下·宜宾月考) 已知四棱锥的三视图如图所示,则四棱锥的体积为()A . 1B .C .D .10. (2分) (2018高一上·白城月考) 如图是函数在一个周期内的图象,此函数解析式为()A .B .C .D .11. (2分) (2015高一下·松原开学考) 已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A .B . 4πC . 2πD .12. (2分) (2018高二下·河北期中) 已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为()A .B . ,C .D . ,二、填空题 (共4题;共4分)13. (1分) (2016高一上·金华期中) 若f(2x)=3x2+1,则函数f(4)=________14. (1分) (2016高二上·厦门期中) 各项均为正数的等比数列{an}中,a2 , a3 , a1成等差数列,则的值为________.15. (1分) (2017高一下·河北期末) 已知直线l:mx+y+3m﹣ =0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2 ,则|CD|=________.16. (1分)(2019·唐山模拟) 设变量,满足约束条件,则的最大值为________.三、解答题 (共7题;共65分)17. (10分) (2017高三上·赣州开学考) 已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).(1)若∥ ,求| ﹣ |(2)若与夹角为锐角,求x的取值范围.18. (10分) (2016高二下·金沙期中) 随着我国经济的迅速发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如表:年份20102011201220132014时间代号x12345储蓄存款y (千亿元)567810附:回归方程中, = .(1)求y关于x的线性回归方程;(2)用所求回归方程预测该地区今年的人民币储蓄存款.19. (10分) (2017高一下·盐城期末) 已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=4 ,求四棱锥F﹣ABCD的体积.20. (5分)(2017·桂林模拟) 如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.21. (10分) (2016高一下·河南期末) 设函数的极值点.(1)若函数f(x)在x=2的切线平行于3x﹣4y+4=0,求函数f(x)的解析式;(2)若f(x)=0恰有两解,求实数c的取值范围.22. (10分) (2016高二下·黄冈期末) 已知曲线C的参数方程是(α为参数),直线l的参数方程为(t为参数),(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相交于P,Q两点,且|PQ|= ,求实数m的值.23. (10分)(2020·化州模拟) 设函数 .(1)求不等式的解集;(2)若不等式对任意恒成立,求实数的取值范围.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:略三、解答题 (共7题;共65分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。

2019-2020学年河南省平顶山市湛河实验中学高三数学理模拟试题含解析

2019-2020学年河南省平顶山市湛河实验中学高三数学理模拟试题含解析

2019-2020学年河南省平顶山市湛河实验中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题“” 的否定是(A)(B)(C)(D)参考答案:C2. 已知,则的最大值为()A. 5B. 3C.2 D. 6参考答案:A3. 若复数(i是虚数单位),则z的共轭复数是()A.B.C.D.参考答案:D详解:由题意,∴,故选D.4. 复数满足,则()A.B.2 C.D.参考答案:B5. 在边长为1的正三角形ABC中,,x>0,y>0且x+y=1,则的最大值为()A. B. C. D.参考答案:B6. 设变量x,y满足约束条件则目标函数z=3x-4y的最大值和最小值分别为( )A.3,-11 B.-3,-11C.11,-3 D.11,3参考答案:A略7. 已知定义在R上的函数f(x)不恒为零,且满足,, 则f(x)A.是奇函数,也是周期函数 B.是偶函数,也是周期函数C.是奇函数,但不是周期函数 D.是偶函数,但不是周期函数参考答案:B8. 《九章算木》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧视图是如图所示的直角三角形,该“阳马”的体积为,若该阳马的顶点都在同一个球面上,则该球的表面积为()正视图侧视图A.8πB.C.12πD.24π参考答案:D如图所示,,,由该“阳马”的体积,,设该“阳马”的外接球的半径为,则该“阳马”的外接球直径为,所以,该阳马的外接球的表面积为.试题立意:本小题主要考查空间几何体与球的组合体,球与三棱锥的切接问题,三棱锥的体积公式;考查空间想象能力及分析问题解决问题的能力.9. 一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则.参考答案:∵,且,∴.12. 向量a=(2,o),b=(x,y),若b与b一a的夹角等于,则|b|的最大值为.参考答案:413. 已知变量x,y满足,则的最小值为________.参考答案:【分析】画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.14. 在复平面内,复数对应的点位于第_____象限.参考答案:四【分析】先对复数进行运算化简,找出其对应的点即可判断出其所在的象限.【详解】解:因为所以复数对应的点为,位于第四象限故答案为:四.【点睛】本题考查了复数的除法运算,复数与复平面中坐标的关系,属于基础题.3.为了解某高中学生的身高情况,现采用分层抽样的方法从三个年级中抽取一个容量为100的样本,其中高一年级抽取24人,高二年级抽取26人.若高三年级共有学生600人,则该校学生总人数为_____.【答案】1200【解析】【分析】先求出高三年级出去的人数和所占比例,再用高三年级学生数除以其所占比例即为总人数.【详解】解:由题意知高三年级抽取了人所以该校学生总人数为人故答案为:1200.【点睛】本题考查了分层抽样,属于基础题.15. 下列5个正方体图形中,是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出面MNP的图形的序号是(写出所有符合要求的图形序号)①②③④⑤参考答案:答案:①④⑤16. 关于函数,有下列命题:①其图象关于y轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;③f(x)的最小值是lg2;④f(x)在区间(-1,0)、(2,+∞)上是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是.参考答案:①③④17. 圆心在,半径为3的圆的极坐标方程是参考答案:略三、解答题:本大题共5小题,共72分。

2019-2020学年河南省平顶山市天中学校高三数学文模拟试卷含解析

2019-2020学年河南省平顶山市天中学校高三数学文模拟试卷含解析

2019-2020学年河南省平顶山市天中学校高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. ,若,则A. 0B. 3C. -1D. -2参考答案:A略2. 已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(﹣1)=1,则f(1)+f (2)+f(3)+…+f(2015)的值为()A.﹣1 B.0 C.1 D.2参考答案:B【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】先由图象关于直线x=1对称得f(2﹣x)=f(x),再与奇函数条件结合起来,有f(x+4)=f(x),得f(x)是以4为周期的周期函数再求解.【解答】解:∵图象关于直线x=1对称,∴f(2﹣x)=f(x),∵f(x)是奇函数,∴f(﹣x)=﹣f(x),f(2+x)=﹣f(x),∴f(x+4)=f(x),∴f(x)是以4为周期的周期函数.∵f(1)=﹣1,f(2)=﹣f(0)=0,f(3)=f(2+1)=﹣f(1)=1,f(4)=f(4+0)=f (0)=0,∴f(1)+f(2)+f(3)+f(4)=0,∴f(1)+f(2)+f(3)+…+f(2015)=f(1)+f(2)+f(3)=0,故选:B.【点评】本题主要考查函数的奇偶性和对称性以及性质间的结合与转化,如本题周期性就是由奇偶性和对称性结合转化而来的,属于中档题.3. 一个几何体的三视图如图所示,则该几何体的体积为(A) (B) (C) (D)参考答案:B略4. 设函数(、为常数)的图象关于直线对称,则有 ( )A. B.C. D.参考答案:A5. =()A.-2-i B.-2+i C.2-i D.2+i参考答案:【知识点】复数的运算L4C解析:因为,所以选C.【思路点拨】直接利用复数的除法与乘法运算进行计算即可.6. 已知双曲线右支上的一点到左焦点的距离与到右焦点的距离之差为,且到两条渐进线的距离之积为,则该双曲线的离心率为()A. B. C.D.参考答案:D试题分析:由双曲线的定义得,,双曲线的两条渐近线方程为或点到两条渐近线的距离之积,化简得,由于点是双曲线右支上点,,因此,即,得,,因此双曲线的离心率,故答案为D.考点:双曲线的简单几何性质.7. 下列图象中,不可能是函数图象的是 ()参考答案:D8. 执行如右图所示的程序框图,则输出的结果为()A.B.C.1 D.2参考答案:【知识点】程序框图。

河南省平顶山市高考数学全真模拟试卷(理科)

河南省平顶山市高考数学全真模拟试卷(理科)

河南省平顶山市高考数学全真模拟试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)已知复数,则复数z的共轭复数为()A . 1+iB . -1+iC . 1-iD . -1-i2. (2分) (2019高一上·黑龙江月考) 在平面直角坐标系中,角的顶点与原点重合,始边与x轴的非负半轴重合,终边过点,则()A .B .C .D .3. (2分)函数的定义域为()A .B .C .D .4. (2分)(2018·上饶模拟) 若实数x,y满足不等式组,则目标函数的最大值是A . 1B .C .D .5. (2分) (2019高二上·田阳月考) 从1,2,3,4,5中任取2个不同的数,设事件为取到的两个数之和为偶数,则()A .B .C .D .6. (2分) (2017高二下·廊坊期末) (ex+2x)dx等于()A . 1B . e﹣1C . eD . e+17. (2分)若的展开式中前三项的系数成等差数,则展开式中x4项的系数为()A . 6B . 7C . 8D . 98. (2分)(2016高一下·广州期中) 定义平面向量之间的一种运算“⊙”如下:对任意的,令,下面说法错误的是()A . 若与共线,则⊙ =0B . ⊙ = ⊙C . 对任意的λ∈R,有⊙ = ⊙ )D . (⊙ )2+()2=| |2| |29. (2分) (2018高二下·河池月考) 已知抛物线和的公切线( 是与抛物线的切点,未必是与双曲线的切点),与抛物线的准线交于 , 为抛物线的焦点,若,则抛物线的方程是()A .B .C .D .10. (2分)三棱柱中,底面是边长为的正三角形,侧棱垂直于底面,且,则此三棱柱外接球的表面积为()A .B .C .D .11. (2分)在一个圆形波浪实验水池的中心有三个振动源,假如不计其它因素,在t秒内,它们引发的水面波动可分别由函数和描述,如果两个振动源同时启动,则水面波动由两个函数的和表达,在某一时刻使这三个振动源同时开始工作,那么,原本平静的水面将呈现的状态是()A . 仍保持平静B . 不断波动C . 周期性保持平静D . 周期性保持波动12. (2分)设函数在内有定义,对于给定的正数k,定义函数:,取函数,若对任意的,恒有,则()A . k的最大值为2B . k的最小值为2C . k的最大值为1D . k的最小值为1二、填空题: (共4题;共4分)13. (1分) (2019高一上·焦作期中) 集合,,则的子集个数是________.14. (1分) (2017高二上·安平期末) 若双曲线的一条渐近线方程为y= x,则其离心率为________.15. (1分) (2018高一下·渭南期末) 执行如图所示的程序框,则输出的 ________.16. (1分) (2016高二上·枣阳开学考) 一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:①三角形;②矩形;③正方形;④正六边形.其中正确的结论是________(把你认为正确的序号都填上)三、解答题: (共7题;共60分)17. (5分)(2017·南开模拟) 已知数列{an}的前n项和为Sn ,且2Sn=1﹣an(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn= ,cn= ,求数列{cn}的前n项和Tn .18. (5分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”,[60,80]为“老年人”.(Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;(Ⅱ)将上述人口分布的频率视为该城市在20﹣80年龄段的人口分布的概率.从该城市20﹣80年龄段市民中随机抽取3人,记抽到“老年人”的人数为X,求随机变量X的分布列和数学期望.19. (10分)(2017·长宁模拟) 已知图一是四面体ABCD的三视图,E是AB的中点,F是CD的中点.(1)求四面体ABCD的体积;(2)求EF与平面ABC所成的角.20. (10分) (2019高二上·齐齐哈尔月考) 设 , 分别是椭圆:的左、右焦点,过点的直线交椭圆于两点,(1)若的周长为16,求;(2)若,求椭圆的离心率.21. (5分)(2017·海淀模拟) 已知函数f(x)=eax﹣x.(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.22. (10分)(2017·广东模拟) 在直角坐标系xOy中,直线l的参数方程为(t为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0.(1)求直线l与曲线C的普通方程;(2)已知直线l与曲线C交于A,B两点,设M(2,0),求| |的值.23. (15分) (2019高一上·上海月考) 对于函数与,记集合 ;(1)设 , ,求 .(2)设 , ,若 ,求实数a的取值范围.(3)设 .如果求实数b的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共60分) 17-1、18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年平顶山市数学高考模拟试题(及答案)一、选择题1.如图所示的圆锥的俯视图为( )A .B .C .D .2.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14-B .14C .23-D .233.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .4.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2xy =C .2y log x =D .()2112y x =- 5.若圆与圆222:680C x y x y m +--+=外切,则m =( )A .21B .19C .9D .-116.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .37.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .108.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A .310B .31010-C .433- D .343- 9.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .5710.函数()ln f x x x =的大致图像为 ( )A .B .C .D .11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A .2 B .3 C .2D .512.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 16.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________. 17.若9()a x x-的展开式中3x 的系数是84-,则a = .18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.19.计算:1726cos()sin43ππ-+=_____. 20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .22.已知向量()2sin ,1a x =+,()2,2b =-,()sin 3,1c x =-,()1,d k =(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +,求x 的值. (2)若函数()f x a b =⋅,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+?若存在,求出k 的取值范围;若不存在,请说明理由.23.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.24.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线3cos :sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为2cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.25.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.26.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】找到从上往下看所得到的图形即可.【详解】由圆锥的放置位置,知其俯视图为三角形.故选C.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,本题容易误选B,属于基础题.2.A解析:A【解析】【分析】【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.3.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.4.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.5.C解析:C 【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,根据圆与圆外切的判定(圆心距离等于半径和)可得1=9m ⇒=,故选C.考点:圆与圆之间的外切关系与判断6.C解析:C 【解析】函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w kk k w w k w ππ=∴=>∴≥∴=≥ 故选C7.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.8.D解析:D 【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为0cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值. 详解:∵60150α︒<<︒, ∴90°<30α︒+<180°, ∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-453152⨯=, 故选D.点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,0(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标.9.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.10.A解析:A 【解析】 【分析】 【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方 ∴可以排除B 答案 考点:函数图像.11.A解析:A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.D解析:D【解析】【分析】【详解】,还可能相交或异面,错误;试题分析:A项中两直线a b,还可能相交或异面,错误;B项中两直线a b,还可能是相交平面,错误;C项两平面αβ故选D.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x满足|x|≤m的概率为若m对于3概率大于若m小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,若m对于3概率大于,若m小于3,概率小于,所以m=3.故答案为3.14.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.15.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.16.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n =4故答案为4【点睛】本题考 解析:4【解析】 【分析】利用通项公式即可得出. 【详解】解:(1+3x )n 的展开式中通项公式:T r +1r n=(3x )r =3rr nx r .∵含有x 2的系数是54,∴r =2. ∴223n=54,可得2n=6,∴()12n n -=6,n ∈N *.解得n =4. 故答案为4. 【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.17.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二解析:1 【解析】 【分析】先求出二项式9()a x x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可. 【详解】9()a x x -展开式的的通项为()992199rr r r r rr a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭, 令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=,故答案为1. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解.【详解】2b =,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 484816A B C B C B C ∴=+=+=⨯+⨯=,11sin 2322S bc A ∴==⨯⨯=.. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19.【解析】【分析】利用诱导公式化简题目所给表达式根据特殊角的三角函数值求得运算的结果【详解】依题意原式【点睛】本小题主要考查利用诱导公式化简求值考查特殊角的三角函数值考查化归与转化的数学思想方法属于基【解析】 【分析】利用诱导公式化简题目所给表达式,根据特殊角的三角函数值求得运算的结果. 【详解】 依题意,原式17π26ππ2πcossin cos 4πsin 8π4343⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭π2πcos sin 43=+=. 【点睛】 本小题主要考查利用诱导公式化简求值,考查特殊角的三角函数值,考查化归与转化的数学思想方法,属于基础题.利用诱导公式化简,首先将题目所给的角,利用诱导公式变为正角,然后转化为较小的角的形式,再利用诱导公式进行化简,化简过程中一定要注意角的三角函数值的符号.20.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25 【解析】 设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、25三、解答题21.(1)n b n =(2)()1122n n S n +=-+(3)()()()114123312n n n n +++---+⋅ 【解析】 【分析】 【详解】(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得2nn a n =,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯错位相减得12111222222212nn n n n S n n ++--=+++-⨯=⨯-⨯-所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n nn nn nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111111122221?22?22?23?2?21?2n n nn n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.(1)6x π=-;(2)0;(3)存在[]5,1k ∈--【解析】 【分析】(1)由向量平行的坐标表示可求得sin x ,得x 值;(2)由数量积的坐标表示求出()f x ,结合正弦函数性质可得最值;(3)计算由()()0a d b c +⋅+=得k 与sin x 的关系,求出k 的取值范围即可. 【详解】 (1)()sin 1,1b c x +=--,()//a b c +,()2sin sin 1x x ∴-+=-,即1sin 2x =-.又,22x ππ⎡⎤∈-⎢⎥⎣⎦,6x π∴=-.(2)∵()2sin ,1a x =+,()2,2b =-,()()22sin 22sin 2f x a b x x ∴=⋅=+-=+.x R ∈,1sin 1x ∴-,()04f x ∴,()f x ∴的最小值为0.(3)∵()3sin ,1a d x k +=++,()sin 1,1b c x +=--,若()()a dbc +⊥+,则()()0a d b c +⋅+=,即()()()3sin sin 110x x k +--+=,()22sin 2sin 4sin 15k x x x ∴=+-=+-,由[]sin 1,1x ∈-,得[]5,1k ∈--,∴存在[]5,1k ∈--,使得()()a dbc +⊥+ 【点睛】本题考查平面得数量积的坐标运算,考查正弦函数的性质.属于一般题型,难度不大. 23.(1)见解析;(2)1[,)e+∞. 【解析】 【分析】(1)()f x 的定义域为()0,+∞,且()()()21x x e ax f x x --'=,据此确定函数的单调性即可;(2)由题意可知()10xb x e lnx --≥在[)1,+∞上恒成立,分类讨论0b ≤和0b >两种情况确定实数b 的取值范围即可. 【详解】(1)()f x 的定义域为()0,+∞ ∵()()()21x x e ax f x x --'=,0a <,∴当()0,1x ∈时,()0f x '<;()1,x ∈+∞时,()0f x '> ∴函数()f x 在()0,1上单调递减;在()1,+∞上单调递增.(2)当1a =-时,()1x f x bx b e x x ⎛⎫+--- ⎪⎝⎭()1xb x e lnx =-- 由题意,()10xb x e lnx --≥在[)1,+∞上恒成立①若0b ≤,当1x ≥时,显然有()10xb x e lnx --≤恒成立;不符题意.②若0b >,记()()1xh x b x e lnx =--,则()1xh x bxe x'=-, 显然()h x '在[)1,+∞单调递增, (i )当1b e≥时,当1x ≥时,()()110h x h be ≥=-'≥' ∴[)1,x ∈+∞时,()()10h x h ≥=(ii )当10b e <<,()110h be -'=<,1110b h e b e b ⎛⎫=-> ⎝'->⎪⎭∴存在01x >,使()0h x '=.当()01,x x ∈时,()0h x '<,()0,x x ∈+∞时,()0h x '> ∴()h x 在()01,x 上单调递减;在()0,x +∞上单调递增 ∴当()01,x x ∈时,()()10h x h <=,不符合题意 综上所述,所求b 的取值范围是1,e ⎡⎫+∞⎪⎢⎣⎭【点睛】本题主要考查导数研究函数的单调性,导数研究恒成立问题,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.24.(1)曲线C :2213x y +=,直线l 的直角坐标方程20x y -+=;(2)1.【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线C 化为普通方程,再根据cos ,sin x y ρθρθ== 将直线l 的极坐标方程化为直角坐标方程;(2)根据题意设直线1l 参数方程,代入C 方程,利用参数几何意义以及韦达定理得点M 到A ,B 的距离之积试题解析:(1)曲线C 化为普通方程为:2213x y +=,由cos 124πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-, 所以直线l 的直角坐标方程为20x y -+=.(2)直线1l 的参数方程为21222x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入2213x y +=化简得:22220t t --=,设,A B 两点所对应的参数分别为12,t t ,则121t t =-,121MA MB t t ∴⋅==.25.(1)15[,]42(2)(5,3)- 【解析】 【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min14x x a ++-<,求出a的范围即可. 【详解】解:(1)()1323f x x x a x =++-≤+可转化为14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解.所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦.(2)依题意,问题等价于关于x 的不等式14x x a ++-<有解, 即()min14x x a++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号. 所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-. 【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。

相关文档
最新文档