2019年-海南大学2019-2019学年高等数学上期末试卷A卷-PPT精选文档
2019最新高等数学(上册)期末考试试题(含答案)RG
2019最新高等数学期末考试试题(含答案)一、解答题1.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=2.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年3.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰4.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰5.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-6.证明下列等式:2321(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立. (2)若()[,]f x C a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.7.求不定积分max(1,)d x x ⎰.解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰8.a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.9.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=.10.求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+610y x ''=-,令0y ''=可得53x =. 当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧. 因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) e xy x -=;解:(1)e , e (2)x xy x y x --'''=-=- 令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0xxy x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的, 故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).11.判定下列曲线的凹凸性: (1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h )y x =;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y x x '''=-=>,故曲线图形在(0,)+∞是凹的. (4) y =x arctan x . 解:2arctan 1xy x x '=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.12.求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x+'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2, 而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在[-1,3]上,函数的最大值是11,最小值为-14.13.确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x'=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =; 解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加.(4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加.(5) e (0,0)n xy x n x -=>≥; 解: 函数定义域为[0,)+∞,11e e e ()n xn x x n y nxx x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+; 解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++. 2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈--1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈,函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+--函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加, 在111[,]218-上, 0y '<,函数单调减少, 在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.14.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x ) = ln(2+x ); (2)f (x ) = cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑ ()()()()2211!!211!!2nn n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e!n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑15.设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少? 解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q q L q q q =-+-=-+-'=-+-令()0L q '=,得 231206000q q -+= 即 2402000q q -+=得20q =-(舍去) 2034.q =+≈此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元) (2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.16.某厂生产某种产品,年销售量为106件,每批生产需要准备费103元,而每件的年库存费为0.05元,如果销售是均匀的,求准备费与库存费之和的总费用与年销售批数之间的函数(销售均匀是指商品库存数为批量的一半). 解: 设年销售批数为x , 则准备费为103x ;又每批有产品610x 件,库存数为6102x 件,库存费为6100.052x ⨯元. 设总费用为,则63100.05102y x x⨯=+.17.求下列函数在0x x =处的三阶泰勒展开式: ⑴04);y x = ⑵ 0(1)ln (1).y x x x =-=解:⑴ 1357(4)222211315 , , ,.24816y x y x y x y x ----''''''==-==-所以113(4) , (4) ,(4)432256y y y ''''''==-=(4)7215[4(4)]16[4(4)]y x x θθ+-=-+-423721115(4)(4)(4)(4) (01).464512128[4(4)]x x x x x θθ----+--<<+-⑵ 2344ln(1)234(1)x x x x x x θ+=-+-+ 234434524(1)ln (1)ln[1(1)](1)(1)(1) (1){(1)}234[1(1)](1)(1)(1) (1).234[1(1)]y x x x x x x x x x x x x x x x θθ∴=-=-+----=---+-+----=--+-+-18.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x →∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴==⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →,2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=19.在括号内填入适当的函数,使等式成立: ⑴ d( )cos d t t =; ⑵ d( )sin d x x ω=; ⑶ 1d( )d 1x x=+; ⑷ 2d( )e d x x -=; ⑸d( )x =; ⑹ 2d( )sec 3d x x =; ⑺ 1d( )ln d x x x =; ⑻d( )x =. 解: ⑴(sint)cos t '=d(sin )cos d t C t t ∴+=.⑵11(cos )(sin )sin x x x ωωωωω'-=-⋅-=1d(cos )sin d x C x x ωωω∴-+=.⑶ 1[ln(1)]1x x'+=+ 1d[ln(1)]d 1x C x x∴++=+. ⑷ 22211(e )(2)e =e 22x x x ---'-=-⋅-221d(e )ed 2x x C x--∴-+=.⑸(2)2x '= )C x ∴=. ⑹2211(tan3)sec 33sec 333x x x '=⋅⋅=21d(tan3)sec 3d 3x C x x ∴+=.⑺ 21111(ln )2ln ln 22x x x x x'=⋅⋅=211d(ln )ln d 2x C x x x∴+=.⑻ 2(1(2)x x '--=-= d()C x ∴=.20.求下列函数的高阶导数: ⑴ e sin ,xy x =⋅求(4)y; ⑵ 22e ,x y x =⋅求(6)y;⑶ 2sin ,y x x =⋅求(80)y .解:⑴e sin e cos e (sin cos )x x xy x x x x '=⋅+⋅=+(4)e (sin cos )e (cos sin )2cos e 2e (cos sin )2e (cos sin )2e (sin cos )=4e sin x x x x x x x y x x x x x y x x y x x x x x''=++-=⋅'''=-=-+---⑵ 6(6)2(6)260(e )()ix i i i yC x -==∑ 22(6)22(5)22(4)622524222(e )6()(e )15()(e )2e 622e 1522e 32e (21215)x x x x x x x x x x x x x x '''=++=+⋅⋅+⋅⋅=++⑶ 80(80)2()(80)800()(sin )i i i i yC x x -==∑ 2(80)(79)(78)22(sin )802(sin )31602(sin )πππsin(80)+160sin (79)6320sin (78)222sin 160cos 6320sin .x x x x x x x x x x x x x x x =+⋅⋅+⋅⋅=⋅+⋅⋅+⋅++⋅=--21.求n 次多项式1101nn n n y a x a x a x a --=++++的n 阶导数.解: 1()()1()()()()0100()()()()=()=!n n n n n n n n n n n ya x a x a x a a x a n --=++++⋅22.已知e sin ,e cos ,ttx t y t ⎧=⎪⎨=⎪⎩求当π3t =时d d y x 的值. 解:d de cos e sin cos sin d d d e sin e cos sin cos d t t t t yy t t t tt x x t t t tt--===++π3ππcos sind 332ππd sin cos 33t y x =-==+.23.求函数11ln21xy x+=-的反函数()x y ϕ=的导数. 解:21[ln(1)ln(1)]2d 1111()d 2111y x x y x x x x =+--=+=+--故反函数的导数为:2d 11d d d x x yy x ==-.24.求下列函数的导数: ⑴ π3ln sin 7S t =+; 解:3S t '= ⑵y x =;解:12)y x x x '=+=+ ⑶ 2(1)sin (1sin )y x x x =-⋅⋅-; 解:222222sin (1sin )(1)cos (1sin )(1)sin (cos ) 2sin 2sin cos cos sin 2sin 2y x x x x x x x x x x x x x x x x x x x=--+--+--=-+--+⑷ 1sin 1cos x y x-=-;解:22cos (1cos )(1sin )sin 1sin cos (1cos )(1cos )x x x x x xy x x ------'==--⑸ πtan e y x =+; 解:2sec y x '=⑹ sec 3sec xy x x=-; 解:2sec tan sec 3sec tan x x x xy x x x -'=-⑺ 2ln 2lg 3log y x x x =-+; 解:11112323(1)ln10ln 2ln1012y x x x x n '=-+⋅=-+⋅⋅ ⑻ 211y x x=++. 解:22(12)(1)x y x x -+'=++25.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热; 解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+.26.垂直向上抛一物体,其上升高度与时间t 的关系式为:21()10(m),2h t t gt =-求: ⑴ 物体从t =1(s)到t =1.2(s)的平均速度:解:11112 1.4410(1.2)(1)220.78 (m s )1.210.2g gh h v --⨯-+-===-⋅- ⑵ 速度函数v (t ); 解:()()10v t h t gt '==-. ⑶ 物体何时到达最高.解:令()100h t gt '=-=,得10(s)t g=, 即物体到达最高点的时刻为10 s.t g=27.已知2()max{,3}f x x =,求()f x '.解:23, (), x f x x x ⎧≤⎪=⎨>⎪⎩当x <时,()0f x '=,当x >时,()2f x x '=,2(((0,x x x f x f -+'===-'==故(f '不存在.又20,(x x x f f x -+'=='==+=故f '不存在. 综上所述知0, ()2, x f x x x ⎧<⎪'=⎨>⎪⎩28.试证:方程21x x ⋅=至少有一个小于1的正根.证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-= 即方程21x x ⋅=有一个小于1的正根.29.研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;x x x x f x f x x x x ≤⎧≤≤⎧==⎨⎨>-<<⎩⎩ 221(3)()lim ;(4)()lim .1x x nx x nn n n n x f x f x x n n x --→∞→∞--==++解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续,又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续, 综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→==== 及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-3(3)∵当x <0时,221()lim lim 1,1x x x xx x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,00()lim 0,n n n f x n n →∞-==+ 当x >0时,2222111()limlim lim 1111x xxx x xx n n n xn n n n f x n n n n --→∞→∞→∞---====+++1,0,()lim0,0,1,0.xxx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续, 又由 0lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=- 知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(4)当|x |=1时,221()lim0,1nn n x f x x x →∞-==+ 当|x |<1时,221()lim,1nnn x f x x x x →∞-==+ 当|x |>1时,2222111()limlim 111nnn n n n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即 ,1,()0,1,, 1.x x f x x x x <⎧⎪==⎨⎪->⎩由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-== 知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断. 图形如下:图1-530.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少?解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三【参考答案】***试卷处理标记,请不要删除一、解答题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
海南大学高数答案2019A1-A卷
《高等数学A1》一、 填空题(每题3分,共18分,在以下各小题中画有____处填上答案)1. 微分方程20y y y '''++=的通解为_12()x y C C x e -=+_______;2. 以(0,0,0),(1,1,1),(1,2,3)A B C 为顶点的三角形的面积为___62_____3. 函数u xyz =在点(1,1,1)沿着它在点(1,1,1)的梯度方向的方向导数是___3______;4.2(sin )xy y dxdydz Ω+=⎰⎰⎰___0____,其中Ω由曲面22z x y =+及平面1z =所围成的闭区域;5.(1)x y dS ∑++=⎰⎰___4π______,其中曲面2221xy z ∑++=:;6. 已知级数1nn a∞=∑收敛,则级数11()nn n aa ∞+=-∑的和为____1a _____.二、选择题(每题3分,共18分,选择正确答案的编号,填在各题的括号内)1. 方程325y y y '''-+=的通解是( C ),其中12,k k 为常数;A). 2125x x y k e k e =++ ; B)2125x xy k e k e =+-;C)21252x x y k e k e =++ ; D)21252x x y k e k e =+- .得分 阅卷教师得分 阅卷教师2. 直线1158:121x y z l --+==-与直线2:,,l x t y t z t ===,则这两条直线的夹角是( D ); A);6π B)4π; C)3π; D) 2π.3. 函数(,)f x y 在点00(,)x y 的两个偏导数存在,是(,)f x y 在点00(,)x y 连续的( D );)A 充分条件而非必要 条件; )B 必要条件而非充分条件; )C 充分必要条件; )D 既非充分条件又非必要 条件.4. 设D 为第二象限的有界闭区域,且01,y <<则31,D I yx dxdy =⎰⎰232,DI y x dxdy =⎰⎰1323,DI y x dxdy =⎰⎰的大小顺序是( D ); )A 123I I I ≤≤)B 213I I I ≤≤)C 321I I I ≤≤)D 312I I I ≤≤.5. 222()x y z dxdy ∑++=⎰⎰( B )其中222,0z r x y r ∑=-->: 取下侧.A) 4r π; B)4r π-; C )2r π; D )2r π-.6.设常数0,k >则21(1)nn k nn ∞=+-∑ ( B ); A)发散; B)条件收敛; C )绝对收敛; D )敛散性与k 有关.三 、计算题(每小题8分,共48分)().f x1、求微分方程tan sec dyy x x dx-=满足初值条件00x y ==的特解. 解:tan tan sec xdxxdx y e xe dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 2 分得分 阅卷教师()()()ln cos ln cos 1sec 1sec cos cos 1sec cos cos xxexe dx C x x dx C x x xdx C x -=+=+=+⎰⎰⎰ 11()cos x C x=+. 6分1000x y C ==⇒=, 所以特解为.cos xy x=8分 2.已知一平面与向量 (2,1,1)a =-平行,该平面在x 轴和y 轴的截距分别为3和-2, 求该平面方程.解:设该平面方程为132x y z c++=-, 2分 则该平面方程的法向量为 111(,,)32n c=-, 4分由条件知0,n a ⋅=即211032c --=,得6c =, 6分所以该平面方程为1326x y z++=-. 8分3.设(,)z z x y =是由方程ln x zz y=所确定的隐函数,求dz . 解: (,,)ln ,x z F x y z z y =-211,,,x y z x zF F F z y z+===- 4分 2,,()z z z z x x z y y x z ∂∂==∂+∂+ 6分 2,()z z dz dx dy x z y x z ∴=+++ 8分4、计算2222()Dx y dxdy a b +⎰⎰,其中{}22(,)1D x y x y =+≤.解:22222221222200cos sin ()=()Dx y r r dxdy d rdr a b a b πθθθ++⎰⎰⎰⎰ 2分222132200cos sin ()d r dr a bπθθθ=+⎰⎰ 4分222011cos 21cos 2()422d a b πθθθ+-=+⎰ 6分 2211().4a bπ=+ 8分5、计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为上半圆周22(1)1,0x y y -+=≥,沿逆时针方向.解:添加线段10,:02,L y x =→: 则 1分1(sin 2)(cos 2)2x x L L De y y dx e y dy dxdy +-+-=⎰⎰⎰ 3分,π= 5分所以 1(sin 2)(cos 2)(sin 2)(cos 2)x x x x LL e y y dx e y dy e y y dx e y dy π-+-=--+-⎰⎰ 6分.π= 8分6. 求级数21(1)21n nn x n +∞=-+∑的和函数.解:级数的收敛半径为121lim 1,123n n R n →∞+==+ 1分收敛区间为(-1,1),当1,x =01(1)21nn n ∞=-+∑收敛,当 1,x =-101(1)21n n n ∞+=-+∑收敛,所以收敛域为[]1,1.- 3分令21()(1)21n nn x S x n +∞==-+∑,则 ()S x '=221(1),1n n n x x∞=-=+∑ 5分 所以201()1xxS x dx dx x '=+⎰⎰,0()(0)arctan arctan ,xS x S x x -== 7分 因为(0)0S =,所以[]()arctan ,1,1.S x x x =∈- 8分四、 证明题(8分)得分 阅卷教师证明曲面(,)0F x az y bz --=上任意点处的法线与直线x yz a b==垂直,其中,a b 为常数, 函数(,)F u v 可微.证明:曲面上任意点处的法向量为 1212(,,)n F F aF bF ''''=-- , 2分直线的方向向量为(,,1)s a b =, 4分所以 12120n s aF bF aF bF ''''⋅=+--=, 7分所以 曲面(,)0F x az y bz --=上任意点处的法线与直线x yz a b==垂直. 8分五、 应用题(8分)求由曲面22z x y =+与平面1z =所围成的区域的整个边界表面的面积. 解:令曲面22221:,(,):1,z x y x y D x y ∑=+∈+≤平面222:1,(,):1,z x y D x y ∑=∈+≤ 则所求的面积为 1212S dS dS dS ∑+∑∑∑==+⎰⎰⎰⎰⎰⎰ 2分2222221DDx y dxdy dxdy x y x y =+++++⎰⎰⎰⎰ 5分 (21).π=+ 8分得分 阅卷教师。
海南大学高等数学上册期末试题解析课件
D
本题考查不定积分的换元积分法公式
解
c
ex f (ex ) dx f (ex ) dex
f (u) du
.
F(u) C
F (ex ) C
三 、计算题
分析 本题主要函数求极限。可用洛必达法则,也可用重要极限。 解法一
分析 本题考查定积分的几何应用。
解
1.
S
sin xdx
cos x
2.
0
0
2.
Vx
sin2 xdx
0
1 cos 2x
dx
0
2
2 .
2
一、填空题:
答 本题考查的是重要极限2或洛必达法则。
lim (1
2 ) x3
lim (1
2
)
x .2 2
.(1
2)3
e2
x0
x
x0
x
x
答 本题考查的是利用导数定义求极限问题。
分 析 本题考查的是变限函数的求导问题。
另一 方法
后面由同学自 行完成!!!
二、单项选择题
B
分析 本题考查的是无穷小的比较。
所以选择B
另外两个选项同学自行证明。 B
分析 本题考查的是导数与原函数的概念。
因此,每个选项求二阶导得到的是sinx即可。 所以选择B
Байду номын сангаас B
分 析
本题考查的是导数的应用。
分析 本题主要考查导数的应用。
dy dy . dt 1 .1 t 2 1 t 2 dx dt dx 2 2t 4t
2019最新高等数学(上册)期末考试试题(含答案)WE
故
8. 求下列旋转体的体积:
(1)由y=x2与y2=x3围成的平面图形绕x轴旋转;
解:求两曲线交点得(0,0),(1,1)
.(14)
(2)由y=x3,x=2,y=0所围图形分别绕x轴及y轴旋转;
解:见图14,
.
(2)星形线绕x轴旋转;
解:见图15,该曲线的参数方程是:
,
由曲线关于x轴及y轴的对称性,所求体积可表示为
解:
20.利用泰勒公式求下列极限:
⑴ ⑵ (3)
解:⑴
⑵
(3)令 ,当 时, ,
21.在括号内填入适当的函数,使等式成立:
⑴ ;⑵ ;
⑶ ;⑷ ;
⑸ ;⑹ ;
⑺ ;⑻ .
解:
⑴
.
⑵
.
⑶
.
⑷
.
⑸
.
⑹
.
⑺
.
⑻
.
22.求由下列方程所确定的隐函数 的二阶导数 :
⑴ ;⑵ ;
⑶ ;⑷ .
解:⑴两边对 求导,得
.
(9)因为当 时, ,所以
(10)因为当 时, ,所以
(11)因为当 时, 所以
(12)因为当 时, 所以
解:(1)当C′(x)=R′(x)时总利润最大.
即2=7-2x,x=5/2(百台)
(2)L′(x)=R′(x)-C′(x)=5-2x.
在总利润最大的基础上再多生产100台时,利润的增量为
ΔL(x)= .
即此时总利润减少1万元.
7.已知电压u(t)=3sin2t,求
(1)u(t)在 上的平均值;
解:
(2)电压的均方根值.
2019最新高等数学期末考试试题(含答案)
2019最新高等数学(上册)期末考试试题(含答案)AKV
2019最新高等数学期末考试试题(含答案)一、解答题1.试证:方程sin x x =只有一个实根.证明:设()sin f x x x =-,则()cos 10,f x x =-≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.2.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩ (2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cos ππ2=-≤≤xf x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑ (x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππn n a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3n n f x nx n∞==+-⋅∑ (-∞<x <∞) (3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n n b f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos 2x f x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π01212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x x a nx x nx x n x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰ 所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nx f x n ∞+==+--∑ x ∈[-π,π]3.将下列函数展开成x 的幂级数,并求展开式成立的区间:。
2019最新高等数学(上册)期末考试试题(含答案)MA
2019最新高等数学期末考试试题(含答案)一、解答题1.设21lim51x x mx nx →++=-,求常数m , n 的值. 解:要使21lim51x x mx nx →++=-成立,则21lim()0x x mx n →++=,即10m n ++= 又2112limlim 2511x x x mx n x mm x →→+++==+=- 得3,4m n ==-2.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x(4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]3.证明,若21n n U ∞=∑收敛,则1nn U n ∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n ∞=∑绝对收敛.4.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+5.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n→∞==>+,故原级数发散. (2) ()1lim01ln 1n n n→∞==<+,故原级数收敛. (3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.6.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nn n +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn+++++++++++ (3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a ∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2x x x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.8.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少?解:如图21,以切点为原点建立坐标系,则圆的方程为 (x -R )2+y 2=R 2将球从水中取出需作的功相应于将[0,2R ]区间上的许多薄片都上提2R 的高度时需作功的和的极限。
2019最新高等数学(上册)期末考试试题(含答案)CP
2019最新高等数学期末考试试题(含答案)一、解答题1.利用微分求下列各数的近似值:⑴⑵ln0.99;⑶arctan1.02.解:⑴113x≈+,有112(1) 2.0083380==≈⋅+⨯=.⑵利用近似公式ln(1)x x+≈,有ln0.99ln(10.01)0.0100.=-≈-⑶取()arctanf x x=,令1,0.02x x==,而21()1f xx'=+,则21arctan1.02arctan10.0211=0.7954.≈+⨯+2.将函数()arctandx tF txt=⎰展开成x的幂级数.解:由于()21arctan121nnnttn+∞==-+∑所以()()()()()200221200arctand d121d112121nx x nnn nx n nn nt tF t txt nt xtn n∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x|≤1)3.将()2132f xx x=++展开成(x+4)的幂级数.解:21113212x x x x=-++++而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑4.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn nn ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-,级数1nn U ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+.故可得1n n U U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛. 当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又01111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.5.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nnn +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.6.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰7.利用定义计算下列定积分: (1)d ();bax x a b <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1)d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2)1e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i ix i n n==-记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==则和式111()i nnni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)lim lim 1e e 11e (e 1)1lim e 1.1i n n xn n nnn n i n nnnn n nn n x n n n n n n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰8.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.9.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩ 解得 39,22a b =-=.10.求数列的最大的项.解:令y =y '===令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<, 所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.11.函数()(2)(1)(1)(2)f x x x x x x =--++的导函数有几个零点?各位于哪个区间内? 解:因为(2)(1)(0)(1)(2)0f f f f f ===-=-=,则分别在[-2,-1],[-1,0],[0,1],[1,2]上应用罗尔定理,有1234(2,1),(1,0),(0,1),(1,2),ξξξξ∈--∈-∈∈使得1234()()()()0f f f f ξξξξ''''====.因此,()f x '至少有4个零点,且分别位于(2,1),(1,0),(0,1),(1,2)---内.12.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ⎧≤<=⎨=⎩; ⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立. ⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩(1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件.而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.13.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+14.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx xn-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)15.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变? 解: 324d π,π,.3d rV r A r v t=== 2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅16.求下列函数的定义域211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-解: (1)要使函数有意义,必须400x x -≥⎧⎨≠⎩ 即 40x x ≤⎧⎨≠⎩所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩ 即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1). (3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数).也即ππππ66k x k -+≤≤+ (k 为整数).所以函数的定义域是ππ[π,π]66k k -++, k 为整数.17.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=18.用对数求导法求下列函数的导数: ⑴y =解:1(ln )[ln(2)4ln(3)5ln(1)]2y y y y x x x '''=⋅=⋅++--+45(3)145[](1)2(2)31x x x x x -=--++-+⑵ cos (sin );xy x =解:2cos (ln )(cos ln sin )1[(sin )ln sin cos cos ]sin cos (sin )(sin ln sin )sin xy y y y x x y x x x x xx x x x x'''==⋅=-+⋅⋅=- ⑶2x y =解:211(ln )[2ln(3)ln(5)ln(4)]22111 ].32(5)2(4)x y y y y x x x x x x x '''==++-+--=+--++-19.求下列隐函数的导数:⑴ 3330x y axy +-=; ⑵ ln()x y xy =;⑶ e e 10y xx y -=; ⑷ 22ln()2arctan y x y x+=; ⑸ ex yxy +=解:⑴ 两边求导,得:2233330x y y ay axy ''+⋅--=解得 22ay x y y ax-'=-.⑵ 两边求导,得:11ln()()y xy y y xy xy''=+⋅+ 解得 (ln ln 1)x yy x x y -'=++.⑶ 两边求导,得:e e e e 0y y x x x y y y ''+⋅++=解得 e e =e ey xy xy y x +'-+. ⑷ 两边求导,得:222211(22)21()y x yx yy y x y x x'-'⋅+=⋅⋅++ 解得 =x yy x y+'-.⑸ 两边求导,得:e (1)x y y xy y +''+=+解得 e =e x y x yyy x ++-'-.20.若π1()1,(arccos )3f y f x '==,求2d d x y x=.解:22d 11(arccos )(()d d π11(d 344x y f x x x y f x ='=⋅-'===21.已知2()max{,3}f x x =,求()f x '.解:23, (), x f x x x ⎧≤⎪=⎨>⎪⎩当x <时,()0f x '=,当x >时,()2f x x '=,2(((0,x x x f x f -+'===-'==故(f '不存在.又20,(x x x f f x -+'=='==+=故f '不存在. 综上所述知0, ()2, x f x x x ⎧<⎪'=⎨>⎪⎩22.已知sin ,0,(),0,x x f x x x <⎧=⎨≥⎩求()f x '.解:当0x <时,()cos ,f x x '= 当0x >时,()1,f x '= 当0x =时,0sin 0(0)lim 1,0x x f x --→-'==- 00(0)lim 1,0x x f x ++→-'==- 故(0) 1.f '=综上所述知cos ,0,()1,0.x x f x x <⎧'=⎨≥⎩23.求下列函数在0x 处的左、右导数,从而证明函数在0x 处不可导.(1) 03sin ,0,0;,0,x x y x x x ≥⎧==⎨<⎩证明:00()(0)sin (0)lim lim 1,0x x f x f xf x x+++→→-'===- 300()(0)(0)lim lim 0,0x x f x f x f x x ---→→-'===-因(0)(0)f f +-''≠,故函数在00x =处不可导.(2) 10,0,0;1e 0,0,xx x y x x ⎧≠⎪==+⎨⎪=⎩证明:100()(0)1(0)lim lim 0,01e x x x f x f f x +++→→-'===-+ 100()(0)1(0)lim lim 1,01e x x x f x f f x ---→→-'===-+ 因(0)(0)f f +-''≠,故函数在00x =处不可导.(3) 021,1.,1,x y x x x ≥==<⎪⎩证明:11()(1)1(1)lim lim ,12x x f x f f x +++→→-'===- 211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===--因(1)(1)f f +-''≠,故函数在01x =处不可导.24.(1) 设1()f x x=,求00()(0);f x x '≠解:00021()().x x f x f x x =''==-(2) 设()(1)(2)(),f x x x x x n =--⋅⋅-求(0).f '解:00()(0)(0)limlim(1)(2)()0(1)!x x n f x f f x x x n x n →→-'==--⋅⋅--=-25.当x =0时,下列函数无定义,试定义(0)f 的值,使其在x =0处连续:1tan 2(1)()(2)();1(3)()sin sin ;(4)()(1).x xf x f x x f x x f x x x ====+解:0003(1)lim ()2x x x f x →→→=== ∴补充定义3(0),2f =可使函数在x =0处连续.000tan 22(2)lim ()limlim 2.x x x x xf x xx →→→===∴补充定义(0)2,f =可使函数在x =0处连续. 01(3)limsin sin0x x x→=∴补充定义(0)0,f =可使函数在x =0处连续. 10(4)lim ()lim(1)e xx x f x x →→=+=∴补充定义(0)e,f =可使函数在x =0处连续.26.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦27.通过恒等变形求下列极限:2222214123(1)11(1)lim; (2)lim;1222168(3)lim; (4)lim ;154n n nx x n n xx x x x x x →∞→∞→→++++-⎛⎫+++⎪⎝⎭-+-+--+32233π5422(5)lim ; 1cot lim ;2cot cot (9)lim(1)(1)(1)(1);(10)nx x x x x xxx x x x x x →+∞→→→→∞---+++< 12231100)(1)113(11)lim ; (12)lim ;(1)11log (1)1(13)lim ; (14)lim n x x x x a x x x x x x x x x a x x→→→→→--+⎛⎫- ⎪---⎝⎭+-3sin 00;sin (15)lim(12); (16)lim ln .xx x x x x→→+解:22123(1)(1)111(1)lim lim lim .1222n n n n n n n n n →∞→∞→∞++++--⎛⎫===- ⎪⎝⎭ 1221112244411112(2)lim lim 2.11221221(1)(3)lim lim lim(1)0.1168(2)(4)22(4)lim lim lim .54(1)(4)13n n n n x x x x x x x x x x x x x x x x x x x x x x +→∞→∞→→→→→→⎛⎫- ⎪⎛⎫⎝⎭==+++ ⎪⎝⎭--+-==-=---+---===-+---322000(5)lim lim lim 2.lim(1 2.x x xx x xx→+∞→→→=====-=-5555x xxx→→→→=====3333ππ4422π422π41cot1cot(8)lim lim2cot cot(1cot)(1cot)(1cot)(1cot cot)lim(1cot)(11cot cot)1cot cot3lim.2cot cot4x xxxx xx x x xx x xx x xx xx x→→→→--=---+--++=-+++++==++122222(9)lim(1)(1)(1)(1)(1)(1)(1)(1)lim111lim.11nnnxxxx x x xx x x xxxx x+→∞→∞→∞+++<-+++=--==--1121 121 1)(1))(1))(1)11.234!nxnn n n x nn n n x nxx x xx x xn n→--→-→-=++++=++++==⨯⨯⨯⨯22223111221113213(11)lim lim lim(1)(1)(1)(1)11(1)(2)(2)lim lim 1.(1)(1)1x x xx xx x x xx x x x x xx xx x xx x x x x→→→→→++-+-⎛⎫==-⎪-++-++--⎝⎭-+-+===--++++2212211221lim(1)(1)(12)lim01lim(1)1lim.(1)x x x x x x x x x x x x x →→→→--==-+-+-+∴=∞-1log (1)(13)log (1)a x a x x x+=+ 而10lim(1).xx x e →+= 而1limlog log ln a a u eu e a→==0log (1)1lim.ln a x x x a→+∴=(14)令1,xu a =-则log (1),a x u =+当0x →时,0u →.所以00011limlim ln log (1)log (1)limx x u a a u a u a u x u u→→→-===++(利用(13)题的结果). 1122000336ln(12)ln(12)sin sin 2sin 0lim 6ln(12)6limlimln(12)sin sin 61ln e 6(15)lim(12)lim elim ee ee e .x xx x x xx x xxx xx x x xxx x xx x →→→++→→→⋅⋅+⋅⋅+⨯⨯+======(16)令sin x u x =, 则00sin lim lim 1x x xu x→→==而1limln 0u u →= 所以0sin limln0.x xx→=28.下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.29.设()f x 定义在(-∞,+∞)上,证明:(1) ()()f x f x +-为偶函数; (2)()()f x f x --为奇函数.证: (1)设()()()F x f x f x =+-,则(,)x ∀∈-∞+∞, 有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数.(2)设()()(),G x f x f x =--则(,)x ∀∈-∞+∞,有()()()[()()]()G x f x f x f x f x G x -=---=---=- 故()()f x f x --为奇函数.30.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无 3.无 4.无 5.无 6.无 7.无 8.无 9.无 10.无 11.无 12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
2019最新高等数学(上册)期末考试试题(含答案)AFW
2019最新高等数学期末考试试题(含答案)一、解答题1.椭圆22169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同?解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x y x y t t ⋅+⋅= 由d d d d x y t t -=. 得 161832,9y x y x ==代入椭圆方程得:29x =,163,.3x y =±=± 即所求点为1616,3,3,33⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.2.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1). 记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nxx ∞-==∑则()1011xn n xS x x x∞===-∑⎰于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211nn S x x x ∞='==-∑, 故()1011d ln21xx S x x x +'=-⎰即()()1111ln 021xS S x x+-=-,()100S =,所以()()()11ln 121x x S xS x x x x+==<-3.(1)解:112xn n=∞相当于P 级数中P x = 当1P >时112p n n =∞收敛,1P ≤时,112pn n=∞发散. 从而当1x >时,112x n n =∞收敛,1x ≤时,112xn n=∞发散. 从而112xn n =∞的收敛域为(1,)+∞ 从而111(1)2n x n n+=∞-的收敛域为(0,1)(1,)+∞. (2)解:当1x >时,112x n n =∞收敛,则111(1)2n xn n +=∞-收敛.当0x ≤时,111(1)2n x n n+=∞-发散,(0)n U当01x <<时,111(1)2n x n n+=∞-收敛.(莱布尼兹型级数)4.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn nn ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-,级数1nn U ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛.。
2019最新高等数学(上册)期末考试试题(含答案)AGA
2019最新高等数学期末考试试题(含答案)一、解答题1.利用麦克劳林公式,按x 乘幂展开函数23()(31)f x x x =-+.解:因为()f x 是x 的6次多项式,所以 (4)(5)(6)23456(0)(0)(0)(0)(0)()(0)(0).2!3!4!5!6!f f f f f f x f f x x x x x x ''''''=++++++ 计算出:(0)1,(0)9,(0)60,(0)270f f f f ''''''==-==-,(4)(5)(6)(0)720,(0)1080,(0)720.f f f ==-=故23456()193045309.f x x x x x x x =-+-+-+2.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x xx =≤≤ 解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n n a f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以 ()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)3.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力。
2019最新高等数学(上册)期末考试试题(含答案)RI
解:原式=
9.计算下列积分(n为正整数):
(1)
解:令 , ,
当x=0时t=0,当x=1时t= ,
由第四章第五节例8知
(2)
解:
由递推公式
可得
10.求由方程 所确定的隐函数 的导数.
解:方程两边对x求导,有
又
故 .
11.计算下列定积分:
解:原式 .
;
解:原式
,其中
解:原式
解:原式
解:原式
12.作出下列函数的图形:
(1)
(2) ;
(3)
(4) .
解:(1)函数f(x)满足狄利克雷定理的条件,x=nπ,n∈z是其间断点,在间断占处f(x)的傅里叶级数收敛于
,在x≠nπ,有
于是f(x)的傅里叶级数展开式为
(x≠nπ)
(2)函数f(x)在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f(x),注意到f(x)为偶函数,从而f(x)cosnx为偶函数,f(x)sinnx为奇函数,于是
当 时, 单调增加;
当 时, 单调减少;
当 时, 单调减少;
当 时, 单调增加,
故函数有极大值f(-2)=-4,有极小值f(0)=0
又 ,故x=-1为无穷型间断点且为铅直渐近线.
又因 ,且 ,
故曲线另有一斜渐近线y=x-1.
综上所述,曲线图形为:
(4) .
解:函数定义域为(-∞,+∞) .
令 ,得x=1.
17.一点沿对数螺线 运动,它的极径以角速度 旋转,试求极径变化率.
解:
18.利用麦克劳林公式,按 乘幂展开函数 .
解:因为 是 的6次多项式,所以
计算出: ,
2019最新高等数学(上册)期末考试试题(含答案)AKK
2019最新高等数学期末考试试题(含答案)一、解答题1.验证:函数()lnsin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的ξ,使()0f ξ'=. 证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()ln 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66ξ∈使()0f ξ'=.事实上,由cos ()cot 0sin x f x x x '===得ππ5π(,),266x =∈故取π2ξ=,可使()0f ξ'=.2.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133222213333n n n --+-++-;(4)155n +++++; 解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散.3.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为 R =y -800=2528.4-800=1728.4(万元)收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年4.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少?解:如图21,以切点为原点建立坐标系,则圆的方程为(x -R )2+y 2=R 2将球从水中取出需作的功相应于将[0,2R ]区间上的许多薄片都上提2R 的高度时需作功的和的极限。
2019最新高等数学(上册)期末考试试题(含答案)FY
2019最新高等数学期末考试试题(含答案)一、解答题1.一动点沿抛物线y =x 2运动,它沿x 轴方向的分速度为3 cm ·s -1,求动点在点(2,4)时,沿y 轴的分速度. 解:d d d 236.d d d y y xx x t x t=⋅=⋅= 当x =2时,d 6212d yt=⨯= (cm ·s -1).2.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nnn n ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-,级数1n nU ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+.故可得1n n U U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n nα→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n n n αα∞∞-===-∑∑发散,所以原级数条件收敛. 当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则 ()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又01111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.3.某父母打算连续存钱为孩子攒学费,设建行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱? 解:设每年以均匀流方式存入x 万元,则 5=10(10)0.050e d t x t -⎰即 5=20x (e 0.5-1)0.514(e 1)x =-≈0.385386万元=3853.86元.习题六4.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年5. 求下列各曲线所围成图形的公共部分的面积: (1)r =a (1+cos θ)及r =2a cos θ;解:由图11知,两曲线围成图形的公共部分为半径为a 的圆,故D =πa 2.(11)(2)r =2cos θ及r 2=3sin2θ.解:如图12,解方程组⎩⎨⎧r =2cos θr 2=3sin2θ得cos θ=0或tan θ=33, 即θ=π2或θ=π6.(12)D =⎠⎜⎛0π612·3sin2θd θ+⎠⎜⎜⎛π6π212·()2cos θ2d θ =⎣⎡⎦⎤-34cos2θπ60+θ2+ ⎣⎡⎦⎤14sin4θπ2π6=π6.6.已知sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x xx x+∞⎰解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰22sin (2) d .x x x +∞⎰解:222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22x x x x x xx x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰7.求下列极限:203ln(12)d (1)lim;xx t tx →+⎰解:原式21222300ln(12)22limlim ln(12).333x x x x x x →→+==+= 2220020e d (2)lim .e d x t x x tt t t→⎡⎤⎣⎦⎰⎰ 解:原式2222222002e d ee d 1lim2lim2lim2.12e e xxt x t xxx x x t tx x x →→→⋅====+⎰⎰8.计算下列导数:2d (1)d x t x ⎰解:原式2=32d (2)d x x x ⎰解:原式32200d d d d x x x x =-=⎰⎰9.试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=- 令0y ''=,解得x =±1,代入原曲线方程得y =4k , 只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k ,法线方程为18y x k=. 由于(1,4k ),(-1,4k )在此法线上,因此148k k=±, 得22321, 321k k ==-(舍去)故8k ==±10.判定下列曲线的凹凸性: (1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h )y x =;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y x x'''=-=>,故曲线图形在(0,)+∞是凹的. (4) y =x arctan x . 解:2arctan 1xy x x'=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.11.某铁路隧道的截面拟建成矩形加半圆形的形状(如12题图所示),设截面积为am 2,问底宽x 为多少时,才能使所用建造材料最省? 解:由题设知21π22x xy a ⎛⎫+⋅= ⎪⎝⎭得 21π18π8a x a y x x x -==-12题图 截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x=++⋅=+-+=++'=+-令()0l x '=得唯一驻点x =.即当x =.12.设()()()f a f c f b ==,且a c b <<,()f x ''在[a ,b ]内存在,证明:在(a ,b )内至少有一点ξ,使()0f ξ''=.证明:()f x ''在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c ξ∃∈,使得1()0f ξ'=,2(,)c b ξ∃∈,使得2()0f ξ'=,又()f x '在12[,]ξξ上连续,在12(,)ξξ内可导,由罗尔定理知,12(,)ξξξ∃∈,使()0f ξ''=,即在(a ,b )内至少有一点ξ,使()0f ξ''=.13.验证:拉格朗日定理对函数3()2f x x x =+在区间[0,1]上的正确性. 验证:因为()f x 在[0,1]上连续,在(0,1)内可导,满足拉格朗日定理的条件. 由(1)(0)()(10)f f f ξ'-=-得2322ξ=+解得ξ=,即存在ξ=使得拉格朗日定理的结论成立.14.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1) f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x x n x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n x b f x xn x n x x x x n n --+==++=-=⎰⎰⎰ 而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x ≠3(2k +1),k =0,±1,±2,…)15.计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- , 故 23/22.(1)y k y ''=='+16.判断下列函数在定义域内的有界性及单调性:2(1); (2)ln 1xy y x x x==++ 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201x x ≤+,当0x >时,有21122x x x x ≤=+, 故(,),x ∀∈-∞+∞有12y ≤.即函数21xy x=+有上界. 又因为函数21xy x=+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21xy x=+有界. 又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <. 故函数21xy x =+在定义域内不单调. (2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >.取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>, 所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增.17.求函数()e xf x x =的n 阶麦克劳林公式.解: 21e 1e 2!(1)!!n n x x x x x x n n θ-=+++++-312()e e (01)2!(1)!!n n xx x x x f x x x x n n θθ+∴==+++++<<-18.求下列函数的微分: ⑴ e xy x =; ⑵ ln xy x=; ⑶ y =⑷ ln tan 5xy =;⑸ 286e xxy x =-; ⑹ 2(arctan )y x =.解:⑴ d (e )d e (1)d x xy x x x x '==+;⑵ 221ln ln 1ln d ()d ()d dx xx x x y xx x x x x⋅--'===; ⑶ d d (y x x x '==-=; ⑷ ln tan ln tan 21d (5)d (ln 55sec )d tan x x y x x x x'==⋅⋅⋅ ln tan 12ln 55d sin 2x x x=⋅⋅; ⑸ 22d (86e )d [8(1ln )12e ]d xxxxy x x x x x '=-=+-; ⑹ 221d (arctan )]d 2arctan ]d .1y x x x x x '==+⋅+;19.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=20.求函数11ln21xy x+=-的反函数()x y ϕ=的导数. 解:21[ln(1)ln(1)]2d 1111()d 2111y x x y x x x x =+--=+=+--故反函数的导数为:2d 11d d d x x yy x ==-.21.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a . 证明:在双曲线上任取一点00(,),M x y则222220, , x a a a y y y x xx =''==-=-,则过M 点的切线方程为:20020()a y y x x x -=--令220000002202x y x a y x x x x a a=⇒=+=+=得切线与x 轴的交点为0(2,0)x ,令2000000002x y a x y y y y x x =⇒=+=+=得切线与y 轴的交点为0(0,2)y , 故 2000012222.2S x y x ya ===22.求下列函数的导数: (1) y =解:y '=(2) y =解:5323yx -'=-(3) y =解:2512326y x x +-==561.6y x -'=23.讨论下列函数在指定点的连续性与可导性: (1) sin ,0;y x x ==解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续.又00()(0)sin (0)lim lim 1,0x x f x f xf x x---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x+++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导.(2) 21sin ,0, 0;0,0,x x y x xx ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin0(0),x x y x→==故函数在0x =处连续. 又2001sin ()(0)(0)limlim 00x x x f x f x y x x→→-'===-,故函数在0x =处可导.(3) ,1, 1.2,1,x x y x x x ≤⎧==⎨->⎩解:因为1111lim ()lim(2)1lim ()lim 1x x x x f x x f x x ++--→→→→=-===11lim ()lim ()(1)1x x f x f x f +-→→===,故函数在x =1处连续. 又11()(1)1(1)lim lim 111x x f x f x f x x ---→→--'===-- 11()(1)21(1)lim lim 111x x f x f x f x x +++→→---'===---(1)(1)f f -+''≠,故函数在x=1处不可导.24.设函数2,1,(),1.x x f x ax b x ⎧≤=⎨+>⎩ 为了使函数()f x 在1x =点处连续且可导,,a b 应取什么值?解:因211lim ()lim 1(1)x x f x x f --→→=== 11lim ()lim()x x f x ax b a b ++→→=+=+ 要使()f x 在1x =处连续,则有1,a b +=又211()(1)1(1)limlim 2,11x x f x f x f x x ---→→--'===-- 111(1)lim lim ,11x x ax b ax af a x x +++→→+--'===--要使()f x 在1x =处可导,则必须(1)(1)f f -+''=, 即 2.a =故当2,1a b ==-时,()f x 在1x =处连续且可导.25.试证:方程sin x a x b =+至少有一个不超过a b +的正根,其中0,0a b >>. 证:令()sin f x x a x b =--,则()f x 在[0,]a b +上连续, 且 (0)0,()(1sin )0f b f a b a x =-<+=-≥, 若()0f a b +=,则a b +就是方程sin x a x b =+的根. 若()0f a b +>,则由零点定理得.(0,)a b ξ∃∈+,使()0f ξ=即sin 0a b ξξ--=即sin a b ξξ=+,即ξ是方程s i n x a x b =+的根,综上所述,方程sin x a x b =+至少有一个不超过a b +的正根.26.研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;x x x x f x f x x x x≤⎧≤≤⎧==⎨⎨>-<<⎩⎩ 221(3)()lim ;(4)()lim .1x x nx x nn n n n x f x f x x n n x --→∞→∞--==++解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续,又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续, 综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→==== 及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-3(3)∵当x <0时,221()lim lim 1,1x x x xx x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,00()lim 0,n n n f x n n →∞-==+ 当x >0时,2222111()limlim lim 1111x xxx x xx n n n xn n n n f x n n n n--→∞→∞→∞---====+++1,0,()lim0,0,1,0.xxx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续, 又由 0lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=- 知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(4)当|x |=1时,221()lim0,1nnn x f x x x →∞-==+当|x |<1时,221()lim,1nnn x f x x x x →∞-==+ 当|x |>1时,2222111()limlim 111nnn n n n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即 ,1,()0,1,, 1.x x f x x x x <⎧⎪==⎨⎪->⎩由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-== 知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断. 图形如下:图1-527.通过恒等变形求下列极限:2222214123(1)11(1)lim; (2)lim ;1222168(3)lim; (4)lim ;154n n n x x n n x x x x x x x →∞→∞→→++++-⎛⎫+++⎪⎝⎭-+-+--+32233π5422(5)lim ; 1cot lim ;2cot cot (9)lim(1)(1)(1)(1);(10)nx x x x x xxx x x x x x →+∞→→→→∞---+++< 12231100)(1)113(11)lim ; (12)lim ;(1)11log (1)1(13)lim ; (14)lim n x x x x a x x x x x x x x x a x x→→→→→--+⎛⎫- ⎪---⎝⎭+-3sin 00;sin (15)lim(12); (16)lim ln .x x x xx x→→+解:22123(1)(1)111(1)lim lim lim .1222n n n n n n n n n →∞→∞→∞++++--⎛⎫===- ⎪⎝⎭ 1221112244411112(2)lim lim 2.11221221(1)(3)lim lim lim(1)0.1168(2)(4)22(4)lim lim lim .54(1)(4)13n n nn x x x x xx x x x xx x x x xx x x x x x x +→∞→∞→→→→→→⎛⎫- ⎪⎛⎫⎝⎭==+++ ⎪⎝⎭--+-==-=---+---===-+---322000(5)lim lim lim2.lim(1 2.x x x x x x x→+∞→→→=====-=-5555x x x x →→→→=====3333ππ4422π422π41cot 1cot (8)lim lim 2cot cot (1cot )(1cot )(1cot )(1cot cot )lim (1cot )(11cot cot )1cot cot 3lim .2cot cot 4x x x x x xx x x x x x x x x x x x x x →→→→--=---+--++=-+++++==++122222(9)lim(1)(1)(1)(1)(1)(1)(1)(1)lim 111lim .11nnn x x x x x x x x x x x x x x x+→∞→∞→∞+++<-+++=--==--11211211)(1))(1))(1)11.234!n x n n n n x n n n n x n x x x x x x x n n →--→-→-=++++=++++==⨯⨯⨯⨯ 22223111221113213(11)lim lim lim (1)(1)(1)(1)11(1)(2)(2)lim lim 1.(1)(1)1x x x x x x x x x x x x x x x x x x x x x x x x x →→→→→++-+-⎛⎫==- ⎪-++-++--⎝⎭-+-+===--++++2212211221lim(1)(1)(12)lim01lim(1)1lim .(1)x x x x x x x x x x x x x →→→→--==-+-+-+∴=∞-1log (1)(13)log (1)a x a x x x+=+ 而10lim(1).xx x e →+= 而1limlog log ln a a u eu e a→==0log (1)1lim.ln a x x x a→+∴=(14)令1,xu a =-则log (1),a x u =+当0x →时,0u →.所以00011limlim ln log (1)log (1)lim x x u aa u a u a u x u u→→→-===++(利用(13)题的结果). 1122000336ln(12)ln(12)sin sin 2sin 0lim 6ln(12)6lim limln(12)sin sin 61ln e 6(15)lim(12)lim elim eeee e .x x x x x xx x xxx xx x x xxx x xx x →→→++→→→⋅⋅+⋅⋅+⨯⨯+======(16)令sin x u x =, 则00sin lim lim 1x x xu x→→==而1limln 0u u →= 所以0sin limln0.x xx→=28.解:因为221(1)()(1)11x a x a b x b ax b x x +--++---=++ 由已知211lim 21x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭知,分式的分子与分母的次数相同,且x 项的系数之比为12,于是 10a -= 且()112a b -+= 解得 31,2a b ==-.29.已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h h S S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为.30.设某种商品的需求弹性为0.8,则当价格分别提高10%,20%时,需求量将如何变化? 解:因弹性的经济意义为:当自变量x 变动1%,则其函数值将变动%Ey Ex ⎛⎫⎪⎝⎭. 故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无 3.无 4.无 5.无 6.无 7.无 8.无 9.无 10.无 11.无 12.无 13.无 14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
2019最新高等数学(上册)期末考试试题(含答案)TC
2019最新高等数学期末考试试题(含答案)一、解答题1.证明下列不等式: (1) 当π02x <<时, sin tan 2;x x x +> 证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x-++'=,当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时, 2e sin 1.2xx x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos xf x x x -'-+-,()=e sin 1e (sin 1)0x x f x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x -+<+2.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2T l T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰()()π2π222π2π22222π2211e d ed 212πed e d 2ππsin e 2ππn Tn i t l it l TT n l n n it i t TT n i t T c u t t u t tl Th T n h t i t TT n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰ 故该矩形波的傅里叶级数的复数形式为()2π1πsin eπn i t T n n h h n u t T n Tττ∞-=-∞≠=+∑ (-∞<t <+∞,且3,22t ττ≠±±,…)3.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nnn +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.4.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn +++++++++++ (3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin33lim lim ππ1π33n n n n n n→∞→∞=⋅= 而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n Un=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111nn a ∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.5.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年6. 把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功?解:如图19,区间[x ,x +d x ]上的一个薄层水,有微体积d V =10·6·dx(19)设水的比重为1,,则将这薄水层吸出池面所作的微功为 d w =x ·60g d x =60gx d x . 于是将水全部抽出所作功为 w =⎠⎛0560gx d x=60g 2x 2⎪⎪50 =750g (KJ) .7.求下列曲线段的弧长:a) y 2=2x ,0≤x ≤2; 解:见图18,2yy ′=2. y ′=1y∴1+y ′2=1+1y 2.从而 (18)l =2⎠⎛021+y ′2d x =2⎠⎛21+1y 2d x=2⎠⎛021y 1+y 2d y 22 =2⎠⎛021+y 2d y =y 1+y 2+ln ()y +1+y 2⎪⎪20=25+ln(2+5)b) y =ln x ,3≤x ≤8; 解:l =⎠⎛381+y ′2d x =⎠⎛381+1x 2d x =⎠⎛381+x 2x d x =⎣⎡⎦⎤1+x 2-ln 1+1+x 2x 83=1+12ln 32.c) y =⎠⎜⎛−π2xcos t d t , −π2≤t ≤π2;解:l =⎠⎜⎜⎛−π2π21+y ′2d x =⎠⎜⎜⎛−π2π21+cos x d x=⎠⎜⎜⎛−π2π22cos x 2d x =42⎠⎜⎛0π2cos x 2d x 2=42sin x 2⎪⎪⎪π2=4.8. 求下列各曲线所围图形的面积: (1)y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2)(1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23∴ D 1+D 2=2π+43,D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.(2)y =1x与直线y =x 及x =2; 解: D 1=⎠⎛12⎝⎛⎭⎫x -1x d x =⎣⎡⎦⎤12x 2-ln x 21=32-ln2.(2)(3)y =e x ,y =e -x 与直线x =1;解:D =⎠⎛01()e x -e -xd x =e+1e-2.(3)(4) y =ln x ,y 轴与直线y =ln a ,y =ln b .(b>a>0); 解:D =⎠⎛l n al n b e y d y=b -a .(4)(5)抛物线y =x 2和y =-x 2+2;解:解方程组⎩⎨⎧y =x 2y =-x 2+2得交点 (1,1),(-1,1) D =⎠⎛-11()-x 2+2-x 2d x =4⎠⎛01()-x 2+1d x =83.(5)(6)y =sin x ,y =cos x 及直线x =π4,x =94π;解:D =2⎠⎜⎜⎛π45π4(sin x -cos x )d x=2[]-cos x -sin x 5π4π4=42.(6)(7) 抛物线y =-x 2+4x -3及其在(0,-3)和(3,0)处的切线;解:y′=-2x +4. ∴y ′(0)=4,y ′(3)=-2.∵抛物线在点(0,-3)处切线方程是y =4x -3 在(3,0)处的切线是y =-2x +6 两切线交点是(32,3).故所求面积为(7)()()()()()33222302332223024343d 2643d d 69d 9.4D x x x x x x x x x x x x x⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦=+-+=⎰⎰⎰⎰(8) 摆线x =a (t -sin t ),y =a (1-cos t )的一拱 (0≤t ≤2π)与x 轴;解:当t =0时,x =0, 当t =2π时,x =2πa .所以()()()2π2π2π2202d 1cos d sin 1cos d 3π.aS y x a t a t t a t ta ==--=-=⎰⎰⎰(8)(9)极坐标曲线 ρ=a sin3φ;解:D =3D 1=3·a 22⎠⎜⎛0π3sin 23φd φ=3a 22 ·⎠⎜⎛0π3 1-cos6φ2d φ=3a 24 ·⎣⎡⎦⎤φ-16sin6φπ3=πa 24. (9)(10)ρ=2a cos φ;解:D =2D 1=2⎠⎜⎛0π212·4a 2·cos 2φd φ=4a 2⎠⎜⎛0π21+cos2φ2d φ =4a 2·12⎣⎡⎦⎤φ+12sin2φπ2=4a 2·12·π2=πa 2.(10)9.已知()d 1p x x +∞-∞=⎰,其中1,()0,1,x p x x <=≥⎩求C .解:1111()d 0d 0d p x x x x x x +∞-+∞-∞-∞--=⋅++⋅=⎰⎰⎰⎰⎰11001arcsin arcsin π1x x C xC x C --=+=⋅+⋅==⎰⎰所以1πC =.10.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰11.利用基本积分公式及性质求下列积分:2(1)5)d x x -;73(2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰ 22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2xx ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰1x +3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .x x c ++(13)e d ;1x xx -⎛⎫⎝⎰解:原式=e d e .xx x x c -=-⎰ 2352(14)d ;3x xxx ⋅-⋅⎰解:原式=5222d 5d 2233ln 3xxx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x⎰. 解:原式=2211d d cot tan .sin cos x x x x c x x -=--+⎰⎰ 12.利用定积分概念求下列极限:111(1)lim 122n n n n →+∞⎛⎫+++⎪++⎝⎭解:原式110011111lim d ln 2.ln(1)121111n x x n n x n n n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰ 221(2)lim).n n n →+∞+解:原式1320122lim ..33n n x x n n →+∞⎫====+⎪⎭⎰13.试证明:曲线211x y x -=+有三个拐点位于同一直线上. 证明:22221(1)x x y x -++'=+,y''=令0y ''=,得1,22x x x =-=+=当(,1)x ∈-∞-时,0y ''<;当(1,2x ∈--时0y ''>;当(22x ∈-时0y ''<; 当(2)x ∈++∞时0y ''>,因此,曲线有三个拐点(-1,-1),(2-+. 因为111212--+因此三个拐点在一条直线上.14.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)15.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++ 即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明: 11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b--<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>16.设()2,()ln xf xg x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====17.曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点的曲率半径. 解:cos ,sin y x y x '''==- .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+显然R 最小就是k 最大, 225/22cos (1sin )(1cos )x x k x +'=+ 令0k '=,得π2x =为唯一驻点. 在π0,2⎛⎫ ⎪⎝⎭内,0k '>,在π,π2⎛⎫⎪⎝⎭内,0k '<. 所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为 23/2π2(1cos )1sin x x R x=+==.18.一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快? 解:当水深为h 时,横截面为212s h ==体积为22212V sh '====d d 2d d V hh t t=⋅ 当h =0.5m 时,31d 3m min d Vt-=⋅.故有d 320.5d h t=⋅, 得d d 4h t = (m 3·min -1).19.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变? 解: 324d π,π,.3d rV r A r v t=== 2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅20.求函数e e 2x xy -+=的2n 阶麦克劳林展开式.解:2221222122212211e e [e e ][11]222!(2)!(21)!2!(2)!(21)!1e e [222]22!(2)!(21)!12!(2)n n x n n x x x n x x n n x x x x x x y x x n n n n x x x n n x x n θθθθ++---+=+=++++++-+++-++-=+⋅++++=+++21e e (01).!2(21)!x x n x n θθθ-+-+<<+60. 设()f x 在0x 的某区间上,存在有界的二阶导函数.证明:当x 在0x 处的增量h 很小时,用增量比近似一阶导数0()f x '的近似公式000()()()f x h f x f x h+-'≈,其绝对误差的量级为()O h ,即不超过h 的常数倍. 证明:0()f x h +在0x 处泰勒展开式为20000()()()() (01)2f x h f x h f x f x h h θθ''+'+=++<<,则0000()()()()2f x h f x f x h f x h h θ''+-+'-=, 又知 0()f x h M θ''+≤,故 0()22f x h Mh h θ''+≤,即000()()()f x h f x f x h+-'≈的绝对误差为()O h .21.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且lim (),x af x A +→'=试证: ()f a A +'=. 证明:()()()lim x af x f a f a x a ++→-'=-()lim lim ()1x a x a f x f x A ++→→''===.22.求由下列参数方程所确定函数的二阶导数22d d yx:⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩ (a 为常数);⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d y y a t tt x x a t tt===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1=(1-cos )(1cos )1=.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅--- ⑵ d d ()()()d d d ()d y y f t tf t f t t t x x f t t''''+-===''22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.23.求下列函数在指定点的高阶导数: ⑴()f x =求(0)f '';⑵ 21()e,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .解: ⑴322()(1)f x x -'==- 5223()(1)22f x x x -''=--⋅故(0)0f ''=.⑵ 21()2ex f x -'=2121()4e ()8ex x f x f x --''='''=故4(0)e f ''=,8(0)ef '''=. ⑶ 5()6(10)f x x '=+43(4)2(5)(6)()30(10)()120(10)()360(10)()720(10)()720f x x f x x f x x f x x f x ''=+'''=+=+=+= 故(5)(0)720107200f=⨯=,(6)(0)720f =24.求下列函数的导数:⑴ 3e xy =; ⑵ 2arctan y x =; ⑶y =; ⑷2(1)ln(y x x =+⋅;⑸ 221sin y x x=⋅; ⑹ 23cos y ax =(a 为常数); ⑺ 1arccosy x =; ⑻ 2(arcsin )2xy =; ⑼y =; ⑽ sin cos ny x nx =⋅; ⑾y =⑿arcsin y =;⒀ ln cosarctan(sinh )y x =;⒁2arcsin (02a x y a a=>为常数). 解:⑴ 33e xy '=; ⑵ 421xy x '=+; ⑶2y '==;⑷22ln((1)(1y x x x '=⋅++++2ln(x x =;⑸ 22231122sincos ()y x x x x x'=+⋅-221212sincosx x x x =-; ⑹ 3322cos (sin )3y ax ax ax '=⋅-⋅233sin 2ax ax =-; ⑺21()y x '=-=⑻12arcsin22x y '=2arcsinx=⑼12ln y x x '=⋅=; ⑽ 11sin cos cos sin (sin )sin cos(1)n n n y n x x nx x nx n n x n x --'=⋅+-⋅=⋅+;⑾y '==⑿2(1)(1)(1)x x y x -+--'==+ ⒀ 211[sin arctan(sinh )]cosh tanh cos arctan(sinh )1(sinh )y x x x x x '=⋅-⋅⋅=-+; ⒁21(2)2x y x a '=-=.25.若()f x 在[,]a b 上连续,12n a x x x b <<<<<,证明:在1[,]n x x 中必有ξ,使12()()()()n f x f x f x f nξ+++=.证: 由题设知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是12()()()n f x f x f x m M n+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.习题二26.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )x x x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim e lim elim ee e x x x x x x x x xx x x xx x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116eee .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦27.利用夹逼定理求下列数列的极限:(1)lim[(1)],01;k k n n n k →∞+-<<(2)n 其中11,,,m a a a 为给定的正常数;1(3)lim(123);(4)n n nn n →∞++解: 1111(1)0(1)(1)1(1)1k k k kk k n n n n nn n -⎡⎤⎡⎤<+-=<=+-+-⎢⎥⎢⎥⎣⎦⎣⎦ 而lim 00n →∞=,当1k <时,11lim0kn n -→∞=lim[(1)]0k k n n n →∞∴+-=.(2)记12max{,,,}m a a a a =则有n<即 1na m a <<⋅而 1lim, lim ,nn n a a m a a →∞→∞=⋅=故n a =即 12max{,,,}m n a a a =.(3)111(3)(123)(33)n nn n nnn<++<⋅即 113(123)3n nn nn+<++<而 1lim33,lim33n nn n +→∞→∞==故 1lim(123)3nn nn →∞++=.(4)11111n n<++ 而 1lim10,lim(1)1n n n→∞→∞=+=故lim 1n =.28.写出下列数列的通项公式,并观察其变化趋势:1234579(1)0,,,,,; (2)1,0,3,0,5,0,7,0,; (3)3,,,,.3456357----解: 1(1),1n n x n -=+当n →∞时,1n x →.1(2)cosπ2n n x n -=, 当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21nn n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1.29.下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.30.试证:方程sin x x =只有一个实根.证明:设()sin f x x x =-,则()cos 10,f x x =-≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.【参考答案】***试卷处理标记,请不要删除一、解答题 1.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无24.无25.无26.无27.无28.无29.无30.无。
海南大学高等数学上期末试卷A卷
x t'
2t 1 t2
d2y dx2
dy dx
' t
.
1 xt'
1 1 t2 .
2 2t
1 t2
4t
16.求函数 y ln(x2 1)的极值和它所对应的曲线的拐点.
分析 本题考察的是函数极值求解及拐点问题。
解
y
2x 1 x2
,
y
2
1
x2 (1
2x x2 )2
2
2
1 x2 (1 x2 )2
A), 最小值是 1
B), 最大值是
4
C),最小值是0.
D), 最大值是0
1
4
解 这题考察函数的最值问题。
y'
1 1 x2
1
0
所以函数在区间 1, 单调递减
因此,在x=1处函数取得最大值 1 . 所以选
4
三 、计算题
13. 求极限
lim(
x0
1 x
1
ex
) 1
分析 本题主要考察罗比达法则
解
解
dx t ex 1
ex 1
1 t
1
2t t
2
dt
2
dt 1 t2
2arctan t C 2arctan ex 1 C
x3
18. 求
x2
dx 2
分析 本题考察的是有理函数积分问题。
解
x3
dx x2 2
x3 2x 2x x 2 2 dx
x
x
2
2
x
2
dx
1 x 2 ln(x 2 2) C 2
分析 本题考察的是一阶线性微分方程求解问题。
高等数学A(二)(商船)期末考卷及解答海大
⾼等数学A(⼆)(商船)期末考卷及解答海⼤⾼等数学A (⼆)试卷(商船)⼀、单项选择题(在每个⼩题四个备选答案中选出⼀个正确答案,填在题末的括号中)(本⼤题分4⼩题, 每⼩题3分, 共12分)1、设Ω为正⽅体0≤x ≤1;0≤y ≤1;0≤z ≤1.f (x ,y ,z )为Ω上有界函数。
若,则答 ( )(A) f (x ,y ,z )在Ω上可积 (B) f (x ,y ,z )在Ω上不⼀定可积 (C) 因为f 有界,所以I =0 (D) f (x ,y ,z )在Ω上必不可积 2、设C 为从A (0,0)到B (4,3)的直线段,则( )3、微分⽅程''+=y y x x cos 2的⼀个特解应具有形式答:()(A )()cos ()sin Ax B x Cx D x +++22 (B )()cos Ax Bx x 22+ (C )A x B x cos sin 22+(D )()cos Ax B x +2 4、设u x x y=+arcsin22则u x= 答()(A)x x y22+ (B)-+y x y22(C) y x y22+ (D) -+x x y22⼆、填空题(将正确答案填在横线上) (本⼤题分3⼩题, 每⼩题3分, 共9分)1、设f x x x x (),,=-<≤---<02220ππππ,已知S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,则S 94π??=______ 。
2、设f (x ,y ,z )在有界闭区域Ω上可积,Ω=Ω1∪Ω2,,则 I =f (x ,y ,z )d v =f (x ,y ,z )d v +___________________。
3、若级数为2121n nn -=∞∑,其和是_____ 。
三、解答下列各题(本⼤题5分)设函数f (x ,y ,z )=xy +yz +zx -x -y -z +6,问在点P (3,4,0)处沿怎样的⽅向 l ,f 的变化率最⼤?并求此最⼤的变化率四、解答下列各题(本⼤题共5⼩题,总计30分) 1、(本⼩题5分)计算y z z x z x x y y x y z d d )(d d )(d d )(-+-+-??∑,其中光滑曲⾯∑围成的Ω的体积为V 。
2019最新高等数学(上册)期末考试试题(含答案)AJA
2019最新高等数学期末考试试题(含答案)一、解答题1.求下列极限问题中,能使用洛必达法则的有().⑴21sinlimsinxxxx→;⑵lim(1)xxkx→+∞+;⑶sinlimsinxx xx x→∞-+;⑷e elim.e ex xx xx--→+∞-+解:⑴∵200111sin2sin coslim limsin cosx xx xx x xx x→→-=不存在,(因1sinx,1cosx为有界函数)又2001sin1lim lim sin0 sinx xxx xx x→→==,故不能使用洛必达法则.⑶∵sin1coslim limsin1cosx xx x xx x x→∞→∞--=++不存在,而sin1sinlim lim 1.sinsin1x xxx x xxx xx→∞→∞--==++故不能使用洛必达法则.⑷∵e e e e e e lim lim lime e e e e ex x x x x xx x x x x x x x x------→+∞→+∞→+∞-+-==+-+利用洛必达法则无法求得其极限.而22e e1elim lim1e e1ex x xx x xx x----→+∞→+∞--==++.故答案选(2).2.设f(x)是周期为2的周期函数,它在[-1,1]上的表达式为f(x)=e-x,试将f(x)展成傅里叶级数的复数形式.解:函数f(x)在x≠2k+1,k=0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x x l n i n in i n ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰ 故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in x n in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)3.写出下列级数的一般项: (1)1111357++++;(2)22242462468x x ++++⋅⋅⋅⋅⋅⋅; (3)35793579a a a a -+-+; 解:(1)121n U n =-; (2)()2!!2nn x U n =; (3)()211121n n n a U n ++=-+; 4.求对数螺线a r e θ=相应θ=0到θ=φ的一段弧长. 解:l =⎠⎛0φr 2+r ′2d θ=⎠⎛0φe 2a θ+a 2e 2a θd θ =1+a 2a ()e a φ-1.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为曲线在
x 0处有极值为1,故有
得
3 2 1 0 a 0 b 0 c
2 (极值存在的必要条件),得 b 0 3 x 2 ax b 0 同时有 y x 0 , x 0
c 1
)是曲线的拐点,故 又因为点 (1, 1
得 a 3 y 6 x 2 a 0 x 1 x 1 ) 3 (也可以把点 (1, 1)代入曲线方程求出 a
试 卷 分 析
一、填空题:
0
答 本题考查的是分段函数的连续性,注意分段函数在分段点上的连续 性、可导性、可积性的判别。
1 ) 4 在x=1处右连续,主要看在此点的左连续。由于 f (
( x m ) 4 , 所以 lim
x 1
从而解得
m3 .
答
本题考查的是重要极限2或洛必达法则。
lim ( 1 2 x ) lim ( 1 2 x )
1 2 td t 原式= 2 (t 12 )t
1 2 2 dt t 1 2 arctan t C
2 arctan x 1 C
分析 本题考查的是函数的连续,可导的定义。
解
(1)
由于 lim x 0
f x 1 1 ,得 x
x 0
l i m1 f x 0 l i m f x 1 f 0 1
x 0 x 0 k x 1 ( 2 k ) 2 x 2 k 2 e e
所以 k 1
答 本题考查的是导数的几何意义。
' x y ( e 1 )x 2 x 0 0
所以切线方程为 y 12 x
答 本题考查的是定积分的“偶倍奇零” 被积函数是奇函数,所以此积分为零
Байду номын сангаас
答
本题考查的是常系数齐次线性微分方程求解
2 特征方程为 r 2 r 3 0
特征根为
r 3 ,r 1 1 2
x 3 x 所以方程的通解为 y C e C e 1 2
二、单项选择题
A
本题考查的是零点定理 A
本题考查的是间断点的判别 由函数的表达式知,x=1,x=2都是没有定义的点,所以x=1为间断 点。又由于
四、应用题
y
分析 一定要注意本题有两个问。本题考查的是定积分 在几何上的应用。 解 所围成的面积为
( 2 ,8 )
1 4 3 S x dx x 4. 0 4 0
2
.
2
0
2
x
绕x轴旋转所成旋转体的体积为:
2 8 72 1 V d x x| 1 0 x
26 0
7
2 x 1 x 1 lim lim 2 2 x 1x 1x 3 x 2 x 2
所以为可去间断点
B
本题考查的是变限函数求导问题。
B
.
本题考查的是定积分的性质。
D
注意广义积分收敛的定义!
三 、计算题
分析 本题主要考察罗比达法则 解
x sin x x sin x lim lim 3 2 x 0x sin 0 x x x
1cos x lim x 0 3x2
1 2 x 1 2 lim 2 x0 3 x 6
分析 本题高阶导数的求法
解
先求 y
1 的 2x 3
n阶导数,得
( n ) ( n )
( n ) 1 1 1 1 1 ( n ) y 2 x x 2 x 3 3 3 2 1 1 3 3
1 e 2 2 1 2 e e e l n x d x e ( x l n x | x d x ) 1 1 1 2 2
2
12 1 2 e 32 1 e e x 1 e 2 4 4 4
2
分析 本题考查的是一阶非齐次线性微分方程的求解。 解
1 d x s i n x x y e [ x c ] xe d 1 d x x
' t
1 1 2 dy t 1 t 2 t dx 2 1 t2
2 2 d y d yd t 1 1 t 1 t . . d x d td x 22 t 4 t
分析 本题考察原函数的理解,以及定积分的换元法,记得边积边代限。
解
e 2 e e x f ( x ) d xx d ( x l n x ) x l n x | x l n x d x 1 1 1 e 1
x 0
(2)
fx f 0 fx 1 ' f 0l i m l i m 1 x 0 x 0 x 0 x
所以
f x 在 x 0 点 可 导
分析 本题考查参数方程的高阶导数,一定要注意是对哪个变量的二阶导。
解
2 t ' 1 x 2,y 1 2 t 1 t 1 t
1 (1) n n! 2 2 x 3 3 (1 ) n1 3
故
n
y
n
n n ( 1 ) 2 n! (0 ) = 3 n 1
分析 本题考察的是不定积分的换元法。记住:换元一定还原。
解
2 令 x 1 t , x t 1 , d x 2 t d t
1 1 [s i n x d x c ] [ c o s x c ] x x
y |x 1
c 1
1 y ( 1 c o sx ) x
分析 本题考查函数的性质以及图形特性。 解
2 6 x 2 a y 3 x 2 ax b, y
7
五、证明题(20题必做,21、22题任选做一题 )
分析 本题考查的是微分中值定理。 解 由柯西中值定理有,存在 ,使 a ,b 设 F(x) x ,
2
f (b ) f ( a ) f ( ) F ( b ) F ( b ) F ( ) f (b ) f ( a ) f ( ) 即 2 2 2 b a f ( ) 2 f b f a 于是 b2 a2