误差理论和测量平差试卷及答案6套 试题+答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与测量平差》课程自测题(1)
一、正误判断。

正确“T”,错误“F”。

(30分)
1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;
600.686m±3.5cm。

则:
1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/d
c) d 2/D 2 d) D 2/d 2
2.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的
测回数N=( )。

a) 25 b) 20
c) 45 d) 5
3.某平面控制网中一点P ,其协因数阵为: ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=5.025.025.05.0yy yx xy xx XX Q Q Q Q Q
单位权方差20σ=±2.0。

则P 点误差椭圆的方位角T=( )。

a) 90 b) 135
c) 120 d) 45
4.设L 的权为1,则乘积4L 的权P=( )。

a) 1/4 b) 4
c) 1/16 d) 16
5.设
⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21311221x x y y ; ⎥⎦⎤⎢⎣⎡=4113xx D
又设12x y F +=,则=2F m ( )。

a) 9 b) 16
c) 144 d) 36
四、某平差问题是用间接平差法进行的,共有10个独立观测值,两个未知数,列出10个误
差方程后得法方程式如下(9分):
⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--146ˆˆ8221021x x
且知[pll]=66.0。

求:
1. 未知数的解
2. 单位权中误差m 0
3. 设21ˆ3ˆ4x x F +=;求F p 1
五、 如图平面控制网,A 、B 为已知点,C 、D 、E 、F 为待定点,全网中观测了14个角度
和3个边长,现按条件平差法解算,计算如下内容(9分)。

1. 条件式个数。

2. 写出一个非线性化的极条件。

3. 写出一个线性化的正弦条件。

(五题图)
六、 证明在间接平差中估计量X ˆ具有无偏性(10分)。

A F
E
D
C B
七、证明在条件平差中V、L、Lˆ两两相关或不相关(9分)。

一、FFTFF TTTTF TTFTF
二、相等相等相同不等
三、aabcd
《误差理论与测量平差》课程自测题(2)
一、正误判断:正确( T ),错误或不完全正确( F )。

(30分)
1.偶然误差符合统计规律( )。

2.权与中误差的平方成反比( )。

3.如果随机变量X 和Y 服从联合正态分布,且X 与Y 的协方差为零,则X 与Y 相互独立( )。

4.系统误差可用平差的方法进行消除或减弱( )。

5.在按比例画出的误差曲线上可直接量的相应边的边长中误差( )。

6.对同一量的多次不等精度观测值的加权平均值与用条件平差所得结果完全一致( )。

7.观测值与平差值之差为真误差( )。

8.三角形闭合差是真误差( )。

9.权一定无单位( )。

10.对于特定的测量控制网,如果用条件平差法平差,则条件方程式个数和条件方程的形式都是一定的( )。

11.因为测量误差服从正态分布,所以可以用最小二乘法消除或减弱( )。

12.无论是三角高程网还是水准网最大的秩亏数都是1( )。

13.两个水平角的测角精度相同,则角度大的那一个精度高( )。

14.对于同一个平差问题,间接平差和条件平差的结果有可能出现显著差异( )。

15.在测角中,正倒镜观测是为了消除偶燃误差( )。

二、计算填空。

(20分)
1.设β的权为1,则乘积4β的权为( )。

2.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需再增加( )测回。

3.某平面控制网经平差后得出P 点坐标的协因数阵为:
⎥⎦⎤⎢⎣⎡=69.100.000.069.1ˆX Q 22/)(秒分米
单位权中误差1ˆ0±=σ秒,则P 点误差椭圆参数中的=E ϕ( )。

4.设n 个同精度独立观测值的权均为P ,其算术平均值的权为P 。

则=P P ( )。

三、计算。

(18分)
1.设有函数y f x f F 21+=,
n n n
n L L L L y L L L L x ββββαααα++++=++++= (332211332211)
式中:i i βα,为无误差的常数,n L L L ,...,,21的权分别为n p p p ,...,,21,求F 的权倒数F p 1。

2.已知独立观测值1L 和2L 的中误差为1σ和2σ,设有函数21212/L L L X +=,计算X 的中误差X σ。

3.设某水准网,各观测高差、线路长度和起算点高程如下图所示。

计算P 点的平差值h p (精确到0.001米)。

四、如图控制网,A和B为已知点,C、D、E、F为待定点,观测了全网中的14个内角、两个边长S1和S2,回答或计算下列问题(12分)。

1.条件式个数_____________。

2.必要观测个数_____________。

3.写出一个极条件(不必线性化)。

4.写出一个正弦条件(线性形式)。

( 四题图)
五、如图单一水准路线,A、B为已知点,A到B的长度为S,P为待定点。

证明平差后高程最弱点在水准线路的中央。

(8分)
六、在条件平差中,证明观测值的平差值和改正数相关或不相关。

(6分)
七、在如图所示的直角三角形中(C为直角),测的三个边长L1、L2和L3。

试列出平差值条件方程式。

(6分)
一、TTTFT TFTFF TFFFF
二、1、1/16 2、25 3、1.69 4、n
《误差理论与测量平差》课程自测题(3)
一、选择题(15分)(本题共有10个小题,每小题有四个可供选择的答案,其中两个是最接近要求的答案,每选对一个得1.5分,每小题3分,本题共15分;将答案全部选上者该题不得分。


1.下列观测中,哪些是具有“多余观测”的观测活动
A 对平面三角形的三个内角各观测一测回,以确定三角形形状
B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状
C 对两边长各测量一次
D 三角高程测量中对水平边和垂直角都进行一次观测
2.下列哪些是偶然误差的特性
A 绝对值小的误差比绝对值大的误差出现的概率小
B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零
C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度
D 误差的符号只与观测条件有关
3.某测角网的网形为中点多边形,网中有3个三角形,共测水平角9个
A 共有5个条件方程可列出
B 极条件方程有2个
C 水平条件方程有2个
D 极条件方程有1个
3.对上题(一题3小题)进行参数平差
A 法方程的个数为5个
B 误差方程的个数为9个
C 待求量的个数为5个
D 待求量的个数为13个
5.在t检验中,设置检验显著水平为0.05,由此确定的拒绝域界限值为1.96,某被检验量M的t检验值为1.99
A 原假设成立
B 备选假设不成立
C 原假设不成立
D 备选假设成立
二、正误判断题(15分)(本题共5个小题,每小题3分,本题共15分;)
1.一点的纵横坐标(X,Y)均是角度观测值与边长观测值的函数,若角度观测值与边长观测值是独立观测值,则X,Y之间是相关的。

--位差极大值方向的坐标方位角;E—位差极大2.误差椭圆的三个参数的含义分别为:E
值方向;F —位差极小值方向。

3.各观测值权之间的比例关系与观测值中误差的大小无关。

4.平差值是观测值的最佳估值。

5.平差前观测值的方差阵一般是已知的。

三、填空题(20分)(本题共5小题,每小题4分,本题共20分)
1. 已知水准测量中,某两点间的水准路线长为D=10km ,若每km 高差测量中误差为mm 20±=σ,该段水准高差测量中误差为[1](计算取位至mm )。

2.某段水准路线共测20站,若取C=200个测站的观测高差为单位权观测值,则该段水准路线观测的权为[2]。

3.观测值L 1、L 2┅L n 其权为P 1=P 2=┅P n =2,若Z=][]
[P PL ,试求Z 的权P Z =[3]。

4.某三角网共有100个三角形构成,其闭合差的[WW]=200″,测角中误差的估值为[4] (计算取位至于0.1″)。

5.某长度由6段构成,每段测量偶然误差中误差为mm 2±=σ,系统误差为6mm ,该长度测量的综合中误差为[5](计算取位至0.1mm )。

四、计算题(40分)(本题共有5个小题,本题共40分)
1、误差方程式如下(15分)
67
8
32153242132
21
1++-=--=---===x x x v x x v x x v x v x v δδδδδδδδδ
观测值的权均为1,试求1/P X1=?,权函数32x x δδϕ+=,?1=ϕP
2、水准测量中每站高差的中误差为±1cm ,现要求从已知点推至待定点的高程中误差不大于±5cm,问应测多少站。

(5分)
3、用经纬仪对同一角度α进行了三次同精度观测,得观测L 1、L 2、L 3,试列出条件平差该问题时的条件方程式(10分)
4、已知某平差问题的误差方程式如下:
42
1
6 1
3 52
4
3 1
3
3 2
2
2 1
1
-=+
-=
--
=
-
+
-
=
+ -
=
x v x
v
x x
v
x x
v
x x
v
若观测值权阵为I,试组成法方程,并解算法方程未知数。

(10分)
五、分析推证题(10分):举例说明最小二乘原理
一、选择题答案
1、A,B
2、B,C
3、A,D
4、B,D
5、C,D
二、正误判断题
1 - 5 T、T、F、T、F
三、填空题
1–5 ±63mm 10 2n ±0.8″±36.3mm
《误差理论与测量平差》课程自测题(4)
一、选择题(本题共5个小题,每小题有4个可供选择的答案,其中两个是最接近要求的答案,每选对一个得1.5分,每小题3分,本题共15分;每小题选择的答案数最多为两个,填于题后的答案框中,否则该小题不得分。


1.下列哪些是偶然误差
A 钢尺量边中的读数误差
B 测角时的读数误差
C 钢尺量边中,由于钢尺名义长度与实际长度不等造成的误差
D 垂直角测量时的竖盘指标差
2.下列观测中,哪些是具有“多余观测”的观测活动
A对平面直角三角形的两个锐角之一观测一测回以确定其形状
B 对一边长往返各测量一次以确定边之长度
C 对平面三角形的三个内角各观测一测回确定三角形之形状
D 对两点间的边长和垂直角各进行一次观测以确定两点之高差。

3.一组观测值为同精度观测值
A任一对观测值间的权之比是不相同的
B 对一组观测值定权时,必须根据观测值的类型选不同的单位权方差
C该组观测值的权倒数全为1/8 D任两个观测值权之间的比例为1
4.某测角网的网形为中点多边形,其中共有5个三角形,实测水平角15个
A 极条件方程2个
B 必要观测数为8个
C 水平条件方程2个
D 水平条件方程1个
5.对上题(一题4小题)进行间接平差
A 法方程的个数为5个
B 待求量的个数为5个
C 误差方程的个数为15个
D 待求量的个数为23个
二、正误判断题(本题共5个小题,每小题3分,本题共15分;正确答案注T ,错误答案注F ,答案填于本题的答案框中)
1.观测值精度相同,其权不一定相同。

2.误差椭圆的三个参数的含义分别为:E ϕ--位差极大值方向的坐标方位角;E —位差极大值方向;F —位差极小值的方向。

3.具有无偏性、一致性的平差值都是最优估计量。

4.平差值是观测值的最佳估值。

5.偶然误差与系统误差的传播规律是一致的。

三、填空题(本题共5小题,每小题4分,本题共20分,将答案填于本题的答案框中)
1.水准测量中,若每km 高差测量中误差为mm 20±=σ,每km 的测站数为10,每测站高差测量中误差为[1]
2.某段水准路线长为10kM ,若取C=100km 的观测高差为单位权观测值,则该段水准路线观测的权为[2]。

3.观测值L 1、L 2…L n 其权为P 1=P 2=…=P n =2,若Z=][]
[P PL ,试求Z 的权P Z =[3]。

4.某系列等精度双次观测值差的和为300″,当双次观测对的个数为100时,由双次观测对计算得的测角中误差为[4]。

5.某长度由6段构成,每段测量偶然误差中误差为mm 2±=σ,系统误差为6mm ,该长度测量的综合中误差为[5]。

四、简要推证题(本题10分)
条件平差中,已知观测值L i 的协因数阵为Q ,试推导观测值改正数V i 的协因数阵表达式。

五、计算题(本题有3个小题,本题满分40分)
1.(本小题20分)参数平差中,误差方程式如下
67
8
32153242132
21
1++-=--=---==
=x x x v x x v x x v x v x v δδδδδδδδδ 观测值的权均为1,试求1/P X1=?,权函数32x x δδϕ+=,?1=ϕP
2. (本小题10分)利用加权平均法求证在单一水准路线中最弱点在中央。

3、某平差问题是用条件平差法进行的,其法方程为(10分)
664221021=⎥⎦⎤
⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--k k
1. 单位权中误差m 0;
2. 若已知某一平差值函数式L f F T =,并计算
得4][,16][,44][===p bf p af p ff ,求该平差值函数的权倒数F p 1。

一、1.AB 2.BC 3. D 4.D 5. C
二、FTTTF
《误差理论与测量平差》课程自测题(5)
一、正误判断。

正确“T”,错误“F”。

(30分)
1.在水准测量中估读尾数不准确产生的误差是系统误差()。

2.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

3.已知两段距离的长度及其中误差为300.158m±3.5cm和600.686m±3.5cm。

则这两段距离的真误差相等()。

4.已知两段距离的长度及其中误差为300.158m±3.5cm和600.686m±3.5cm。

则这两段距离的最大限差相等()。

5.观测值与最佳估值之差为真误差()。

6.系统误差可用平差的方法进行减弱或消除()。

7.权一定与中误差的平方成反比()。

8.间接平差与条件平差一定可以相互转换()。

9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

10.无论是用间接平差法还是条件平差法,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

13.定权时σ0可任意给定,它仅起比例常数的作用()。

14.无论是水准网还是三角高程网最大秩亏数一定是1()。

15.在间接平差中,直接观测量可以作为未知数,但是间接观测量则不能作为未知数()。

二、计算填空,不必写出中间过程(30分)。

1.设












-
-
=






2
1
3
1
1
2
2
1
x
x
y
y







=
4
2
2
3
xx
D
又设12x y F +=,则=2F m ( )。

2.取一长为2d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

3.某平面控制网中一点P ,其协因数阵为:⎥⎦⎤⎢⎣⎡--=⎥⎦
⎤⎢⎣⎡=5.25.05.05.2yy yx xy xx XX
Q Q Q Q Q 单位权方差20σ=±1.0。

则P 点误差椭圆的方位角T=( )。

4.设BW AZ R KY W FX Z +===,,,K F B A ,,,为常系数阵,YY XX Q Q ,已知,0=XY Q 。

则:
=RX Q ( );=RR Q ( )。

5.设n 个同精度独立观测值的权均为P ,其算术平均值的权为P 。


=P P ( )。

三、计算题(10分)。

设有函数y f x f F 21+=,
n n n
n L L L L y L L L L x ββββαααα++++=++++= (332211332211)
式中:i i βα,为无误差的常数,n L L L ,...,,21的权分别为n p p p ,...,,21,求F 的权倒数F p 1。

四、计算题(10分)。

设某水准网,各观测高差、线路长度和起算点高程如下图所示,计算P 点的平差值h p (精确到0.001米)。

五、某平差问题是用条件平差法进行的,其法方程为(10分)
664221021=⎥⎦⎤
⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--k k
3. 求联系数K ;
4. 单位权中误差m 0;
5. 若已知某一平差值函数式L f F T =,并计
算得
4][,16][,44][===p bf p af p ff ,求该平差值函数的权倒数F p 1。

六、 证明在间接平差中V 、L 、L ˆ两两相关或不相关(10分)。

《误差理论与测量平差》课程自测题(6)
一、正误判断。

正确“T”,错误“F”。

(20分)
1.已知两段距离的长度及其中误差为11
2.158m±2.5cm和325.686m±2.5cm。

则这两段距离的真误差相等()。

2.观测值与最佳估值之差为真误差()。

3.系统误差可用平差的方法进行减弱或消除()。

4.间接平差与条件平差一定可以相互转换()。

5.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

6.无论是用间接平差法还是条件平差法,对于特定的平差问题法方程阶数一定等于必要观测数()。

7.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的()。

8.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

9.三角网和测边网的最大秩亏数都是4()。

10.在间接平差中,直接观测量和间接观测量都可以作为未知数()。

二、简答题(20分)
1.系统误差。

2.偶然误差。

3.相关观测值。

4.相对误差。

三、计算(12分)。














-
-
=






2
1
3
1
1
2
2
1
x
x
y
y







=
3
2
2
4
xx
D
;又设
1
2x
y
F+
=,计算2
F
σ。

四、计算(12分)。

有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,计算还需增加的测回数。

五、如图平面控制网,A、B为已知点,C、D、E、F为待定点,全网中观测了14个角度,2个边长。

现按条件平差法解算,计算如下内容(12分)。

1.条件式个数。

2.写出一个非线性化的极条件。

3.写出一个非线性化的正弦条件。

六、某平差问题是用间接平差法进行的,共有10个独立观测值,两个未知数,列出10个误
差方程后得法方程式如下(12分):
⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--146ˆˆ8221021x x
且知[pll]=66.0。

求:
1.未知数的解
2.单位权中误差
3.设21ˆ3ˆ4x x F +=;求F p 1
七、 证明在条件平差中V 、L 、L
ˆ两两相关或不相关(12分)。

相关文档
最新文档