八年级数学图形的证明PPT精品课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C
这里的结论,以后可以直接运用.
☞ 回顾与思考 三角形内角和定理
如图. ∠1是△ABC的一个外角, ∠1与图中的其它角有 什么关系?
A 2
3
41
B
C
D
∠1+∠4=1800 ;
∠1=∠2+∠3; ∠1>∠ 2; ∠1>∠ 3.
你能说明理由吗?
已知:如图,已知AD是△ABD 和△ACD的公共边
求证:∠BDC=∠BAC+∠B+∠C
同位角相等, 两直线平行, 两直线平行. 同位角相等.
说理
证明 定理
内错角相等,两直线平行.
同旁内角互补,两直线平行.
两直线平行,内错角相等.
两直线平行,同旁内角互补.
三角形内角和等于180°
推论
三角形的一个 外角等于和它 不相邻的两个
内角的和
三角形的一个 外角大于任何 一个和它不相
邻的内角
直角三角形 两锐角互余
三角形内角和定理 三角形三个内角的和等于1800. △ABC中,∠A+∠B+∠C=1800.
∠A+∠B+∠C=1800的几种变形:
∠A=1800 –(∠B+∠C).
∠B=1800 –(∠A+∠C).
∠C=1800 –(∠A+∠B).
∠A+∠B=1800-∠C. ∠B+∠C=1800-∠A.
B
∠A+∠C=1800-∠B.
图形与证明(一) 复习课
直观是把“双刃剑”
a a
b
b
a bc
d
基础两知边和识它们同两的位直夹角线角相平对等行真应,,命相两同题等直位的线角命两平 相题个行等三..假角命形题全等举.反例
观察.实验.操作
两角和它们的夹边对应相等的两个三角形全等. 三边对应相等的原两命个题三角形全逆等命.题
判断正误
定义 基本事实
(1)每单位面积所受到的压力叫做压强; (2)如果a是实数,那么a2+1〉0; (3)两个无理数的乘积一定是无理数; (4)偶数一定是合数吗?
(5)连接AB; (6)不相等的两个角不可能是对顶角
对于命题“不相等的两个角不可能是对顶角”
条件: 两个角不相等 结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式:
如果两个角不相等,那么这两个角不可能是对顶角
(3)两个无理数的乘积一定是无理数;
例题欣赏
☞
已知:如图,在△ABC中,AD平分∠EAC, AD∥BC. 求证:∠B= ∠C.
E
1
A2
D
B
C
☞ 回顾与思考 三角形内角和定理
A E
21
B
C
DB
E
A
F
B
C
B
A E
C
A F
E
D
C
☞ 回顾与思考 三角形内角和定理
☞ 回顾与思考
学好几何标志 是会“证明”
证明命题的一般步骤:
根据命题,画出图形; 根据命题,结合图形,写出已知、求证; 写出证明过程.
注:运用数学符号和数学语言条理清晰地写 出证明过程; 检查表达过程是否正确,完善
对名称或术语的含义进行描述,做出规定,就是给出他 们的定义.
例如: “符号不同、绝对值相等的两个数”是“互为相反数
A
B
D
C
你还有其他方法解决这个问题吗?
随堂练习
☞
证明:等边对等角.
A
条件: 一个三角形的Байду номын сангаас条边相等;
结论: 它们所对的角也相等.
已知:如图,△ABC中,AB=AC,
求证∠B=∠C.
B
D
C
你能把命题中的条件和结论互换, 构造一个新的命题吗?
你构造的命题是真命题吗?为什么?
随堂练习
☞
在四边形ABCD中,有以下几个事项:
“能够完全重合的图形”是“全__等__形___”的定 义.
无理数: 无限不循环小数叫做无理数.
”的定义;
直角三角形: 有一个角是直角的三角形叫做直角三 角形.
命题:判断一件事情的句子,叫做命题. 命题由条件和结论两部分构成.
正确的命题称为真命题,不正确的的命题称 为假命题.
随堂练习
☞
下面的句子哪些是命题?
(1) AB∥CD (2) ∠B=∠D
D
C
(3) AD∥BC
A
B
请用其中的两个事项作为条件,另一个事项作为结论, 构造一个命题.
你构造的命题是真命题吗?为什么?
随堂练习
☞
在∠B与∠D中,有以下几个事项:
(1) AB∥CD (2) ∠B=∠D (3) ED∥BF 请用其中的两个事项作为条件,另一个事项作为结论, 构造一个命题.
你构造的命题是真命题吗?为什么?
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件