人教版九年级上册22.3 实际问题与二次函数 同步练习

合集下载

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

《实际问题与二次函数》同步练习附答案课堂学习检测1.矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A 在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m 2,试求宽AB 的长;(2)按题目的设计要求,能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数m =162-3x .(1)写出商场卖这种商品每天的销售利润y (元)与每件的销售价x (元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x 轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.参考答案1.y =-x 2+3x (0<x <3)图略.2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为 y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5.当x 2=3时,BC =24-3×3>10,不合题意,舍去;当x 2=5时,BC =24-3×5=9,符合题意.故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃.由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 32462 5.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元.6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720.(2)∵y =-4x 2+64x +30720=-4(x -8)2+30976,∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴ (2)把s =30代入,2212t t s -= 解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -= 得7月末的累积利润为s 7=10.5(万元).把t =8代入,2212t t s -= 得8月末的累积利润为s 8=16(万元).∴s 8-s 7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第二章 整式的加减 (3)第三章 一元一次方程 (4)第四章 图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版九年级上数学《22.3实际问题与二次函数》同步练习(含答案详解)

人教版九年级上数学《22.3实际问题与二次函数》同步练习(含答案详解)

22.3 实际问题与二次函数测试时间:25分钟一、选择题1.(2018安徽阜阳颍上月考)一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=-t2+t+1(0≤t≤20),那么网球到达最高点时所需的时间是秒.( )A.7B.8C.9D.102.(2017甘肃定西临洮期中)某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3m,此时距喷水管的水平距离为m,如图所示,这个喷泉喷出水流轨迹的函数解析式是( )A.y=-3-+3B.y=-3+3C.y=-12-+3D.y=-12+33.(2017河北保定涿州一模)如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为( )A.y=5-xB.y=5-x2C.y=25-xD.y=25-x24.如图是抛物线形拱桥,已知水位在AB位置时,水面宽为4m,水位上升3m,就达到警戒线CD,这时水面CD宽4m.若洪水到来时水位以每小时0.25m的速度上升,那么水过警戒线后小时淹到拱桥顶.( )A.6B.12C.18D.24二、填空题5.(2017上海奉贤一模)用一根长为8m的木条,做一个矩形的窗框.如果这个矩形窗框宽为x m,那么这个窗户的面积y(m2)与x(m)之间的函数关系式为(不写自变量的取值范围).6.如图,某公路隧道横截面为抛物线,其最大高度为8m,以隧道底部宽AB所在直线为x轴,以AB的垂直平分线为y轴建立如图所示的平面直角坐标系,抛物线解析式为y=-x2+b,则隧道底部宽AB是m.三、解答题7.(2017内蒙古鄂尔多斯中考)某商场试销A、B两种型号的台灯,下表是两次进货情况统计:(1)求A、B两种型号台灯的进价各为多少元;(2)经试销发现,A型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,此商场决定两种型号台灯共进货100台,并一周内全部售出,若B型号台灯售价定为20元,求A型号台灯售价定为多少时,商场可获得最大利润,并通过计算说明商场获得最大利润时的进货方案.8.(2017辽宁朝阳中考)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=-x+m(m为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围;(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价-成本)×月生产量-工人月最低工资]22.3 实际问题与二次函数测试时间:25分钟一、选择题1.答案 D ∵h=-t2+t+1=-(t-10)2+(0≤t≤20),∴当t=10时,h取得最大值,故选D.2.答案 C 设函数解析式为y=a-+3,将点(0,0)代入,得a+3=0,解得a=-12,∴函数解析式为y=-12-+3,故选C.3.答案 D ∵BE=x(0≤x<5),∴AE=5-x,AF=5+x,∴y=AE·AF=(5-x)(5+x)=25-x2.故选D.4.答案 B 设抛物线解析式为y=ax2+h,又∵B(2,0),D(2,3),∴解得∴y=-x2+6,∴M(0,6),即OM=6m,∴MN=OM-ON=3m,∵=12,∴水过警戒线后12小时淹到拱桥顶.故选B.二、填空题5.答案y=-x2+4x解析易知这个矩形窗框的长为(4-x)m,则这个窗户的面积y(m2)与x(m)之间的函数关系式为y=x(4-x)=-x2+4x,即y=-x2+4x.6.答案8解析∵y=-x2+b,隧道横截面的最大高度为8m,∴b=8,∴抛物线解析式为y=-x2+8.当y=0时,有0=-x2+8,解得x=4或-4,∴隧道底部宽AB是4+4=8(m).三、解答题7.解析(1)设A、B两种型号台灯的进价分别为m元、n元,由题意得解得答:A、B两种型号台灯的进价分别为40元、10元.(2)∵A型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,即y=-2x+140,则B型号台灯共进货100-y=(2x-40)台,设商场可获得利润为w元,则w=(x-40)(-2x+140)+(20-10)(2x-40)=-2x2+240x-6000=-2(x-60)2+1200,∵-2<0,∴A型号台灯售价定为60元时,商场可获得最大利润,为1200元.8.解析(1)把(40,3)代入y=-x+m,得3=-×40+m,∴m=5,∴y=-x+5(25≤x≤40),设BC的解析式为y=kx+b,把(40,3),(50,2)代入y=kx+b,得解得∴y=-x+7(40≤x≤50),综上所述:y=--(2)设该企业生产出的产品出厂价定为x元时,月利润W(元)最大,根据题意得,当25≤x≤40时,W=1000-(x-20)-32000=-50x2+6000x-132000=-50(x-60)2+48000,当x=40时,W有最大值,为28000元.当40<x≤50时,W=1000-(x-20)-32000=-100x2+9000x-172000=-100(x-45)2+30500,当x=45时,W有最大值,为30500元.综上,当该企业生产出的产品出厂价定为45元时,月利润最大,最大利润是30500元.。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步训练一、单选题1.飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米 2.据省统计局公布的数据,合肥市2021年一月GDP 总值约为6百亿元人民币,若合肥市三月GDP 总值为y 百亿元人民币,平均每个月GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .y =6(1+2x )B .y =6(1﹣x )2C .y =6(1+x )2D .y =6+6(1+x )+6(1+x )2 3.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x xB .(40)(50010)8000+-=x xC .(5040)(50010)8000-+-=x xD .(50)(50010)8000--=x x 4.在平面直角坐标系中,O 为坐标原点.二次函数致2y x bx c =++的图象与x 轴只有一个交点,且经过点()2,A m c -,()2,B m c +,则AOB 的面积为( ) A .8 B .12 C .16 D .4 5.已知关于x 的方程20x bx c ++=的两个根分别是-1和3,若抛物线22y x bx c =+-与y 轴交于点A ,过A 作AB y ⊥轴,交抛物线于另一交点B ,则AB 的长为( ) A .2 B .3 C .1 D .1.5 6.平面直角坐标系中,点A 的坐标为()0,1,点B 的坐标为()2,1,连接AB ,当抛物线2y x c =+与线段AB 有公共点时,c 的取值范围为( )A .3c <-B .31c -≤≤C .1c >D .01c ≤≤ 7.如图,在长为20m 、宽为14m 的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m ,则花圃中的阴影部分的面积有( )A .最小值247B .最小值266C .最大值247D .最大值266 8.如图,正方形ABCD 中,AB =4cm ,动点E 从点A 出发,沿折线AB BC -运动到点C 停止,过点E 作EF AE ⊥交CD 于点F ,设点E 的运动路程为x cm ,DF =y cm ,则y 与x 对应关系的图象大致是( )A .B .C .D .二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.11.如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB 为x 米,面积为S 平方米,则S 与x 的之间的函数表达式为 __;自变量x 的取值范围为 __.12.亮亮推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为()215312y x =--+,则小明推铅球的成绩是______m . 13.随着经济的发展和人们生活水平的提高,越来越多的人选择乘飞机出行.某种型号的飞机着陆后滑行的距离s (单位:m )与滑行的时间(单位:s )的函数关系式为260 1.5s t t =-,那么飞机着陆后滑行_____s 停下.14.如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.15.跳台滑雪是2022年北京冬奥会比赛项目之一.一名参赛运动员起跳后,他的飞行路线可以看作是抛物线21240453y x x =-++的一部分(如图所示),则这名运动员起跳后的最大飞行高度是______m .16.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y (万件)关于售价x (元/件)的函数解析式为:()()21404060806070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,则当该产品的售价x 为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题17.甲、乙两家水果店经销同一种水果,采取不同的降价措施增加销售额,提高利润.(1)甲水果店原售价每千克20元,连续两次降价后每千克12.8元,每次降价的百分率相同.求每次降价的百分率;(2)乙水果店原来每千克盈利6元,每天可售出60千克.经市场调查发现,若每千克降价0.5元,日销售量将增加10千克.在进货价不变的情况下,乙水果店决定采取适当的降价措施增加销售盈利.乙水果店降价多少元时,每天销售这种水果获利最多?最多可获利多少元?18.朝天城区某水果店王阿姨到水果批发市场打算购进一种水果销售,经过讨价还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;①请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?19.精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:设第x天的售价为y元/千克,y关于x的函数关系满足如下图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?20.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区分成两个区域,中间用塑料膜隔开.学校利用围墙作为一边,用总长为48m的塑料膜围成了如图所示的两块矩形区域;已知围墙的可用长度不超过21m,设AB的长为x m,矩形区域ABCD的面积y m2.(1)求y与x之间的函数解析式,并求出自变量x的取值范围;(2)当矩形ABCD的面积为84m2时,求AB的长度;(3)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?答案第1页,共1页 参考答案:1.A2.C3.C4.A5.A6.B7.A8.A9.81011. 2324S x x =-+1463≤<x 12.1113.2014.1650≤t ≤6且t ≠3 15.4516.5017.(1)20%(2)乙水果店每千克该种水果降价1.5元时,销售盈利最多,每天可获利405元 18.(1)实际购进这种水果每千克20元(2)①11440y x y =-+;①销售单价定为30元时利润最大,最大利润为1100元 19.(1)见解析(2)y =119(020)29(2030)x x x ⎧-+<≤⎪⎨⎪<≤⎩ (3)销售草莓的第30天时,当天的利润最大,最大利润是272元 20.(1)y =﹣3x 2+48x ,9≤x <16(2)14米(3)AB 的长度是9m 时,矩形区域ABCD 的面积y 取得最大值,最大值是189m 2。

人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

 人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

人教版九年级数学上册22.3实际问题与二次函数同步练习题一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.162.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.03.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.54.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.75.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+1008.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.59.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m210.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是.12.二次函数y=2x2﹣2x+6的最小值是.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:.(注意标注自变量x的取值范围)14.正方形的边长是x,面积是A,请写出A与x的关系式:.它与y=x2的图象有什么不同?.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是.17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s(单位:m)相对于车速v(单位:km/h)的图象.(2)证明汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v(3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为45,72,105,144及189m,在这种情况下,(2)中的函数关系应如何调整?23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为,G 点坐标为;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.人教版九年级数学上册22.3实际问题与二次函数同步练习题参考答案一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.16【解答】解:y=﹣x2﹣8x+c=﹣(x﹣4)2+16+c,∵最大值为0,∴16+c=0,解得c=﹣16.故选:C.2.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.0【解答】解:因为函数的最大值是0,所以=0,则|a|+=|a|=﹣a.故选:C.3.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.5【解答】解:∵S=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,S有最小值5.故选:A.4.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.7【解答】解:因为二次函数y=x2﹣6x+c的最小值为1,所以==1,解得c=10.故选:A.5.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x【解答】解:圆面积是16π,正方形面积是x2,则函数关系式是:y=16π﹣x2.故选:B.6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.【解答】解:由正方形面积公式得:y=x2.故选:B.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+100【解答】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.8.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5【解答】解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.9.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m2【解答】解:设窗框的长为x,∴宽为,∴y=x,即y=﹣x2+4x,∵<0∴y有最大值,即:y最大===6m2.故选:B.10.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.【解答】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a ﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是﹣2.【解答】解:∵二次函数y=kx2+k2﹣3有最大值1,∴k<0,k2﹣3=1,解得,k=﹣2,故答案为:﹣2.12.二次函数y=2x2﹣2x+6的最小值是.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:y=﹣x2+20x(10≤x<20).(注意标注自变量x的取值范围)【解答】解:矩形的另一边长是:(20﹣x)cm;则面积y=x(20﹣x)=﹣x2+20x,根据线段为正值可得到:x>0,20﹣x>0,20﹣x≤x,解得10≤x<20.故答案为:y=﹣x2+20x(10≤x<20).14.正方形的边长是x,面积是A,请写出A与x的关系式:A=x2.它与y=x2的图象有什么不同?它与y=x2的图象完全一样.【解答】解:∵正方形的边长是x,面积是A,∴A与x的关系式为:A=x2,∴它与y=x2的图象完全一样.故答案为:A=x2,它与y=x2的图象完全一样.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).【解答】解:设所求的函数的解析式为y=ax2+bx+c,由已知,函数的图象过(﹣1,1),(0,1.5),(3,1)三点,易求其解析式为y=﹣x2+x+,∵丁头顶的横坐标为1.5,∴代入其解析式可求得其纵坐标为m.16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是(4﹣).【解答】解:设矩形的宽为x,长为(﹣x),则剪去三角形后剩下的面积为(﹣x)x﹣x•x,经整理,得:y=x2+x,当x==4﹣时,y取得最大值,y最大=(4﹣),此时长为(+).17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=﹣1或3.【解答】解:依题意,在y=﹣x2+6x中,x=0时,y=0;在y=x2﹣2(m﹣1)x+m2﹣2m﹣3中,x=0时,y=m2﹣2m﹣3=0;即m2﹣2m﹣3=0,解得m=﹣1或3.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.【解答】解:当x=2时,y=1,当x=2时,y=﹣15,又∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∴x=1时,y最大值=3,综上所述若2≤x≤4时,y=﹣2x2+4x+1的最大值是1、最小值是﹣15.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)【解答】(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.【解答】解:∵用一根长为40cm的铁丝围成一个半径为r的扇形,∴扇形的弧长为:(40﹣2r)cm,∴扇形的面积y与它的半径r之间的函数关系式为:y=r(40﹣2r)=﹣r2+20r,此函数是二次函数,<r<20.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.【解答】解:根据题意得:A (﹣0.8,﹣2.4),设涵洞所在抛物线解析式为y =ax 2,把x =﹣0.8,y =﹣2.4代入得:a =﹣, 则涵洞所在抛物线解析式为y =﹣x 2.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s (单位:m )相对于车速v (单位:km /h )的图象.(2)证明汽车滑行的距离s (单位:m )及车速v (单位:km /h )之间有如下的关系: s =v (3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为 45,72,105,144及189m ,在这种情况下,(2)中的函数关系应如何调整?【解答】解:(1)如图,(2)设函数解析式为y =av 2+bv +c ,代入(48,22.5),(64,36),(80,52.5)得,,解得,函数解析式为s=v,因此汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v;(3)如表:(4)在路况不良时,表中的滑行距离须分别修正后的数据恰好是对应原数据的2倍,因此将(2)中的每一项对乘以2即可,所得关系式为s=v+.23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?【解答】解:令y=﹣x2+x+=0,整理得:x2﹣8x﹣20=0,(x﹣10)(x+2)=0,解得x1=10,x2=﹣2(舍去),答:该运动员此次掷铅球的成绩是10m.24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(﹣1,﹣2),G点坐标为(﹣1,2);(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.【解答】解:(1)解方程x2+2x﹣3=0得x1=﹣3,x2=1.∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1).∵A(3,6)在抛物线上,∴6=a(3+3)•(3﹣1),∴a=,∴抛物线解析式为y=x2+x﹣.(2)由y=x2+x﹣=(x+1)2﹣2,∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC的解析式为y=kx+b,∵A(3,6),C(﹣3,0)在该直线上,∴,∴直线AC的解析式为:y=x+3.将x=﹣1代入y=x+3得y=2,∴G点坐标为(﹣1,2).(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.设直线A′G的解析式为y=kx+b.∴,∴直线A′G的解析式为y=﹣2x,令x=0,则y=0.∴M点坐标为(0,0).25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣3)(x﹣1),∴抛物线和x轴交于A(1,0),B(3,0)两点,当x=0时,y=﹣3,∴抛物线与y轴交于C(0,﹣3),对称轴为x==2,顶点纵坐标y=﹣4+4×2﹣3=1,顶点坐标D(2,1),∴OC=OB,∴△OBC是等腰直角三角形,∴∠OCB=∠OBC=45°,连结MN,BN.则OM=ON,∵∠COB=∠MOA=90°,∴∠COB﹣∠MOB=∠MON﹣∠MOB,∴∠COM=∠BON,在△OCM与△OBN中,,∴△OCM≌△OBN(SAS),∴∠OCB=∠OBN=45°,∴∠NBC=90°,由B(3,0),C(0,﹣3)可得直线BC解析式为:y=x﹣3,设直线BN的解析式为y=﹣x+m,由B(3,0),可得﹣3+m=0,解得m=3,则直线BN的解析式为y=﹣x+3,联立抛物线和直线解析式可得,解得或(不合题意,舍去)∴N坐标为:N(2,1).。

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。

【新】人教版九年级数学上册22.3 实际问题与二次函数同步练习含答案

【新】人教版九年级数学上册22.3 实际问题与二次函数同步练习含答案

《实际问题与二次函数》同步练习1带答案1.已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是( ) A. x <1 B. x >1 C. x >-4 D. -4<x <62.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如果提高售价,才能在半月内获得最大利润?3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系是4522++-=x x y .请回答下列问题: (1) 柱子OA 的高度是多少米?(2) 喷出的水流距水平面的最大高度是多少米?(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v 2来表示,其中v (千米/分)表示汽车的速度.① 列表表示I 与v 的关系;② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?5.如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,若AE=x ,正方形EFGH 的面积为y.(1) 求出y 与x 之间的函数关系式;(2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由.答案:1、A 2、售价为35元时,在半月内可获得最大利润 3、(1)45 (2)49 (3)25 4、①略 ②4倍 5、(1)y=2x 2-2ax+a 2 (2) 有.当点E 是AB 的中点时,面积最大.。

人教版九年级数学上册《实际问题与二次函数》同步练习(含答案)

人教版九年级数学上册《实际问题与二次函数》同步练习(含答案)

22.3 本质问题与二次函数 ( 一)知识点1、二次函数常用来解决最优化的问题,这个问题本质是求函数的最大(小)值。

2、抛物线y ax2bx c(a0) 的极点是它的最高(低)点,当x=b时,二次函数有最大(小)值2a4ac b2y=。

4a一、选择题1、进入夏天后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设均匀每次降价的百分率是 x,降价后的价钱为y 元,原价为 a 元,则 y 与 x 之间的函数关系式为()A 、y2a(x1)B、y2a(1 x)C、y a(1 x2 ) D 、y a(1x)22、某商铺从厂家以每件21 元的价钱购进一批商品,该商品能够自行订价。

若每件商品的售价为x 元,则可卖处 (350- 10x)件商品。

商品所获取的收益y 元与售价 x 的函数关系为()A 、y10 x2560x 7350B 、y10x2560x 7350C、y10 x2350x D 、y10 x2350x 73503、某产品的进货价钱为90 元,按 100 元一个售出时,能售500 个,假如这类商品每涨价 1 元,其销售量就减少10 个,为了获取最大收益,其订价应定为()A 、130 元B、 120 元C、110 元D、 100 元4、小明在跳远竞赛中跳出了满意的一跳,函数h 3.5t 4.9t 2(t单位s,h单位m)可用来描绘她的重心的高度变化,则她从起跳后到重心处于最高地点时所用的时间是()A 、0.71s B、 0.70s C、 0.63s D、 0.36s5、如图,正△ ABC 的边长为 3cm,动点 P 从点 A 出发,以每秒1cm 的速度,沿 A→ B→ C 的方向运动,到达点 C 时停止,设运动时间为x(秒),y PC 2,则 y 对于 x 的函数图像大概为()A B C D第5题6、已知二次函数y ax2bx c(a 0) 的图像以下图,现有以下结论:① abc>0;② b24ac <0;③c<4b;④a+b>0.则此中正确的结论的个数是()A 、1B、 2C、3D、47、如图,已知:正方形ABCD 边长为 1, E、 F、 G、 H 分别为各边上的点,且AE=BF=CG=DH,设小正方形 EFGH 的面积为s,AE 为 x,则 s 对于 x 的函数图象大概是()A B C D第7题8、某厂有很多形状为直角梯形的铁皮边角料,为节俭资源,现要按图中所示的方法从这些边角料上截取矩形(暗影部分)片备用,当截取的矩形面积最大时,矩形两边长x、 y 应分别为()A 、 x=10,y=14B、x=14,y=10C、 x=12,y=15 D 、x=15,y=12第6题第8题二、填空题1、已知卖出盒饭的盒数x(盒)与所获收益y(元)知足关系式:y x21200x 357 600,则卖出盒饭数目为盒时,获取最大收益为元。

22.3实际问题与二次函数(拱桥问题)同步练习++2024-2025学年人教版数学九年级上册

22.3实际问题与二次函数(拱桥问题)同步练习++2024-2025学年人教版数学九年级上册

22.3 实际问题与二次函数(拱桥问题)一、选择题1.如图是抛物线型拱桥,当拱顶高离水面2m时,水面宽4m.水面上升1.5m,水面宽度为()A.1m B.2m C.√3m D.2√3m2.某大桥的桥拱可以用抛物线的一部分表示,函数关系为y=−125x2,当水面宽度AB为20m时,水面与桥拱顶的高度CO等于()A.2m B.4m C.10m D.16m3.如图1是太原晋阳湖公园一座抛物线型拱桥,按如图2所示建立坐标系,在正常水位时水面宽AB=30米,当水位上升5米时,则水面宽CD=20米,则函数表达式为()A.y=−115x2B.y=−125x2C.y=115x2D.y=125x24.如图,隧道的截面由抛物线和长方形OABC构成.按照图中所示的平面直角坐标系,拋物线可以用y=−16x2+2x+4表示.在抛物线型拱壁上需要安装两排灯,如果灯离地面的高度为8m.那么两排灯的水平距离是()A.2m B.4m C.4√2m D.4√3m5.廊桥是我国古老的文化遗产.如图是某座抛物线形廊桥的示意图,已知水面AB宽48m,拱桥最高处点C到水面AB的距离为12m,为保护该桥的安全,现要在该抛物线上的点E,F处安装两盏警示灯,若要保证两盏灯的水平距离EF是24m,则警示灯E距水面AB的高度为()A.12m B.11m C.10m D.9mx2 + 8(单位:米),施工队计划在隧道正中搭6.如图,某隧道美化施工,横截面形状为抛物线y =-12建一个矩形脚手架DEFG,已知DE:EF = 3:2,则脚手架高DE为()A.7米B.6.3米C.6米D.5米7.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4 √3米B.5 √2米C.2 √13米D.7米8.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16 米B.米C.16 米D.米二、填空题x2+3.25,一辆车高3米,宽4米,该车9.单行隧道的截面是抛物线形,且抛物线的解析式为y=−18(填“能”或“不能”)通过该隧道.10.如图,图2是图1的拱形大桥的示意图.桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =−1(x﹣80)2+16,桥拱与桥墩AC的交400点C恰好在水面上,AC⊥x轴.若OA=20米,则桥面离水面的高度AC为11.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C 到AB的距离为8m,AB=24m,D,E为拱桥底部的两点,且DE//AB,若DE的长为36m,则点E到直线AB的距离为.12.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx,小强骑自行车从拱梁一端O匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶到6分钟和14分钟时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需分钟.13.如图,某公路隧道横截面为抛物线,其最大高度为8 m,以隧道底部宽AB所在直线为x轴,以AB垂x2+b,则隧道底部宽AB 直平分线为y轴建立如图所示的平面直角坐标系,若抛物线的表达式为y=-12为m.三、解答题14.有一个抛物线形的拱形桥洞,当桥洞的拱顶P(抛物线最高点)离水面的距离为4米时,水面的宽度OA为12米.现将它的截面图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)当洪水泛滥,水面上升,水面的宽度小于5米时,则必须马上采取紧急措施.某日涨水后,观察员测得桥洞的拱顶P到水面CD的距离只有1.5米,问:是否要采取紧急措施?并说明理由.15.如图,某隧道口的横截面是抛物线型,已知隧道底部宽AB为10m,最高点离地面的距离OC为5m,以AB的中点O为坐标原点,AB所在直线为x轴,OC所在的直线为y轴,1m为数轴的单位长度,建立平面直角坐标系.(1)求抛物线的函数表达式;(2)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为3m,求两排灯之间的水平距离.16.如图,某市青少年活动中心的截面由抛物线的一部分和矩形组成,其中OA=20米,OC=7米,最高点P离地面的距离为9米,以地面OA所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)暑期来临之际,该活动中心工作人员设计了6米长的竖状条幅从顶棚拋物线部分悬挂下来(条幅的宽可忽略不计),为了安全起见,条幅最低处不能低于底面上方2米.设条幅与OC的水平距离为m米,求出m的取值范围.17.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系。

人教版九年级上册数学实际问题与二次函数(销售问题)同步练习

人教版九年级上册数学实际问题与二次函数(销售问题)同步练习

人教版九年级上册数学22.3实际问题与二次函数(销售问题)同步练习一、单选题1.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅游团的人数每增加一人,每人的单价就降低10元,若这个旅行社要获得最大营业额,则这个旅游团的人数是( )A .55B .56C .57D .58 2.某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100-x )件.若想获得最大利润,则定价x 应为( )A .35元B .45元C .55元D .65元 3.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x ,第3年的销售量为y 台,则y 关于x 的函数解析式为( )A .()500012y x =+B .()250001y x =+ C .50002y x =+ D .25000y x = 4.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为( )A .21元B .22元C .23元D .24元 5.某商品的利润y (元)与售价x (元)之间的函数关系式为y =﹣x 2+8x +9,且售价x 的范围是1≤x ≤3,则最大利润是( )A .16元B .21元C .24元D .25元 6.某农产品市场经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,设销售单价为每千克x 元,月销售利润可以表示为( )A .(x ﹣40)[500﹣10(50﹣x )]元B .(x ﹣40)(10x ﹣500)元C .(x ﹣40)(500﹣10x )元D .(x ﹣40)[500﹣10(x ﹣50)]元 7.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .y =(200﹣5x )(40﹣20+x )B .y =(200+5x )(40﹣20﹣x )C .y =200(40﹣20﹣x )D .y =200﹣5x8.商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价上涨1元,则每星期就会少卖10件.每件商品的售价上涨x 元(x 正整数),每星期销售的利润为y 元,则y 与x 的函数关系式为( )A .y =10(200﹣10x )B .y =200(10+x )C .y =10(200﹣10x )2D .y =(10+x )(200﹣10x )二、填空题9.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤24,且x 为整数)出售,可卖出(30﹣x )件.若利润为y ,则y 关于x 的解析式_______,若利润最大,则最大利润为______元.10.某果园有100棵苹果树,平均每棵树可结660个苹果,根据经验估计,在这个果园里每多种一棵树,平均每棵树就会少结6个苹果,则果园里增____棵苹果树,所结苹果的总数最多.11.阳光超市里销售的一种水果,每千克的进价为10元,销售过程中发现,每天销量y (kg )与销售单价x (元)之间满足一次函数50y x =-+的关系.若不计其他成本(利润=售价-进价),则该超市销售这种水果每天能够获得的最大利润是_________元. 12.超市销售的某商品进价10元/件.在销售过程中发现,该商品每天的销售量y (件)与售价x (元/件)之间满足函数关系式y =-5x +150,该商品售价定为____元/件时,每天销售该商品获利最大.13.某商品的利润(y 元)与售价(x 元)之间的函数解析式是289y x x =-++,且售价x 的范围是13x ≤≤,则最大利润是 ___________.14.某体育用品商店购进一批涓板,每块滑板利润为30元,一星期可卖出80块.商家决定降价促销,根据市场调查,每降价1元,则一星期可多卖出4块,设每块滑板降价x 元,商店一星期销售这种滑板的利润是y 元,则y 与x 之间的函数表达式为_____. 15.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克,则月销售利润y (单位:元)与售价x (单位:元/千克)之间的函数解析式为_______________________ 16.某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.三、解答题17.李某购进一款防护PM2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式.(2)求出销售单价定为多少元时,每天的利润最大,最大是多少元?18.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?19.某品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?20.某经销商销售一种新品种壶瓶枣,这种新品种进价每千克50元(规定每千克销售利润不低于5元且不高于25元),现在以75元/千克的售价卖出,则每周可卖出80千克.该经销商通过对当地市场调查发现:若每千克降价5元,则每周多卖出20千克;因疫情原因,该经销商决定暂时降价销售,设每千克销售价降低x元,每周销售利润为y元.(1)当售价为每千克65元时,每周销售量为千克,利润为元.(2)求y与x之间的函数关系式并直接写出自变量x的取值范围.(3)当销售单价定为多少元时,该经销商每周可获得最大利润?最大利润是多少元?参考答案:1.A2.D3.B4.B5.C6.D7.A8.D9. y =﹣(x ﹣25)2+25 2410.511.40012.2013.24元14.24402400y x x =-++15.y =-10x ²+1400x -4000016.217.(1)()2508002750510y x x x =+≤≤﹣﹣ (2)单价定为8元时,每天的利润最大,最大是450元18.(1)640(1014)20920(1430)y x y y x x =<≤⎧=⎨=-+<≤⎩(2)当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元 19.(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个20.(1)120;1800(2)24202000y x x =-++(0≤x ≤20)(3)当销售单价定为72.5元时,该经销商每周可获得最大利润,最大利润是2025元。

人教版九年级上数学《22.3实际问题与二次函数》同步练习(含答案详解)

人教版九年级上数学《22.3实际问题与二次函数》同步练习(含答案详解)

22.3 实际问题与二次函数一、选择题1.(2018安徽阜阳颍上月考)一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=-180t 2+14t+1(0≤t ≤20),那么网球到达最高点时所需的时间是 秒.( ) A.7 B.8 C.9 D.102.(2017甘肃定西临洮期中)某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3 m,此时距喷水管的水平距离为12 m,如图所示,这个喷泉喷出水流轨迹的函数解析式是( )A.y=-3(x -12)2+3 B.y=-3(x +12)2+3C.y=-12(x -12)2+3D.y=-12(x+12)2+33.(2017河北保定涿州一模)如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE=DF.四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为( )A.y=5-xB.y=5-x 2C.y=25-xD.y=25-x 24.如图是抛物线形拱桥,已知水位在AB 位置时,水面宽为4√6 m,水位上升3 m,就达到警戒线CD,这时水面CD 宽4√3 m.若洪水到来时水位以每小时0.25 m 的速度上升,那么水过警戒线后 小时淹到拱桥顶.( )A.6B.12C.18D.24二、填空题5.(2017上海奉贤一模)用一根长为8 m 的木条,做一个矩形的窗框.如果这个矩形窗框宽为x m,那么这个窗户的面积y(m 2)与x(m)之间的函数关系式为 (不写自变量的取值范围).6.如图,某公路隧道横截面为抛物线,其最大高度为8 m,以隧道底部宽AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立如图所示的平面直角坐标系,抛物线解析式为y=-12x 2+b,则隧道底部宽AB 是 m.三、解答题7.(2017内蒙古鄂尔多斯中考)某商场试销A 、B 两种型号的台灯,下表是两次进货情况统计:进货情况进货次数 进货数量(台)进货资金(元)A B 第一次 5 3 230 第二次104440(1)求A 、B 两种型号台灯的进价各为多少元;(2)经试销发现,A 型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,此商场决定两种型号台灯共进货100台,并一周内全部售出,若B 型号台灯售价定为20元,求A型号台灯售价定为多少时,商场可获得最大利润,并通过计算说明商场获得最大利润时的进货方案.8.(2017辽宁朝阳中考)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x+m(m x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=-120为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围;(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价-成本)×月生产量-工人月最低工资]22.3 实际问题与二次函数测试时间:25分钟一、选择题1.答案 D ∵h=-180t 2+14t+1=-180(t-10)2+94(0≤t ≤20),∴当t=10时,h 取得最大值,故选D. 2.答案 C 设函数解析式为y=a (x -12)2+3,将点(0,0)代入,得14a+3=0,解得a=-12,∴函数解析式为y=-12(x -12)2+3,故选C.3.答案 D ∵BE=x(0≤x<5),∴AE=5-x,AF=5+x,∴y=AE ·AF=(5-x)(5+x)=25-x 2.故选D. 4.答案 B 设抛物线解析式为y=ax 2+h,又∵B(2√6,0),D(2√3,3),∴{24a +ℎ=0,12a +ℎ=3,解得{a =-14,ℎ=6.∴y=-1x 2+6,∴M(0,6),即OM=6 m,∴MN=OM -ON=3 m,∵MN=12,∴水过警戒线后12小时淹到拱桥顶.故选B.二、填空题5.答案 y=-x 2+4x解析 易知这个矩形窗框的长为(4-x)m,则这个窗户的面积y(m 2)与x(m)之间的函数关系式为y=x(4-x)=-x 2+4x,即y=-x 2+4x. 6.答案 8解析 ∵y=-12x 2+b,隧道横截面的最大高度为8 m,∴b=8,∴抛物线解析式为y=-12x 2+8.当y=0时,有0=-12x 2+8,解得x=4或-4,∴隧道底部宽AB 是4+4=8(m).三、解答题7.解析 (1)设A 、B 两种型号台灯的进价分别为m 元、n 元,由题意得{5m +3n =230,10m +4n =440,解得{m =40,n =10.答:A 、B 两种型号台灯的进价分别为40元、10元.(2)∵A 型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,即y=-2x+140,则B 型号台灯共进货100-y=(2x-40)台, 设商场可获得利润为w 元,则w=(x-40)(-2x+140)+(20-10)(2x-40)=-2x 2+240x-6 000=-2(x-60)2+1 200, ∵-2<0,∴A 型号台灯售价定为60元时,商场可获得最大利润,为1 200元. 8.解析 (1)把(40,3)代入y=-120x+m,得3=-120×40+m, ∴m=5,∴y=-120x+5(25≤x ≤40), 设BC 的解析式为y=kx+b,把(40,3),(50,2)代入y=kx+b,得{3=40k +b,2=50k +b,解得{k =-1,b =7,∴y=-110x+7(40≤x ≤50),综上所述:y={-1x +5(25≤x ≤40),-110x +7(40<x ≤50).(2)设该企业生产出的产品出厂价定为x 元时,月利润W(元)最大, 根据题意得,当25≤x ≤40时,W=1 000(-120x +5)(x-20)-32 000=-50x 2+6 000x-132 000=-50(x-60)2+48 000,当x=40时,W 有最大值,为28 000元.x+7)(x-20)-32000当40<x≤50时,W=1000(-110=-100x2+9000x-172000=-100(x-45)2+30500,当x=45时,W有最大值,为30500元.综上,当该企业生产出的产品出厂价定为45元时,月利润最大,最大利润是30500元.。

人教版九年级上册 22.3 实际问题和二次函数 同步练习

人教版九年级上册  22.3 实际问题和二次函数   同步练习

实际问题与二次函数同步练习一、填空题1、抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.2、一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4 s落地,则足球距地面的最大高度是m.3、已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式:y=-x2+1200x-357600,则卖出盒饭数量为盒时,获得最大利润为元.4、如图是抛物线型拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,则水面宽度增加m.5、要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.6、某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种棵橘子树,橘子总个数最多.二、选择题7、已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后 9s 和点火后 13s 的升空高度相同B点火后 24s 火箭落于地面C.点火后 10s 的升空高度为 139mD.火箭升空的最大高度为 145m8、如隧道的截面是抛物线,可以用y=-x2+4表示,该隧道内设双行道,限高为3m,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m,小于8m9、一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元10、若某商品的利润y(元)与售价x(元)之间的函数关系式是y=-x2+8x+9,且售价x的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元11、某幢建筑物,从10米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( )A.2米B.3米C.4米D.5米12、河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )A.-20mB.10mC.20mD.-10m13、某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m14、如图,用长8m的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A.m2B.m2C.m2D.4m215、把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为()A.y=320(x﹣1)B.y=320(1﹣x)C.y=160(1﹣x2) D.y=160(1﹣x)216、一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元 B.10元 C.0元 D.6元17、某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是( )A.600 m2 B.625 m2C.650 m2 D.675 m2三、简答题18、如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?19、投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.20、位于郑州市二七区的二七德化步行街是郑州最早的商业文化购物步行街,在郑州乃至中原都相当有名,德化步行街某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?21、某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?参考答案一、填空题1、y=﹣2x2﹣4x﹣3 .2、19.63、600 24004、(4-4)5、 66、10二、选择题7、D8、A9、A10、C11、B12、C13、C14、C15、D16、A17、B三、简答题18、【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x1=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.19、解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.20、解:(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1400(40≤x≤60);(2)W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,w=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,∴当56≤x≤60时,W随x的增大而减小,∴x=56时,W有最大值,最大值=﹣20(56﹣55)2+4500=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.21、解:(1)设某天售出该化工原料40千克时的销售单价为x元/千克,(60﹣x)×2+20=40,解得,x=50,故答案为:50;(2)①设这种化工原料的进价为a元/千克,当销售价为46元/千克时,当天的销量为:20+(60﹣46)×2=48(千克),则(46﹣a)×48=108+90×2,解得,a=40,即这种化工原料的进价为40元/千克;②设公司某天的销售单价为x元/千克,每天的收入为y元,则y=(x﹣40)[20+2(60﹣x)]=﹣2(x﹣55)2+450,∴当x=55时,公司每天的收入最多,最多收入450元,设公司需要t天还清借款,则t≥10000,解得,t≥,∵t为整数,∴t=62.即公司至少需62天才能还清借款.。

人教版九年级数学上册《22.3实际问题与二次函数》同步练习题(附答案)

人教版九年级数学上册《22.3实际问题与二次函数》同步练习题(附答案)

人教版九年级数学上册《22.3实际问题与二次函数》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由15元降为9元,设平均每次降价的百分率是,则根据题意,下列方程正确的是()A. B. C. D.2.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则下列时刻中小球的高度最高的是第()A.3s B.3.5s C.4s D.6.5s3.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5 B.6 C.7 D.84.如图是抛物线型拱桥,当拱顶离水面时,水面宽 .若水面再下降,水面宽度为() .A.B.C.D.5.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元 B.80元,4500元 C.90元,4000元 D.80元,4000元6.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即的长度)是1米.当喷射出的水流距离喷水头8米时,达到最大高度1.8米,水流喷射的最远水平距离是()A.16米B.18米C.20米D.24米7.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A. cm2 B. cm2 C. cm2 D. cm28.如图,为矩形的对角线,已知, CD=4 .点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是()A. B. C. D.二、填空题:(本题共5小题,每小题3分,共15分.)9.以的速度将小球沿与地面成度角的方向击出时,球的飞行路线是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位m)与飞行时间t(单位s)之间具有函数关系:,那么球从飞出到落地要用的时间是.10.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是,则铅球推出的水平距离OA的长是m.11.一养鸡专业户计划用116m长的篱笆围成如图所示的三间长方形鸡舍,门MN宽2m,门PQ和RS的宽都是1m,围成的鸡舍面积最大是平方米.12.一位篮球运动员在距离篮圈中心水平距离处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为时,达到最大高度,然后准确落入篮筐内.已知篮圈中心距离地面高度为,在如图所示的平面直角坐标系中,则此抛物线的解析式为.13.从地面竖直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是.小球抛出秒后开始下落.三、解答题:(本题共5题,共45分)14.如图,利用长米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出个小长方形,总共用去篱笆米,为了使这个长方形的的面积为平方米,求、边各为多少米.15.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?16.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=- x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面0A的距离为 m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?17.一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请求出m的取值范围.18.如图,是学校灌溉草坪用到的喷水设备,喷水口离地面垂直高度为米,喷出的水流都可以抽象为平面直角坐标系中的一条抛物线.(1)灌溉设备喷出水流的最远射程可以到达草坪的最外侧边沿点,此时,喷水口喷出的水流垂直高度与水平距离的几组数据如下表.水平距离米竖直高度米结合数据,求此抛物线的表达式,并求出水流最大射程的长度.(2)为了全面灌溉,喷水口可以喷出不同射程的水流,喷水口喷出的另外一条水流形成的抛物线满足表达式,此水流最大射程米,求此水流距离地面的最大高度.参考答案:1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.D9.4s10.1011.45012.13.114.解:设为米,则为米解得:和当时不合题意,舍去当时.答:米,米.15.(1)解:设今年这款消毒洗衣液每瓶进价是x元,则去年这款消毒洗衣液每瓶进价是元根据题意可得:解得:经检验:是方程的解元答:今年这款消毒洗衣液每瓶进价是24元.(2)解:设这款消毒洗衣液每瓶的售价定为m元时,这款洗衣液每周的销售利润w最大根据题意得出:整理得:根据二次函数的性质得出:当时,利润最大最大利润为:答:当这款消毒洗衣液每瓶的售价定为33元时,这款洗衣液每周的销售利润最大,最大利润是8100元.16.(1)解:根据题意得B(0,4),C(3, )把B(0,4),C(3, )代入y=- x2+bx+c得解得所以抛物线解析式为y=- x2+2x+4则y=- (x-6)2+10所以D(6,10)所以拱顶D到地面OA的距离为10m;(2)解:由题意得货运汽车最外侧与地面0A的交点为(2,0)或(10,0)当x=2或x=10时,y= >6所以这辆货车能安全通过(3)解:令y=8,则- (x-6)2+10=8解得x1=6+2 ,x2=6-2则x1-x2=4所以两排灯的水平距离最小是4 .17.(1)解:设y与x的函数关系式为:y=kx+b(k≠0)把x=40,y=10000和x=50,y=9500代入得解得,∴y=-50x+12000;(2)解:根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,”得解得,30≤x≤120设利润为w元,根据题意得w=(x-30)y=(x-30)(-50x+12000)=-50x2+13500x-360000=-50(x-135)2+551250∴对称轴为直线x=135∵-50<0∴当x<135时,w随x的增大而增大∵30≤x≤120,且x为正整数∴当x=120时,w取最大值为:-50×(120-135)2+551250=552000答:这一周该商场销售这种商品获得的最大利润为552000元,售价为120元;(3)解:根据题意得,w=(x-30-m)(-50x+12000)=-50x2+(13500+50m)x-360000-12000m∴对称轴为x=-=135+0.5m∵-50<0∴当x<135+0.5m时,w随x的增大而增大∵该商场这种商品售价不大于150元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.对称轴x=135+0.5m,m大于等于10,则对称轴大于等于140,由于x取整数实际上x是二次函数的离散整数点,x取30,40,...140时利润一直增大只需保证x=150时利润大于x=140时即可满足要求,所以对称轴要大于145就可以了故135+0.5m>145解得m>20∵10≤m≤60∴20<m≤60.18.(1)解:由表中数据可知,抛物线的顶点为设抛物线解析式为把代入解析式得:解得抛物线解析式为令,则解得或舍去水流最大射程的长度为米;(2)解:水流最大射程米把,代入解析式则解得,此水流距离地面的最大高度为米。

人教版九年级数学上册: 22.3: 实际问题和二次函数 同步练习

人教版九年级数学上册: 22.3: 实际问题和二次函数  同步练习

第二十二章22.3 实际问题与二次函数同步练习根据实际问题建立二次函数同步练习(答题时间:30分钟)1. 进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A. y=2a(x-1)B. y=2a(1-x)C. y=a(1-x2)D. y=a(1-x)22. 有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为xm,面积是sm2,则s与x的关系式是()A. s=-3x2+24xB. s=-2x2+24xC. s=-3x2-24xD. s=-2x2+24x3. 喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件。

设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为()A. y=-10x2+100x+2000B. y=10x2+100x+2000C. y=-10x2+200xD. y=-10x2-100x+2000*4. 如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF。

设BE=x,DF=y,则y是x的函数,函数关系式是()A. y=x+1B. y=x-1C. y=x2-x+1D. y=x2-x-15. 有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为__________。

*6. 如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM的长为x,则y关于x的函数关系式是__________。

(要求写出自变量x的取值范围)7. 如果周长为20的长方形一边长为x,那么它的面积y关于x的函数解析式为________。

人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案

人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案

人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________1.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?2.正常水位时,抛物线拱桥下的水面宽为20m,水面上升3m达到该地警戒水位时,桥下水面宽为10m.(1)在恰当的平面直角坐标系中求出水面到桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式;(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?3.某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?4.如图,二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的表达式,以及点B的坐标.(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.5.近年来国家倡导“电动车,上牌照,保安全,戴头盔”.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足函数关系y=−2x+200.专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.(1)设专卖店在优惠活动期间,月销售利润为w元,求w与x之间的函数解析式;(2)嘉嘉说:“在优惠活动期间,该专卖店的月销售的最大利润能达到1700元.”请判断嘉嘉的说法是否正确,并说明理由.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?7.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25米)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长40米的栅栏围成(如图),设绿化带的边BC长为x米,绿化带的面积为y 平方米.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带面积最大?最大面积是多少?8.某公司生产某种皮衣,每件成本为200元.据公司往年数据分析预测,今年12月份的日销售量s(件)与时间t(天)的关系如图.前20天每天的价格m1(元/件)与时间t(天)的函数关系式m1=2.5t+250(1≤t≤20且t为整数),第21天到月底每天的价格m2(元/件)与时间t(天)的函数关系式m2=-5t+400(21≤t≤31且t为整数).(1)求s与t之间的函数关系式;(2)求预测12月份中哪一天的日销售利润最大,最大利润是多少?(3)根据疫情情况,在实际销售的前20天中,该公司决定每销售一件衣服就捐赠10a元(a<4)给红十字会.公司要求在前20天中,每天扣除捐款后的日销售利润随时间t(天)的增大而增大,问第10天时,日销售利润能不能超过3600元,请说明理由.9.某化工材料经销公司购进一种化工原料若干千克价格为每千克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100在销售过程中,每天还要支付其他费用450元。

人教版 九年级数学上册 22.3实际问题与二次函数 同步测试(含答案)

人教版 九年级数学上册 22.3实际问题与二次函数  同步测试(含答案)

2020-2021学年人教版 九年级数学上册 22.3实际问题与二次函数 同步测试(含答案)1. 从地面竖直向上抛出一小球,小球的高度h (单位:m)与小球运动时间t (单位: s)之间的函数关系如图K15-3所示.下列结论:①小球在空中经过的路程是40 m; ②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0; ④小球的高度h=30 m 时,t=1.5 s . 其中正确的是( )A .①④B .①②C .②③④D .②③2.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面CD 处,有AC ⊥x 轴,若OA=10米,则桥面离水面的高度AC 为( )A .16940米B .174米C .16740米D .154米3. 北中环桥是省城太原的一座跨汾河大桥,它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为 ( )A .y=26675x 2B .y=-26675x 2C .y=131350x 2D .y=-131350x 24.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x -12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5 m 时,小球距O 点水平距离为3 mB .小球距O 点水平距离超过4 m 时呈下降趋势C .小球落地点距O 点水平距离为7 mD .斜坡的坡度为1∶25.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C=120°.若新建墙BC 与CD 总长为12 m,则该梯形储料场ABCD 的最大面积是 ( )A .18 m 2B .18√3 m 2C .24√3 m 2D .45√32m 26.在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为y=-112x 2+23x+53,由此可知该生此次实心球训练的成绩为 米.7.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.9.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时达到相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=.10.某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元)…190200210220…y(间)…65605550…(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?11.随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少.12.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图①,问饲养室长x为多少时,占地面积y最大?(2)如图②,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.【参考答案】1. D [解析]①由图象知小球在空中达到的最大高度是40 m,故①错误; ②小球抛出3秒后,速度越来越快,故②正确; ③小球抛出3秒时达到最高点即速度为0,故③正确; ④设函数解析式为:h=a (t -3)2+40, 把O (0,0)代入得0=a (0-3)2+40,解得a=-409, ∴函数解析式为h=-409(t -3)2+40.把h=30代入解析式得,30=-409(t -3)2+40,解得t=4.5或t=1.5,∴小球的高度h=30 m 时,t=1.5 s 或4.5 s,故④错误,故选D . 2.B [解析]∵AC ⊥x 轴,OA=10米, ∴点C 的横坐标为-10. 当x=-10时,y=-1400(x -80)2+16=-1400(-10-80)2+16=-174, ∴C (-10,-174),∴桥面离水面的高度AC 为174米. 故选B .3. 10 [解析]当y=0时,-112x 2+23x +53=0,解得,x=-2(舍去)或x=10.故答案为10.B [解析]设二次函数的表达式为y=ax 2,由题可知,点A 的坐标为(-45,-78),代入表达式可得:-78=a ×(-45)2,解得a=-26675,∴二次函数的表达式为y=-26675x 2,故选B .4.A [解析]根据函数图象可知,当小球抛出的高度为7.5 m 时,二次函数y=4x -12x 2的函数值为7.5,即4x -12x 2=7.5,解得x 1=3,x 2=5,故当抛出的高度为7.5 m 时,小球距离O 点的水平距离为3 m 或5 m,A 结论错误;由y=4x -12x 2,得y=-12(x -4)2+8,则抛物线的对称轴为直线x=4,当x>4时,y 随x 值的增大而减小,B 结论正确;联立方程y=4x -12x 2与y=12x ,解得{x =0,y =0或{x =7,y =72.则抛物线与直线的交点坐标为(0,0)或7,72,C 结论正确;由点7,72知坡度为72∶7=1∶2也可以根据y=12x 中系数12的意义判断坡度为1∶2,D 结论正确.故选A .5.C [解析]如图,过点C 作CE ⊥AB 于E ,设CD=x ,则四边形ADCE 为矩形,CD=AE=x ,∠DCE=∠CEB=90°,∠BCE=∠BCD -∠DCE=30°,BC=12-x. 在Rt △CBE 中,∵∠CEB=90°,∴BE=12BC=6-12x , ∴AD=CE=√3BE=6√3−√32x ,AB=AE +BE=x +6-12x=12x +6, ∴梯形ABCD 的面积=12(CD +AB )·CE=12x +12x +6·6√3−√32x =-3√38x 2+3√3x +18√3=-3√38(x -4)2+24√3, ∴当x=4时,S 最大=24√3,即CD 长为4 m 时,使梯形储料场ABCD 的面积最大,最大面积为24√3 m 2,故选C . 6.7.150 [解析]设AB=x m,矩形土地ABCD 的面积为y m 2,由题意,得y=x ·900-3x 2=-32(x -150)2+33750,∵-32<0,∴该函数图象开口向下,当x=150时,该函数有最大值.即AB=150 m 时,矩形土地ABCD 的面积最大. 8.22 [解析]设每件的定价为x 元,每天的销售利润为y 元. 根据题意,得y=(x -15)[8+2(25-x )]=-2x 2+88x -870. ∴y=-2x 2+88x -870=-2(x -22)2+98. ∵a=-2<0, ∴抛物线开口向下,∴当x=22时,y 最大值=98.故答案为22.9.1.6 [解析]设各自抛出后1.1秒时达到相同的最大离地高度h ,则第一个小球的离地高度y=a (t -1.1)2+h (a ≠0), 由题意a (t -1.1)2+h=a (t -1-1.1)2+h , 解得t=1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同. 10.解:(1)如图所示.(2)设y=kx +b (k ≠0),把(200,60)和(220,50)代入,得{200k +b =60,220k +b =50,解得{k =-12,b =160. ∴y=-12x +160(170≤x ≤240). (3)w=x ·y=x ·-12x +160=-12x 2+160x.∴函数w=-12x 2+160x 图象的对称轴为直线x=-1602×(-12)=160,∵-12<0,∴在170≤x ≤240范围内,w 随x 的增大而减小. 故当x=170时,w 有最大值,最大值为12750元.11.[解析](1)由于题目所给数据均与水池中心相关,故可选取水池中心为原点,原点与水柱落地点所在直线为x 轴,喷水管所在直线为y 轴,建立平面直角坐标系,再利用顶点式求解函数关系式; (2)抛物线顶点的纵坐标即为水柱的最大高度.解:(1)如图,以喷水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,喷水管所在直线为y 轴,建立平面直角坐标系.由题意可设抛物线的函数解析式为y=a (x -1)2+h (0≤x ≤3). 抛物线过点(0,2)和(3,0),代入抛物线解析式可得 {4a +ℎ=0,a +ℎ=2.解得{a =-23,ℎ=83.所以抛物线的解析式为y=-23(x -1)2+83(0≤x ≤3). 化为一般式为y=-23x 2+43x +2(0≤x ≤3).(2)由(1)抛物线的解析式为y=-23(x -1)2+83(0≤x ≤3)可知当x=1时,y 最大值=83.所以抛物线水柱的最大高度为83 m . 12.解:(1)∵y=x ·50-x 2=-12(x -25)2+6252,∴当x=25时,占地面积y 最大. (2)y=x ·50-(x -2)2=-12(x -26)2+338,∴当x=26时,占地面积y 最大.即当饲养室长为26 m时,占地面积最大.∵26-25=1≠2, ∴小敏的说法不正确.。

人教版九年级上册:22.3《实际问题与二次函数》同步练习卷 含答案

人教版九年级上册:22.3《实际问题与二次函数》同步练习卷   含答案

人教版九年级上册:22.3《实际问题与二次函数》同步练习卷一.选择题1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)2.用一根长60cm的铁丝围成一个矩形,那么矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为()A.y=x2﹣30x(0<x<30)B.y=﹣x2+30x(0≤x<30)C.y=﹣x2+30x(0<x<30)D.y=﹣x2+30x(0<x≤30)3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m5.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.48.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或9.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值610.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF =CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤二.填空题12.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y美元.设2017年到2019年该地区居民年人均收入平均增长率为x,那么y与x的函数关系式是.13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加m.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.15.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M 是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题17.某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x 元,每周从销售这种工艺品中获得的利润为y元.(1)填空:每件工艺品售价提高x元后的利润为元,每周可售出工艺品件,y关于x的函数关系式为;(2)若y=384,则每件工艺品的售价应确定为多少元?18.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.19.已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.20.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.2.解:由题意得:矩形的另一边长=60÷2﹣x=30﹣x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30﹣x)=﹣x2+30x (0<x<30).故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.5.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.6.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;②由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点,即速度为0,故③正确;④设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,∴当t=1.5s时,h=﹣(1.5﹣3)2+40=30,∴④正确.综上,正确的有②③④.故选:C.7.解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC﹣S△PBQ=×12×6﹣(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选:C.8.解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.9.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.10.解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选:A.11.解:①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时y的值随的x的增大而增大,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选:B.二.填空题12.解:设2017年到2019年该地区居民年人均收入平均增长率为x,那么根据题意得2019年年人均收入为:300(x+1)2,y与x的函数关系式是为:y=300(x+1)2.故答案为y=300(x+1)2.13.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4,故答案为:(2﹣4).14.解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=±,故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.15.解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,而S△MBP=×BP×ME,∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).16.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.三.解答题17.解:(1)∵该工艺品每件进价12元,售价为20元,∴每件工艺品售价提高x元后的利润为:(20﹣12+x)=(8+x)(元),∵把每件工艺品的售价提高1元,就会少售出2件,∴每周可售出工艺品:(40﹣2x)(件),∴y关于x的函数关系式为:y=(40﹣2x)(8+x))=﹣2x2+24x+320;故答案为:8+x;40﹣2x;y=﹣2x2+24x+320;(2)∵y=384,∴384=﹣2x2+24x+320,整理得出:x2﹣12x+32=0,(x﹣4)(x﹣8)=0,解得:x1=4,x2=8,4+20=24,8+20=28,答:每件工艺品的售价应确定为24元或28元.18.解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.19.解:(1)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(2)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(3)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.20.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),定义抛物线y=﹣x2+2x+3.令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).。

人教版九年级数学上册《22.3实际问题与二次函数》同步测试题及答案

人教版九年级数学上册《22.3实际问题与二次函数》同步测试题及答案

人教版九年级数学上册《22.3实际问题与二次函数》同步测试题及答案一、单选题1.某种商品每件进价为18元,调查表明:在某段时间内若以每件x 元(1830x ≤≤,且x 为整数)出售,可卖出(30-x )件,若使利润最大,则每件商品的售价应为( )A .18元B .20元C .22元D .24元2.竖直向上发射的小球的高度()m h 关于运动时间()s t 的函数表达式为2h at bt =+,其图象如图所示,若小球发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4秒D .第6秒3.杭州之门位于杭州奥体博览城,总高约310米,刷新杭州最新高度,同时也成为中国第一高H 形双塔楼.双塔底部为跨度约62米,高度约34米的巨型抛物线2()y ax bx c =++结构(如图),则a 的值最接近于( )A .130-B .130C .120-D .1204.如图,在菱形ABCD 中,AB=6,=60B ∠︒矩形PQNM 的四个顶点分别在菱形的四边上,则矩形PMNQ 的最大面积为( )A .3B .73C .3D .935.已知()()1122,,,A x y B x y 是抛物线231y ax x =-+上的两点,其对称轴是直线0x x =,若1020x x x x ->-时,总有12y y >,同一坐标系中有()()2,3,4,3M N --,且抛物线与线段MN 有两个不相同的交点,则a 的取值范围是( )A .52a ≤-B .522a -<<C .728a ≤<D .728a ≤≤ 6.烟花厂某种礼炮的升空高度h (m )与飞行时间t (s )的关系式是h =﹣2t 2+20t +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .10s7.已知点P 在第一象限,其坐标为()1,2,一次函数28y x =+的图象与x y 、轴分别相交于A B 、两点,将该图象以每秒2个单位水平向右平移,设时间为t (秒),ABP 的面积为S ,则S 与t 的函数关系大致为( ) A . B .C .D .8.已知某抛物线形拱桥下的拱顶离水面2m 时,水面宽4m ,那么下列说法中正确的是( ) A .若以拋物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系,则这条抛物线的解析式是213y x =- B .若以水面所在直线为x 轴,以水面的垂直平分线为y 轴建立直角坐标系,则过条批物线的解析式是2123y x =-+ C .水面上升1m 后,水面宽为22mD .水面下降2m 后,水面宽为43m9.如图,在ABC 中=90B ∠︒ =4AB cm =8BC cm .动点P 从点A 出发,沿边AB 向点B 以1/cm s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2/cm s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( )A .1sB .2sC .3sD .4s二、填空题10.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则小球飞行最大高度是 m .11.某车在弯路上做刹车试验,收集到的数据如下表所示: 速度x (km/h ) 0 5 10 15 20 a …刹车距离y (m ) 0 0.75 23.75 6 12 …则a = km/h . 12.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为 m 2.13.如图,在正方形ABCD 中,AB=4,E 是BC 上一点,F 是CD 上一点,且AE=AF.设S △AEF =y ,EC=x.则y 与x 的函数关系式 .14.已知抛物线的函数表达式为211040y x =-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.(精确到1米)15.用总长为a米的铝合金材料做成如图1所示的“日”字形窗框(材料厚度忽略不计),窗户的透光面积y (米2)与窗框的宽x(米)之间的函数图象如图2所示,则a的值是.16.如图,有一座抛物线型拱桥,桥下面在正常水位AB时,水面宽度为20米,水面距离拱顶4米,当水位上升达到警戒线CD时,水面宽度为10米.若洪水到来时,水位以每小时0.2米的速度从警戒线开始上升,再持续小时才能到拱桥顶.(平面直角坐标系是以桥顶点为点O的)三、解答题17.在今年举办的东京奥运会上,杨倩在女子10米气步枪决赛中夺得冠军,为中国代表团揽入首枚金牌,随后杨倩同款,“小黄鸭”发卡在电商平台上爆单,某电商销售一段时间后,发现该发卡每天的销售量y(单位∶个)和售价单价x(单位∶元)满足一次函数关系(如图所示),其中3≤x≤6.(1)求y与x的函数关系;(2)若该种发卡的成本为每件2元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?18.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.19.某校足球队在一次训练中,一球员从高2.4米的球门正前方m 米处将球射向球门,球射向球门的路线呈抛物线.当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米.建立如图所示的平面直角坐标系(1)求出抛物线的函数解析式;(2)当10m =时,试判断足球能否射入球门,并说明理由;20.2024年巴黎奥运会8月6日单人10米决赛中,全红婵以425.60分的总分夺得第一获得金牌,陈芋汐位列第二获得银牌.在精彩的比赛过程中,全红婵选择了一个极具难度的207C (向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy .如果她从点()3,10A 起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中她的竖直高度y (单位:米)与水平距离x (单位:米)近似满足函数关系式()()20y a x h k a =-+<.水平距离m x 3 h 4 4.5竖直高度m y 10 11.25 10 6.25(1)在平时训练完成一次跳水动作时,全红婵的水平距离x 与竖直高度y 的几组数据如上:根据上述数据,直接写出h 的值为______,直接写出满足的函数关系式:______;(2)比赛当天的某一次跳水中,全红婵的竖直高度y 与水平距离x 近似满足函数关系:254068y x x =-+-,记她训练的入水点的水平距离为1d ;比赛当天入水点的水平距离为2d ,则1d ______2d (填>,=,<);(3)在(2)的情况下,全红婵起跳后到达最高点B 开始计时,若点B 到水平面的距离为c ,则她到水面的距离y 与时间t 之间近似满足25y t c =-+,如果全红婵在达到最高点后需要1.4秒的时间才能完成极具难度的207C 动作,请通过计算说明,她当天的比赛能否成功完成此动作?参考答案1.D2.C3.A4.D5.C6.C7.C8.C9.B10.2011.3012.14713.2142y x x =-+ 14.1815.616.517.(1)100800y x =-+;(2)当定价为5元时,利润最大,最大利润为900元18.当果园增种10棵橙子树时,橙子的总产量最多,此时的总产量为60500个 19.(1)()216312y x =--+ (2)足球能射入球门20.(1)3.5 25( 3.5)11.25y x =--+;(2)<(3)她当天的比赛能成功完成此动作.。

人教版九年级上册同步练习 22.3 实际问题与二次函数

人教版九年级上册同步练习 22.3 实际问题与二次函数

2020年人教版九年级上册同步练习卷22.3 实际问题与二次函数一.选择题1.函数y=(x+1)2﹣2的最小值是()A.1B.﹣1C.2D.﹣22.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值33.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣14.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a5.用20cm长的绳子围成一个矩形,如果这个矩形的一边长为x cm,面积是S cm2,则S与x的函数关系式为()A.S=x(20﹣x)B.S=x(20﹣2x)C.S=x(10﹣x)D.S=2x(10﹣x)6.西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是()A.B.C.D.7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h =﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m8.如图,抛物线与x轴相交于A、B两点,在保持抛物线的形状与大小不变的前提下,顶点P在线段CD上移动,点C、D的坐标分别为(﹣1,1)和(3,4).当顶点P移动到点C时,点B恰好与原点重合.在整个移动过程中,点A移动的距离为()A.1B.2C.3D.4二.填空题9.已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于.10.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.11.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为5m,则DE的长为m.12.如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,右面的一条抛物线的解析式为y=x2﹣4x+5表示,而且左右两条抛物线关于y轴对称,则左面钢缆的表达式为.13.某种火箭背向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=﹣5t2+160t+10表示.经过s,火箭到达它的最高点.14.如图,这是小明在阅读一本关于函数的课外读物时看到的一段文字,则被墨迹污染的二次项系数是.三.解答题15.已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?16.某手机专营店,第一期进了甲种手机50部.售后统计,甲种手机的平均利润是160元/部.调研发现:甲种手机每增加1部,平均利润减少2元/部;该店计划第二期进货甲种手机比第一期增加x部,(1)第二期甲种手机售完后的利润为8400元,那么甲种手机比第一期要增加多少部?(2)当x取何值时,第二期进的甲种手机售完后获得的利润W最大,最大利润是多少?17.某超市购进一批牛肉销售,经过还价,实际价格每千克比原来少2元,发现原来买这批牛肉32千克的钱,现在可买33千克.(1)现在实际购进这批牛肉每千克多少元?(2)若这批牛肉的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.求y与x之间的函数关系式;(3)这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)18.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.参考答案一.选择题(共8小题)1.解:根据二次函数的性质,当x=﹣1时,二次函数y=(x﹣1)2﹣2的最小值是﹣2.故选:D.2.解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.3.解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值===2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.故选:C.4.解:设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,依题意得第三个月第三个月投放垃圾桶a(1+x)2辆,则y=a(1+x)2.故选:A.5.解:由题意得:S=x(10﹣x),故选:C.6.解:∵一支高度为1米的喷水管喷水的最大高度为3米,此时喷水水平距离为米,∴顶点坐标为(,3),设抛物线的解析式为y=a(x﹣)2+3,而抛物线还经过(0,0),∴0=a()2+3,∴a=﹣12,∴抛物线的解析式为y=﹣12(x﹣)2+3.故选:C.7.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.8.解:抛物线顶点在点C(﹣1,1)时,故设此时的抛物线解析式为y=a(x+1)2+1.∵此时原点(0,0)在抛物线上,∴有0=a(0+1)2+1,即a+1=0,解得a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+1.令y=0,即﹣(x+1)2+1=0,解得x1=﹣2,x2=0,即此时A1点的坐标为(﹣2,0).∵保持抛物线的形状与大小不变,即保持a不变,∴当抛物线顶点运动到点D(3,4)时,此时抛物线解析式为y=﹣(x﹣3)2+4.令y=0,即﹣(x﹣3)2+4=0,解得x3=1,x4=5,即此时A2点的坐标为(1,0).∵抛物线顶点P在线段CD上移动,∴A点在A1A2上运动,∴在整个移动过程中,点A移动的距离为1﹣(﹣2)=3.故选:C.二.填空题(共6小题)9.解:原式可化为:y=(x﹣4)2﹣16+m,∵函数的最小值是1,∴﹣16+m=1,解得m=17.故答案为:17.10.解:设定价为x元,每天的销售利润为y.根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870,∴y=﹣2x2+88x﹣870=﹣2(x﹣22)2+98,∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.11.解:如图所示,建立平面直角坐标系.设AB与y轴交于点H,∵AB=36,∴AH=BH=18,由题可知:OH=5,CH=9,∴OC=9+5=14,设该抛物线的解析式为:y=ax2+k,∵顶点C(0,14),∴抛物线y=ax2+14,代入点(18,5)∴5=18×18a+14,∴5=324a+14,∴324a=﹣9,∴a=﹣,∴抛物线:y=﹣x2+14,当y=0时,0=﹣x2+14,∴﹣x2=﹣14,∴x2=14×36=504,∴x=±6,∴E(6,0),D(﹣6,0),∴OE=OD=6,∴DE=OD+OE=6+6=12,故答案为:12.12.解:把y=x2﹣4x+5中的一次项系数﹣4变成相反数得到:y=x2+4x+5.故答案为y=x2+4x+5.13.解:函数的对称轴为:t=﹣=﹣=16,即经过16s,火箭到达它的最高点,故答案为16.14.解:设抛物线的解析式为y=ax2+5x﹣2,∵当x=时,二次函数y=■x2+5x﹣2有最大值,∴﹣=,解得:a=﹣2.故答案为:﹣2.三.解答题(共4小题)15.解:把(0,5),(1,2)代入y=x2+bx+c得:,(2)由表格中数据可得:当x=2时,二次函数有最小值为1.16.解:(1)根据题意,(50+x)(160﹣2x)=8400,解得x1=10,x2=20,因为增加10件和增加20件品牌手机的利润是相同的,为了减少成本故第二期甲种手机售完后的利润为8400元,甲种手机应该增加10部;(2)W=(50+x)(160﹣2x)=﹣2(x﹣15)2+8450,当x取15时,第二期进的甲手机售完后获得的总利润W最大,最大总利润是8450元.17.解:(1)设现在实际购进这种牛肉每千克a元,则原来购进这种牛肉每千克(a+2)元,由题意,得32(a+2)=33a,解得a=64.答:现在实际购进这种牛肉每千克64元;(2)设y与x之间的函数关系式为y=kx+b,将(70,140),(80,40)代入,得,解得,故y与x之间的函数关系式为y=﹣10x+840;(3)设这种牛肉的销售单价为x元时,所获利润为w元,则w=(x﹣64)y=(x﹣64)(﹣10x+840)=﹣10x2+1480x﹣53760=﹣10(x﹣74)2+1000,所以当x=74时,w有最大值1000.答:将这种牛肉的销售单价定为74元时,能获得最大利润,最大利润是1000元.18.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴,∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣1.5)2+6.25.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣,b=1,∴BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+3x+4,当y=y BP时,﹣x+1=﹣x2+3x+4,解得x1=﹣,x2=4(舍去),∴y=,∴P(﹣,).(3)设点N(1.5,n),当BC、MN为平行四边形对角线时,由BC、MN互相平分,M(2.5,4﹣n),代入y=﹣x2+3x+4,得4﹣n=﹣6.25+7.5+4,解得n=﹣1.25,∴M(2.5,5.25);当BM、NC为平行四边形对角线时,由BM、NC互相平分,M(﹣2.5,4+n),代入y=﹣x2+3x+4,得4+n=﹣6.25﹣7.5+4,解得n=﹣13.75,∴M(﹣2.5,﹣13.75);当MC、BN为平行四边形对角线时,由MC、BN互相平分,M(5.5,n﹣4),代入y=﹣x2+3x+4,得n﹣4=﹣30.25+16.5+4,解得n=﹣5.75,∴M(5.5,﹣9.75).综上所述,点M的坐标为:M1(2.5,5.25),M2(﹣2.5,﹣13.75),M3(5.5,﹣9.75).。

人教版 九年级数学上册 22.3 实际问题与二次函数 同步训练(含答案)

人教版 九年级数学上册 22.3 实际问题与二次函数 同步训练(含答案)

人教版九年级数学上册22.3 实际问题与二次函数同步训练一、选择题(本大题共8道小题)1. 某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-2x2+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元2. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为()A.1月和11月B.1月、11月和12月C.1月D.1月至11月3. 某广场有一喷水池,水从地面喷出,以水平地面为x轴,出水点为原点,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米4. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm25. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC .160 mD .200 m6. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m7. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 28. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m二、填空题(本大题共8道小题)9. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.10. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a元,则可卖出(350-10a)件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.11. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.12. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、解答题(本大题共4道小题)17. 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?18. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?19. 如图,排球运动员王亮站在点O处练习发球,将球从点O正上方2 m的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y =a(x-6)2+h.已知球网与点O的水平距离为9 m,高度为2.43 m,球场的边界距点O的水平距离为18 m.(1)当h=2.6时,①求y关于x的函数解析式(不要求写出自变量x的取值范围);②球能否越过球网?球会不会出界?请说明理由;③若排球运动员张明站在另外半场的点M(m,0),且张明原地起跳接球的最大高度为2.4 m.若张明因接球的高度不够而失球,求m的取值范围.(2)若球一定能越过球网,又不出边界,求h的取值范围.20. 2019·鄂尔多斯某工厂制作A,B两种手工艺品,B每件获利比A多105元,获利30元的A与获利240元的B数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式(不要求写自变量的取值范围).(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C 每件获利30元,求每天制作三种手工艺品可获得的总利润W (元)的最大值及相应x 的值.人教版 九年级数学上册 22.3 实际问题与二次函数 同步训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】B[解析] 由题意知,利润y 和月份n 之间的函数关系式为y =-n 2+12n -11,∴y =-(n -6)2+25, 当n =1时,y =0; 当n =11时,y =0; 当n =12时,y <0.故停产的月份是1月、11月和12月. 故选B.3. 【答案】A[解析] y =-(x 2-4x +4)+4=-(x -2)2+4,∴水喷出的最大高度是4米.4. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm 2.5. 【答案】C[解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.6. 【答案】D[解析] 把y =0代入y =-112x 2+23x +53,得-112x 2+23x +53=0,解得x 1=10,x 2=-2.又∵x >0,∴x =10.故选D.7. 【答案】B[解析] 设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.二、填空题(本大题共8道小题)9. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y=-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.10. 【答案】28[解析] 设商店所获利润为y 元.根据题意,得y =(a -21)(350-10a)=-10a 2+560a -7350=-10(a -28)2+490, 即当a =28时,可获得最大利润.又21×(1+40%)=21×1.4=29.4,而28<29.4,所以a =28符合要求. 故商店应把每件商品的价格定为28元,此时可获得最大利润.11. 【答案】25[解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25.∵20≤x≤30,∴当x =25时,二次函数有最大值25.12. 【答案】y =-19(x +6)2+413. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.14. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y =-2x +400,∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x =70时,W 取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x =130时,W 取得最大值,最大值为9800,故④错误. 故答案为①②③.16. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.三、解答题(本大题共4道小题)17. 【答案】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x≤120).(3分)(2)设果园多种x棵橙子树时,可使橙子的总产量为w,(4分)则w=(600-5x)(100+x)=-5x2+100x+60000=-5(x-10)2+60500.(7分)答:果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.(8分)18. 【答案】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,(2分)解得x>22,(3分)又∵x是5的倍数,∴每辆车的日租金至少应为25元.(5分)(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1100,(6分)∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1100=3900;(8分)当x>100时,y2=(50-x-1005)x-1100=-15x2+70x-1100=-15(x-175)2+5025.(9分)∴当x=175时,y2的最大值是5025,∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是5025元.(10分)19. 【答案】解:(1)①把x=0,y=2及h=2.6代入y=a(x-6)2+h,得2=a(0-6)2+2.6,∴a=-1 60,∴y=-160(x-6)2+2.6.②球能越过球网,球会出界.理由如下:由①知y=-160(x-6)2+2.6,当x=9时,y=-160×(9-6)2+2.6=2.45>2.43,∴球能越过球网.当x=18时,y=-160×(18-6)2+2.6=0.2>0,∴球会出界.③若运动员张明原地起跳到最大高度时刚好接到球,此时-160(m-6)2+2.6=2.4,解得m1=6+2 3,m2=6-2 3.∵张明接球高度不够,∴6-2 3<m<6+2 3.∵张明在另外半场,∴m的取值范围为9<m<6+2 3.(2)将x=0,y=2代入y=a(x-6)2+h,得a=2-h 36.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43;①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②,得h≥8 3.20. 【答案】解:(1)设制作一件A获利a元,则制作一件B获利(105+a)元,由题意得30 a=240a+105,解得a=15.经检验,a=15是原方程的根且符合题意.当a=15时,a+105=120.答:制作一件A获利15元,制作一件B获利120元.(2)设每天安排x人制作B,y人制作A,则2y人制作C,于是有y+x+2y=65,∴y=-13x+653.(3)由题意得:W=15×2×y+[120-2(x-5)]x+2y×30=-2x2+130x+90y,又∵y=-13x+653,∴W=-2x2+130x+90y=-2x2+130x+90(-13x+653)=-2x2+100x+1950,∴抛物线的对称轴为直线x=25,而x=25时,y的值不是整数,根据抛物线的对称性和增减性可得:当x=24或x=26时,W最大.当x=24时,y=-13x+653不是整数,不符合题意;当x=26时,y=13,此时W=-2×262+100×26+1950=3198.答:每天制作三种手工艺品可获得的总利润W的最大值为3198元,此时x的值为26.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3 实际问题与二次函数第1课时二次函数与图形面积1.如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积为() A.60 m2B.63 m2C.64 m2D.66 m22.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=时,矩形场地的面积最大,最大值为.第1题图第2题图第3题图第4题图3.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B 点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q 分别从A,B同时出发,当△PBQ的面积最大时,运动时间t为s.4.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC =x,△AEF的面积为y,则y与x之间的函数关系式是.5.用长为20 cm的铁丝,折成一个矩形,设它的一边长为x cm,面积为y cm2.(1)求出y与x的函数关系式;(2)当边长x为多少时,矩形的面积最大?最大面积是多少?6.如图,要利用一面墙(长为30 m)建羊圈,用100 m长的围栏围成两个大小相同的矩形羊圈,每个羊圈留有一个1 m宽的门(留门部分不需要围栏),若宽用x(m)表示,总面积用y(m2)表示.(1)写出总面积y(m2)与宽x(m)的函数关系式;(2)当面积y=624时,求羊圈的宽x的值.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?8.用一段长为24 m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8 m,则这个养鸡场最大面积为 m2.9.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是cm2.10.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12 cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=时,四边形PECF的面积最大,最大值为.11.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192 m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.12.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y 关于x 的函数解析式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.13.如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N =30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积为y cm 2.下列结论:①当0≤x ≤233时,y 与x 之间的函数关系式为y =32x 2;②当233<x ≤2时,y 与x 之间的函数关系式为y =2x -233;③当MN 经过AB 的中点时,y =32cm 2; ④存在x 的值,使y =12S 正方形ABCD (S 正方形ABCD 表示正方形ABCD 的面积).其中正确的是 (写出所有正确结论的序号).第2课时二次函数与商品利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y(元)与售价x(元)之间的函数关系式为()A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 3502.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为元.3.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(要求写出x的取值范围);(2)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?4.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元5.某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1 200元,每件衬衫应降价多少元?(2)想要平均每天盈利最多,每件衬衫应降价多少元?6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x 为正整数),每星期销售该商品的利润为y 元,则y 与x 的函数关系式为( )A .y =-10x 2+100x +2 000 B .y =10x 2+100x +2 000 C .y =-10x 2+200x D .y =-10x 2-100x +2 0007.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为 元.8.某工厂生产的某种产品按产量分为10个档次,第1档次(最低档次)的产品一天能生产95件产品,每件利润6元(第一档).每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(2)若生产第x 档次的产品一天的总利润为1 120元,求该产品的质量档次.9.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k1,k2和b的值;(2)设这块1 000 m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.10.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6 480元的利润,每星期至少要销售该款童装多少件?第3课时实物抛物线1.河北省赵县的赵州桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2.当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为()A.-20 m B.10 m C.20 m D.-10 m2.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.3.有一个抛物线形的立交拱桥,这个拱桥的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心5 m处的M点垂直竖立一铁柱支撑拱顶,则这根铁柱的长为m.4.(绵阳中考)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加 m.5.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16 m,AE=8 m,抛物线的顶点C到ED的距离是11 m.试以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系,求题中抛物线的函数解析式.6.王大力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=-148x2+2324x+2,则王大力同学投掷标枪的成绩是m.7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系式是y=-112x2+23x+53,铅球运行路线如图.(1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4 m.8.某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h =-5t 2+150t +10表示.经过 s ,火箭达到它的最高点.9.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式是y =ax 2+bx.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.10.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y =-15x 2+85x ,如图,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向、顶点坐标、对称轴; (2)请求出球飞行的最大水平距离;(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线?求出其解析式.11.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB的水平距离为3 m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?参考答案:22.3 实际问题与二次函数第1课时 二次函数与图形面积1.C2.20m ,800__m 2. 3.2.4.y =-12x 2+4x .5.解:(1)已知一边长为x cm ,则另一边长为(10-x )cm.则y =x (10-x ),化简,得y =-x 2+10x (0<x <10).(2)y =10x -x 2=-(x 2-10x )=-(x -5)2+25. ∴当x =5时,y 取最大值,为25.答:当边长x 为5 cm 时,矩形的面积最大,最大面积是25 cm 2. 6.解:(1)y =x (100-3x +2),即y =-3x 2+102x (24≤x ≤34). (2)由题意得-3x 2+102x =624, 解得x 1=8(不合题意,舍去),x 2=26. 则羊圈的宽x =26. 7.解:(1)S =-12x 2+30x.(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大面积为450 cm 2. 8.64 . 9.18.10.6cm ,3__cm 2.11.解:(1)由题意,得x (28-x )=192,解得x 1=12,x 2=16. ∴x =12或16.(2)S =x (28-x )=-(x -14)2+196.由题意知⎩⎪⎨⎪⎧x ≥6,28-x ≥15,解得6≤x ≤13.在6≤x ≤13范围内,S 随x 的增大而增大. ∴当x =13时,S 最大=-(13-14)2+196=195. 12.解:(1)y =x (16-x )=-x 2+16x (0<x<16).(2)当y =60时,-x 2+16x =60, 解得x 1=10,x 2=6.∴当x =10或6时,围成的养鸡场的面积为60平方米. (3)当y =70时,-x 2+16x =70,整理得 x 2-16x +70=0.∵Δ=256-280=-24<0, ∴此方程无实数根.∴不能围成面积为70平方米的养鸡场. 13.①②④.第2课时 二次函数与商品利润1.B 2.25.3.(1)y =-20x +200(5≤x ≤7);(2)解:根据题意得w =(x -5)(-20x +200)=-20x 2+300x -1 000=-20(x -7.5)2+125,∵当x <7.5时,w 随x 的增大而增大,∴当x =7时,文具店每天的获利最大,最大利润是-20×(7-7.5)2+125=120(元). 答:销售单价为7元时,才能使文具店每天的获利最大,最大利润是120元.4.A5.解:(1)设每件衬衫应降价x元,∵商场平均每天要盈利1 200元,∴(40-x)(20+2x)=1 200.整理,得2x2-60x+400=0.解得x1=20,x2=10.因为要扩大销售,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降价20元.(2)设商场平均每天赢利w元.则 w=(20+2x)(40-x),=-2x2+60x+800,=-2(x-15)2+1 250.∴当x=15时,w取最大值,为1 250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1 250元.6.A7.55.8.解:(1)y=[6+2(x-1)]×[95-5(x-1)],整理,得y=-10x2+180x+400(1≤x≤10).(2)由-10x2+180x+400=1 120,化简,得x2-18x+72=0.解得x1=6,x2=12(不合题意,舍去).∴该产品为第6档次的产品.9.解:(1)k1=30,k2=20,b=6 000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30 000)=-0.01x2+10x+30 000=-0.01(x-500)2+32 500,∵-0.01<0,∴当x=500时,W取最大值为32 500元.当600≤x≤1 000时,W=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000,∵-0.01<0,∴当600≤x≤1 000时,W随x的增大而减小.∴当x=600时,W取最大值为32 400元.∵32 400<32 500,∴W的最大值为32 500元.(3)由题意,得1 000-x≥100,解得x≤900.又∵x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取最小值为27 900元.10.解:(1)y=300+30(60-x)=-30x+2 100.(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2 100)=-30x2+3 300x-84 000=-30(x-55)2+6 750.∵-30<0,∴当x=55时,W最大=6 750.答:当每件售价定为55元时,每星期的销售利润最大,最大利润是6 750元.(3)由题意,得-30(x-55)2+6 750=6 480,解得x1=52,x2=58.∵抛物线W=-30(x-55)2+6 750的开口向下,∴当52≤x≤58时,每星期销售利润不低于6 480元.∵在y=-30x+2 100中,y随x的增大而减小,∴当x=58时,y最小=-30×58+2 100=360.答:每星期至少要销售该款童装360件.第3课时实物抛物线1. C2.y =-13x 2.3.15.45.解:如图所示.由题知抛物线的顶点坐标为(0,11),过点B (8,8), 设抛物线的解析式为y =ax 2+11,将点B 的坐标(8,8)代入抛物线的解析式,得64a +11=8.解得a =-364,∴抛物线的解析式为y =-364x 2+11. 6.48.7.解:(1)当y =0时,-112x 2+23x +53=0,解得x 1=10,x 2=-2(不合题意,舍去). ∴铅球推出的水平距离是10 m.(2)y =-112x 2+23x +53=-112(x 2-8x +16)+43+53=-112(x -4)2+3.当x =4时,y 取最大值3.∴铅球行进高度不能达到4 m ,最高能达到3 m. 8.15s . 9.36.10.解:(1)y =-15x 2+85x =-15(x -4)2+165.∴抛物线y =-15x 2+85x 开口向下,顶点坐标为(4,165),对称轴为直线x =4.(2)令y =0,得-15x 2+85x =0.解得x 1=0,x 2=8.∴球飞行的最大水平距离是8 m.(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10 m. ∴抛物线的对称轴为直线x =5,顶点为(5,165). 设此时对应的抛物线解析式为y =a (x -5)2+165.又∵点(0,0)在此抛物线上, ∴25a +165=0,a =-16125.∴y =-16125(x -5)2+165,即y =-16125x 2+3225x.11.解:(1)由题意,得点B 的坐标为(0,4),点C 的坐标为(3,172), ∴⎩⎪⎨⎪⎧4=c ,172=-16×32+3b +c. 解得⎩⎪⎨⎪⎧b =2,c =4.∴该抛物线的函数关系式为y =-16x 2+2x +4.∵y =-16x 2+2x +4=-16(x -6)2+10,∴拱顶D 到地面OA 的距离为10 m.(2)当x =6+4=10时,y =-16x 2+2x +4=-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,∴x 1=6+23,x 2=6-2 3.∴两排灯的水平距离最小是6+23-(6-23)=43(m).。

相关文档
最新文档