《余角、补角、对顶角》教学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《余角、补角、对顶角》教学案
【活动1】
设置情境,引出新知:
如果将斜塔看成一条OA.在正午太阳
直射地而时标记塔顶的影子B,画出直
线OB,测出了Z AOB=85。
(1) 斜塔OA倾斜了多少度?
(2) 斜塔OA与OB所成的另外一个角
是多少度?
引出概念,并指出学生易犯的错误,
并指出余角和补角是相互的。
【活动
2】
1.下列各角哪些互为余角,哪些互为
补角?
【欣赏图片一一意大利风
景、建筑、比萨斜塔】
【观察、思考、自主解
决问题】
2 判断题:(1)若,Z 1+Z2+Z 3=180°
则,Zb Z2, Z3 互为补角,()
(2)互为余角、互为补角的两个角一泄
有公共顶点・()
3、30o20*的余角和补角分别是多
少?
【学生思考.讨论后举
手发言】
【动笔计算】
30o2O r余角
=90o-30o20=59o40∖
30o2O r补角
= 180o-30o20=149o40r.
若一个角为X度,则
它的余角为
比萨斜塔是学生熟悉的建筑,
而且有许多科学渊源,容易激
发学生的学习兴趣,
自然引入概念。
此组题就槪念进行简单训练・
会识别互余与互补关系•强调
互余和互补是一对角的数量关
系,与位置无关
会求一个角的余角和补角
(‰)度,它的补角
为(180Y)
4、一个锐角的补角是它的余角的3
倍,求这个角.
【思考、小组讨论】
解:设这个角为X度,则
它的余角为(90Y)度,
它的补角为(18O-A)度
列方程:3(90-Λ)=180-
Λ∙Λ=45O
答:这个角为45°.
应用方程思想解决角及其关系
角之间的问题
【活动3】多媒体动画演示
【学生观察、讨论、猎
想、并从中发现余角、补
角的性质.】
培养学生合作意识,自已通过
探究得出新知。
【提问】你能有一句话归纳出你发现
的结论吗?
结论:同角(等角)
的余角相等.
同样:同角(等角)的补
角相等
【观察、讨论】
培养学生归纳能力
【活动4】
在下列图形中找特殊的数量关系:
练习互余、互补及其性质在特
殊位置关系图形中的应用
【活动5】创始情境
1、一些图形是由如下的三角板模型
抽象而来的・一副三角板本身就蕴含
着相等和互余,用一副三角板还能构
造岀英它一些图形,其中蕴含着相
等、互余或者是互补的角,请大家动
手尝试,构造设计一些这样的图形.
【多媒体展示】例如
2、让学生解决生活中的桌球实例中的
问题。
【活动6】设问:本右课你有哪些收
获?
【思考.动手操作.小组
交流、上台展示成果】
【思考、动手操作、小
组交流】
【思考、举手发言、补
充完善】
三角板问题是今后学习中,几何
情境设豊的常用素材•此活动
能锻炼学生灵活解决问题的能
力。引导学生利用三角板构造满
足互余情况的特殊位置关系的
图形,了解特殊位置关系与特殊
数量关系的对应.
联系实际培养学生应用知
识的能力,并懂得知识来源于实
际应用于实际
体会互余、互补是特殊的数量关
系,它在特殊位置关系的图形、
实际生活中有着广泛的应用