混沌理论及其的应用实例共57页文档
混沌理论及其应用
混沌理论及其应用■背景混沌是非线性系统所独有且广泛存在的一种非周期运动形式⩸其覆盖面涉及到自然科学和社会科学的几乎每一个分支。
混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟。
在用计算机求解的过程中,Lorenz发现当方程中的参数取适当值时,解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。
随后,Henon和Rossler等也得到类似结论。
Ruelle,May等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向,近二三十年来,近似方法、非线性微分方程的数值积分法,特别是计算机技术的飞速发展,为人们对混沌的深入研究提供了可能,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。
本文将介绍与混沌有关的基本概念和基本理论以及混沌应用研究的最新进展。
■混沌的基本知识混沌又称为蝴蝶效应,对于初始的条件非常敏感,目前尚无通用的严格的定义,一般认为,一周期信号输入某一确定的系统产生的貌似随机的信号,这种信号具有无穷嵌套和内秉随机性。
例如Logistic 映射,是非线性方程中出现的一个能成功地进行实验数学研究的不寻常的实例,它虽然简单却能体现出所有非线性现象的本质。
以Logistic 映射这只“小麻雀”为例来说明混沌运动的基本性质。
映射如式(1)最初用来描述昆虫的世代变化规律:(1)其中α为控制参量。
从[0,1]内点x0出发,由Logistic映射的迭代形成了一个序列,即x n= f n(x0), n = 0,1,2,…α值确定后,由任意初值x0在[0,1]内变化可迭代出一个确定的时间序列{x n}(称为x0的轨道)。
对于不同的α值系统将呈现不同的特性,如下图(1)所示。
纵坐标为变量x,所属区间为[0,1],横坐标为控制参量α,所属区间为[0,4],把参量空间分,500步,对每个固定的参量值α,变量x0从某一个初值开始迭代,把后继500个轨道点都画到所选参量的纵方向上这样扫过全部的参量范围。
(完整版)混沌系统介绍及例子
专业学术讲座报告班级:信计12-2学号:************ 姓名:**二零一五年六月二十二日目录1.混沌系统概念2.典型混沌系统介绍3.混沌金融系统的线性与非线性反馈同步4.混沌研究的发展方向及意义一、混沌系统概念混沌(chaos )是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。
又称浑沌。
英语词Chaos 源于希腊语,原始 含义是宇宙初开之前的景象,基本含义主要指混乱、无序的状态。
作为科学术语,混沌一词特指一种运动形态。
动力学系统的确定性是一个数学概念,指系统在任一时刻的状态被初始状态所决定。
虽然根据运动的初始状态数据和运动规律能推算出任一未来时刻的运动状态,但由于初始数据的测定不可能完全精确,预测的结果必然出现误差,甚至不可预测。
运动的可预测性是一个物理概念。
一个运动即使是确定性的,也仍可为不可预测的,二者并不矛盾。
牛顿力学的成功,特别是它在预言海王星上的成功,在一定程度上产生误解,把确定性和可预测性等同起来,以为确定性运动一定是可预测的。
20世纪70年代后的研究表明,大量非线性系统中尽管系统是确定性的,却普遍存在着对运动状态初始值极为敏感、貌似随机的不可预测的运动状态——混沌运动。
混沌是指现实世界中存在的一种貌似无规律的复杂运动形态。
共同特征是原来遵循简单物理规律的有序运动形态,在某种条件下突然偏离预期的规律性而变成了无序的形态。
混沌可在相当广泛的一些确定性动力学系统中发生。
混沌在统计特性上类似于随机过程,被认为是确定性系统中的一种内禀随机性。
二、典型混沌系统介绍Lorenz 系统混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。
他提出了著名的Lorenz 方程组:。
这是一个三阶常微分方程组。
它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。
式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统(2-1)的主要控制参数。
复杂系统中的混沌理论
复杂系统中的混沌理论随着科技的发展和人们对自然现象的深入研究,有些自然现象被发现是具有一定规律性的,但又有不可预测的性质,这就是混沌现象。
混沌现象在许多自然现象中都会出现,如天气、流体力学、生态系统、股市等,今天我们就来深入研究一下复杂系统中的混沌理论。
一、什么是混沌理论?混沌理论,又称为混沌动力学,是一种研究非线性系统的数学理论。
非线性系统是指系统的输出不随着输入的线性变化而发生的系统,也就是说,非线性系统具有输入输出之间的非线性关系。
而混沌现象就是非线性系统中的一种行为。
混沌现象表现为一种看似无规律但又具有一定规律性和重复性的现象。
混沌理论在20世纪60年代末和70年代初才被发现和研究。
研究混沌现象需要使用复杂的数学方法,如微积分、微分方程、拓扑学等。
但它的突破性发现是由美国的三位著名学者洛伦兹、费根鲍姆和曼德勃洛特在研究大气气象方面的问题时引起的。
二、为什么产生混沌现象?产生混沌现象的原因是因为非线性系统中处于初值极其微小的两个相似系统,在演化中会发生巨大的差别,这种微小差异会被系统倍增放大。
这使得系统的行为变得难以预测,因为小的初值误差会在一定时间内呈现指数增长的趋势。
以上是混沌现象的数学解释,但从实际角度来看,混沌现象在很多系统中都出现了,如生态系统、股市、人口增长等等。
这些系统之所以出现混沌现象是因为它们都是非线性系统,从而使得输出变得更加复杂、不可预测。
三、混沌现象的特征?混沌现象的特征是对初始条件极其敏感、指数级敏感度和同时具有理论可再现性。
对初始条件极其敏感,是指在初始条件微小的偏差情况下,后续状态会完全不同。
这意味着对于混沌系统,重复试验可以得到完全不同的结果。
这是非线性系统行为的关键特征之一。
指数级敏感度是混沌现象的第二个特征,即当微小初始条件的偏差受到系统倍增放大时,它的敏感度呈指数级增长。
这也意味着,随着时间的推移,原来微小的初始值差异会变得越来越大。
同时具有理论可再现性,是指混沌现象是可以通过一组数学公式来模拟和复现的。
生命科学中的混沌理论与应用
生命科学中的混沌理论与应用生命科学是一门研究生命现象的学科,它包含了分子生物学、遗传学、细胞生物学、发育生物学、生物物理学等多个分支学科。
生命科学的发展,不仅是一门科学探索的过程,同时也是对人类认知自身、改变自身的历程。
而混沌理论,则是生命科学中一个新兴而有潜力的领域。
混沌理论最初起源于物理学领域,它指的是非线性系统中的一种动态行为,也就是说当系统非常敏感地依赖于输入的小变化时,系统的行为就会表现出随机、无规律的、似乎没有任何规律可循的特点。
混沌理论的核心思想是探究由简单系统规律的微小变化而产生的复杂行为,以及这些行为对系统整体性质的影响。
混沌现象的发现,为科学研究带来了深远的影响,不仅是物理学,化学、生物学等领域也逐渐引进了混沌理论,并开始探究混沌现象在这些领域的表现和应用。
在生命科学领域,混沌理论的应用日渐扩展。
生命科学中的混沌现象,是由分子层面的随机行为所导致的,比如基因突变、蛋白质折叠等。
而混沌现象在生物分子方面的应用,主要表现在以下几个方面:第一,混沌理论对于探究生物分子在系统中的动态行为有着重要的作用。
生物分子在体内的行为是极其复杂的,分子之间相互作用错综复杂,往往呈现出非线性动态行为。
混沌理论可以帮助研究人员探究生物分子运动规律、群体行为等诸多问题,揭示生物分子之间的相互作用方式,对于探索生物分子的结构和功能变化等方面,都起到了重要的帮助作用。
第二,混沌理论可帮助研究人员深入了解人体内部的代谢活动。
人体内部的代谢过程极其复杂,各个因素之间的相互作用具有非常高的复杂性。
混沌理论可以帮助研究人员探究代谢过程中的非线性动态行为,深入了解人体内部的细胞信号传递和能量代谢等重要信息,为药物研发、疾病诊治和人体健康等方面提供有力的支持。
第三,混沌理论也可以应用于神经系统的研究中,帮助科学家探究神经元在体内的运动轨迹、树突末梢的运动状态、大脑内部信息传递方式等重要问题。
这对于理解大脑的功能和修复神经系统的损伤等方面都具有重要价值。
混沌理论
混沌也能使你更易理解大师们终生的感悟。如道氏眼 中永恒的 5-3 波浪态、江恩《时空隧道》轮中之轮的循环 的描述、其及对书中之书《圣经》的解读, “好的操盘 手是没有观点的操盘手。”爱德华的“顺势而为”《交易 与禅宗》:“让市场而非自我去做决策——我不做技术分 析、基本分析,我仅仅随市场波动。”具备混沌基础后, 再读巴菲特、索罗斯、李佛莫尔、各种各样的华尔街股谚 等,会有全新的认知与感悟,你会看见他们多年的理念与 见识,多方面的认证了混沌世界所认可的规律。更有助于 理解均线系统或MACD等的价值与重点所在,以及RSI、 KDJ等技术指标之无价值。宫本武藏在其传世兵书的序中 写到:“终于在55岁时,我悟到了所谓兵法的精髓,至此 所有的修炼方式对我都失去了意义。我懂得了做一切事情 的至高无上的方法,乃是仿效自然。”
量子世界、人类历史、地震、天气运 行 …… 莫不如此。远至恐龙时代的大小 生态灭绝事件,近至非典、北美大停电、 各国证券市场,每年无数个烟头被仍向 场内,引发或大或小的震动,并蔓延、 终止 …… 但到底哪个烟头,才是那颗重 要的烟头?
相同的初始力,令人瞠目的结果,是所有混沌 系统的基本特征。大家都不难理解,曾救了萨达 姆命的藏身之所,这次偏就成了送命之处,但很 多人却很难理解同样一个历史点位,并不代表同 样的未来。许多历史学家在逐次的趋势和循环中, 搜寻说得过去的理由与解释,显然是用错了工具。 这些传统观念产生于匀衡物理和天文学中,而合 适的工具,却在非线性的非匀衡物理中。新物理 学家们则开始用模拟游戏代替方程式,去发现事 态运行的规律。
混沌理论,这个新世纪科学界的崭新世界观和 方法论,能轻易的扫除许多传统理论的大小谬误 与误区,但其自身的发展,仅仅还只是开始,未 来广阔的进步空间,也将超过今天我们所有的理 解。 布莱克在《混沌开创新科学》写到:“相对论排 除了对绝对空间和时间的牛顿迷梦;混沌则排除 了决定论可预见性的狂想。”更有人说:“ 20 世 纪的科学家只有三件事将被记住:相对论、量子 力学和混沌”。“上世纪初人们经历了相对论和 量子力学两次科学革命。混沌革命,却是我们正 在经历的革命。”
混沌理论及其应用实例精品PPT课件
3
牛顿第二定律研究自由落体:
m dv mg , dt dx v dt
xt0 , vt0
通常我们所处理的是线性系统:原因处理方法简单 (数理方法)
建立微分方程组
只要知道了物体在某一时刻的运动状态以及作用于
这个物体的外部的力,就可以准确地确定这个物体
Period 4
25
Case 4
sufficient small
R
Irregular Random Nonperiodic orbit disclosed orbit
Chaos
26
Attractors of Chua’s circuit
27
28
实验现象的观察一
周期一
周期二
29
实验现象的观察二
铁条
磁铁
y
Duffing方程 yvy (y3y)Fsitn
10
yvy (y3y)Fsitn
F 0 y 1, y 1 y0
两个稳态 一个非稳态
11
双稳态系统 U(x)1kx21x4
24
x
k
k
12
v, F 0
不规则运动
13
yvy(y3y)Fcots v0.3,F0
14
15
16
17
Experiment of Shaw(1984)
以往和未来的全部运动状态
4
无阻尼单摆
d2
d2t
g l
sin
0
m
d21
d2t
gl sin1
0
d22
d2t
gl sin2
0
d2(d12 t2)g lsin1 (2)0
混沌理论(Chaos theory)
混合理论attractor近代物理与新认识论1992, 3, 26吴文成混沌──不测风云的背后混沌理论,是近二十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。
量子力学质疑微观世界的物理因果律,而混沌理论则紧接着否定了包括巨观世界拉普拉斯﹙Laplace﹚式的决定型因果律。
长久以来,世界各地的物理学家都在探求自然的秩序,但对无秩序如大气、骚动的海洋、野生动物数目的突兀增减及心脏跳动和脑部的变化,却都显得相当的无知。
但是在七O年代,美国与欧洲有少数科学家开始穿越混乱去打开一条出路。
包括物学家、物理学家及化学家等等,所有的人都在找寻各种俯拾皆是的混沌现象──袅绕上升的香烟烟束爆裂成狂乱的烟涡、风中来回摆动的旗帜、水龙头由稳定的滴漏变成零乱、复杂不定的天气变化与大崩盘的全球股市──的规则与一些简单模式中所隐藏令人惊讶的复杂行为。
十年之后,混沌已经变成一项代表重塑科学体系的狂飙运动,四处充斥为着混沌理论而举行的会议和印行的期刊。
它跨越了不同科学学门的界线,因为它是各种系统的宏观共相,它将天南地北各学门的思想家聚集一堂。
年轻的科学家相信他们正面临物理学改朝换代的序幕。
他们觉得物理学这行已经被高能粒子和量子力学这些华丽而抽象的名词主宰得够久,直到混沌革命──可以连接微观和宏观上百万物体集体行为之间的深深鸿沟的新起科学──开始时,顶尖物理学家才发现自己心安理得地回归到属于人类尺度的某些现象。
混沌理论的近代研究,逐渐领悟到自己正抗拒科学走向化约主义的趋势。
相当简单的数学方程式可以形容像天气或瀑布一样粗暴难料的系统,只要在开头输入小差异,很快就会造成南辕北辙的结果,这个现象被称为「对初始条件的敏感依赖」。
例如蝴蝶效应──今天北京一只蝴蝶展翅翩翩对空气造成扰动,可能导致下个月纽约的大风暴──使得科学家始终无法模拟天气这个复杂系统,更不用说去精确地预测天气。
许多学科中,都背负着牛顿式决定论的担子。
混沌理论及其应用实例
3
牛顿第二定律研究自由落体:
m dv mg , dt dx v dt
xt0 , vt0
通常我们所处理的是线性系统:原因处理方法简单 (数理方法)
建立微分方程组
只要知道了物体在某一时刻的运动状态以及作用于
这个物体的外部的力,就可以准确地确定这个物体
1
52
不存在能量以外的解析不变量,力学系统运动的稳定性成 了大问题。KAM不从整体的不变量行为讨论,而就给定的 具体环面的稳定性问题讨论
图像:在 1 时大多数环面微小变化,环面原有基本特
性得以保持。少量环面被极大破坏和变形。被破坏环面测 度小,但稠密地镶嵌于未被破坏的环面之间,这使整体的 解析不变量不存在
51
(2) KAM理论(Kolmogorov- Anold- Moser)
1954, 前苏联数学家Kolmogorov(柯尔莫哥罗夫) 提出定理, 1963, 其学生Anold(阿诺德)给出定理的严格证明, 1973, 瑞士数学家Moser(莫塞)给出改进的证明. 不可积系统:
H H0 H1(J1, J2, θ1, θ2 )
理论解析分析: 有时+计算机分析
7
1.2 非线性系统和混沌现象
非线性广泛存在自然界和社会生活中,线性行为只是平衡态
附近的近似结果,自然界本质是非线性的.
弹性振动
1.简谐振动: 振子质量m=1,角频率 ,x为位
移, 势能 U (x) 1 2x2
2
牛顿第二定律: 线性系统
d2x m d 2t
解
x x0et , t 0,x x0 t , x
考虑实际外界因素影响: 资源不足,不同区域间作用
混沌理论(Chaostheory)
混合理论attractor近代物理与新认识论1992, 3, 26吴文成混沌──不测风云的背后混沌理论,是近二十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。
量子力学质疑微观世界的物理因果律,而混沌理论则紧接着否定了包括巨观世界拉普拉斯﹙Laplace﹚式的决定型因果律。
长久以来,世界各地的物理学家都在探求自然的秩序,但对无秩序如大气、骚动的海洋、野生动物数目的突兀增减及心脏跳动和脑部的变化,却都显得相当的无知。
但是在七O年代,美国与欧洲有少数科学家开始穿越混乱去打开一条出路。
包括物学家、物理学家及化学家等等,所有的人都在找寻各种俯拾皆是的混沌现象──袅绕上升的香烟烟束爆裂成狂乱的烟涡、风中来回摆动的旗帜、水龙头由稳定的滴漏变成零乱、复杂不定的天气变化与大崩盘的全球股市──的规则与一些简单模式中所隐藏令人惊讶的复杂行为。
十年之后,混沌已经变成一项代表重塑科学体系的狂飙运动,四处充斥为着混沌理论而举行的会议和印行的期刊。
它跨越了不同科学学门的界线,因为它是各种系统的宏观共相,它将天南地北各学门的思想家聚集一堂。
年轻的科学家相信他们正面临物理学改朝换代的序幕。
他们觉得物理学这行已经被高能粒子和量子力学这些华丽而抽象的名词主宰得够久,直到混沌革命──可以连接微观和宏观上百万物体集体行为之间的深深鸿沟的新起科学──开始时,顶尖物理学家才发现自己心安理得地回归到属于人类尺度的某些现象。
混沌理论的近代研究,逐渐领悟到自己正抗拒科学走向化约主义的趋势。
相当简单的数学方程式可以形容像天气或瀑布一样粗暴难料的系统,只要在开头输入小差异,很快就会造成南辕北辙的结果,这个现象被称为「对初始条件的敏感依赖」。
例如蝴蝶效应──今天北京一只蝴蝶展翅翩翩对空气造成扰动,可能导致下个月纽约的大风暴──使得科学家始终无法模拟天气这个复杂系统,更不用说去精确地预测天气。
许多学科中,都背负着牛顿式决定论的担子。
混沌理论综述很全
第10页,共42页。
混沌的特点
1. 对初值的敏感性
❖ 混沌对初值具有敏感依赖性,初值的微小差别会导致未来的混沌轨 道的巨大差别,正是所谓“失之毫厘,谬以千里”。
❖ 1963年,荷兰科学家洛伦兹(Hendrik Antoon Lorenz)在 《大气科学》杂志上发表了“决定性的非周期流”的著名 论文。该论文以一个底部加热、顶部冷却的两维运动流体 块中的对流为模型,提出了著名的Lorenz方程。Lorenz用 数值方法揭示了该模型中存在混沌运动,并发现系统初值 的微小变化会导致轨道在长时间以后完全不同,即解对初 值的极端敏感性,就是著名的蝴蝶效应。
混沌的特点?几种典型的混沌吸引子chens吸引子lorenz吸引子rossler吸引子混沌现象举例?机床切削金属时或打印机机头因冲击而引起的混沌振动?正常的脑电波则近乎随机讯号其脑电图曲线代表的就是典型的混沌现象?单摆是我们熟知的确定性运动的典型但当角度大到一定程度并有驱动力和阻力时也居然能够进入混沌状态?湍流三体问题蝴蝶效应昆虫繁衍混沌现象举例蝴蝶效应?1961年美国气象学家洛伦兹利用他的一台老爷计算机根据他导出的描述气象演变的非线性动力学方程进行长期气象预报的模拟数值计算探讨准确进行长期天气预报的可能性
❖ 直到20世纪六十年代后,混沌现象才引起学术界的广泛注意, 到七十年代才诞生了还不大成熟的“混沌学”。其后,“混沌学” 得到了迅速发展,到了八十年代,更在世界上掀起了混沌现象研 究的热潮。
第3页,共42页。
三体问题的进展 16世纪以来科学家就在寻找这一问题的简单特解即特
殊情况下的简单稳定运动轨道。
第11页,共42页。
混沌的特点
混沌理论浅说
身边的混沌现象(2)
3. 当您去海边游玩的时候,您可曾想到过您是否能测出海 岸线的长度?其实,您永远也测不出它的长度,因为它是分 形的。您使用的度量尺寸却精确,那么得出的结果就越长。
4. 一个正常人的心跳是呈混沌的,越混沌的话,您 的心脏越健康。
5. 混沌理论已经被用来决定为孩子种植麻疹疫苗的最佳时 间。
例如:经典物理学中,首先考察的是没有摩擦的理想摆,没有粘滞性的理想流体,温度梯度很 小的热流等;数学家们首先研究的是线性函数、线性方程等。
理论家们在对大自然中的许多现象进行探索时,总是力求在忽略非线性因素的前提下建立 起线性模型,至少是力求对非线性模型做线性化处理,用线性模型近似或局部地代替非线性 原型,或者借助于对线性过程的微小扰动来讨论非线性效应。
第二十二页,共57页
图1 耗散系统(能量不守恒的有摩擦的系统)中的混沌
1963年美国气象学家洛仑兹在《大气科学杂志》上发表"确定性非周期流“
一文,给出第一个耗散混沌的实例。左为洛仑兹方程组数值解在XOZ平
面上的投 影,右为数值解在YOZ平面上的投影。在计算机屏幕上演示数 值解,只要不人为干预,轨道会永远运 动下去。
第二十三页,共57页
图2 保守系统(能量守恒的无摩擦系统)中的混沌
相空间中有多级椭圆点和双曲点,在椭 圆点附近有周期小岛,小岛中又有复杂结构,
层层嵌套。左上图为参数取0.8时, 右上图为 参数取1.5时, 下图为参数取1.0时的情况。
随着参数的增加(相当对非 线性增强) , 混沌区越来越大。在这里,混沌区与规则区 交织在一起,相互渗透,本图为PC机绘制。
第二十页,共57页
身边的混沌现象(3)
6. 人口动力学中指出:在动物种群,如果数量上不存 在混沌或者变异,那么,这个种群必将灭亡。
混沌理论及应用
分形(fractal)-混沌世界的秩序
毛线的维度=? 远距离來看,线团凝聚成点,维度为零; 再近一点,看出来毛线团点据球形的空间,维度扩展成三; 再走近一些,看出毛线团是由一根根毛线所构成,他的维度 为一,
后来洛伦兹发现两次计算的差别只是第二次 输入中间数据时将原来的0.506127省略为 0.506 。洛伦兹意识到,因为他的方程是 非线性的,非线性方程不同于线性方程, 线性方程对初值的依赖不敏感,而非线性 方程对初值的依赖极其敏感。正是初始条 件的微小误差导致了计算结果的巨大偏离。 由此洛伦兹断言:准确地作出长期天气预 报是不可能的。对此,洛伦兹作了个形象 的比喻:一只蝴蝶在巴西扇动一下翅膀会 在美国的得克萨斯州引起一场龙卷风,这 就是蝴蝶效应。
• 得到的结论是:海岸线的长度是多少: 决定与尺子的长短。 • 海岸线的长度是无限的! • 而显然海岸线的面积为零; • 而我们确实看到了海岸线的存在,而且 海岸线应该是有界的。 • 海岸线什么有界?(长度、面积、体积 显然无界)。
ห้องสมุดไป่ตู้
Koch 曲线
天空中的云朵 植物的叶子
自然界中的分形
山
星 云
分形(fractal)-混沌世界的秩序
结构:由不断的图形迭代而成 利用简单的规则让系统复杂;
从复杂不可解的系统中找到简单美妙的秩序。
分形(fractal)-混沌世界的秩序
古典欧式几何:重视实际可测的 量值 例如:长度、深度、厚度
分形:无法单纯用整数维度来描 述
分形(fractal)-混沌世界的秩序
一、混沌的基本概念及特征
混沌理论及其应用
混沌理论及其应用摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。
本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。
对前人将其运用到电力系统方面所得出的研究成果进行了归纳。
关键词:混沌理论;混沌应用;电力系统Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized.Keywords:Chaos theory;Application of ChaosElectric ;power systems1 前言混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。
混沌理论
混沌与管理一些概念混沌通俗理解为一种完全无序的状态。
科学家们要区分以下3种状态:●稳定均衡:各组成要素总是处于或者能够迅速回到平衡状一间由恒温器控制的房间的温度可以说是处于稳定均衡状态:无论外界温度如何变化,恒温器总使房间回到预先设定的温度,在许多年里洗衣粉市场就曾近似于稳定均衡状态,主要竞争者的市场份额不会发生太大变化。
●有限度动荡(或混沌)。
这是一种有序和无序混合的状态,有许多无法预测的事件和变化,但系统行为的基本模式是可以确定的。
过去20年里,许多汽车市场就是处于混沌状态。
突如其来的冲击,如石油价格变动、消费者品位变化、来自环保主义者的压力、雄心勃勃的新竞争者以及政府政策使许多预测步入歧途,但是大致趋势仍然能够被那些更快行动的公司所掌握和利用。
●爆破性动荡——没有任何秩序和模式。
第二次世界大战发生的许多事件可以看做是这种状态的例子。
许多组织已经习惯于在近似稳定均衡状态的环境里运行,可是现在却发现它们处于混沌状态中。
组织都面对迅速的技术变革,如果能够有效利用,竞争者可能会出人意料地从一个落伍者成长为无法击败的领导者。
组织从稳定均衡状态走入混沌状态,对企业管理有深远的启示。
非线性系统线性系统类似于恒温器。
一个行动会带来一个直接的、可预测的反应。
非线性系统的例子可能是一场大型电视广告运动。
你花费1 000万英镑希望赢得3个百分点的市场份额。
经验和财务模型清楚地表明这个目标可以实现。
现实却出现了一系列未曾计划到的结果——竞争者反击,花费更多的资金,或者花费少但更有创意的广告击败你,或者推出特别的“半价销售”满足市场需求,使你的销售锐减并在银行结余上留下一个大窟窿。
竞争者可能更加激进,在公众中传播你的产品质量或安全性问题。
为什么需要混沌理论大多数人都承认,组织变得越来越复杂,越来越容易发生突然的、不可预料的变化。
在一个相当稳定的环境中,组织运行可以是一种传统等级制的机械方式。
最高管理者(由他们的顾问和公司计划人员辅助)设定战略,中层管理人员执行战略,精细的控制和报告体系将数以千计的数字沿着等级结构向上传送给负责人。
非线性动力学的基本原理和应用实例
非线性动力学的基本原理和应用实例非线性动力学,又称为混沌理论,是一门研究复杂系统行为的学科。
它研究的领域包括物理学、化学、生物学、社会学等多个领域。
本文将介绍非线性动力学的基本原理和应用实例。
一、非线性动力学的基本原理非线性动力学研究的是具有非线性行为的系统。
所谓非线性行为,指的是系统对初始条件的微小变化极其敏感,这种敏感性在系统中表现为不可预测性和不规则性。
一个非线性系统可以用微分方程的形式表示。
因此,非线性动力学的基本原理是微分方程的求解。
非线性系统的微分方程通常较为复杂,无法通过解析方法求解。
因此,在非线性动力学中,常常使用数值计算方法来模拟系统的行为。
另一个非线性动力学的基本原理是混沌理论。
混沌理论表明,在一些非线性系统中,微小的扰动可以引起系统行为的剧烈变化。
这是由于在非线性系统中,不同的初值条件会引起系统的行为非常不同。
这种不确定性被称为“混沌”。
二、非线性动力学的应用实例1. 布朗运动布朗运动是指在液体中漂浮的物质在水分子的撞击下不断做无规则的运动。
这个过程可以用随机游走模型来描述,也可以用布朗粒子模型来描述。
布朗粒子模型是一个非线性系统,在模拟过程中需要使用非线性动力学的方法。
布朗运动在化学动力学、生物化学、统计物理学等领域有广泛应用。
2. 汇流问题汇流问题是指在不同流域中通过河道流动的水汇合到同一个点的问题。
这个问题可以用非线性水力模型来描述。
非线性水力模型是一个非线性系统,在模拟过程中需要使用非线性动力学的方法。
汇流问题在水文学和水资源管理等领域有广泛应用。
3. 神经网络神经网络是一种模拟大脑神经元之间相互作用的数学模型。
神经网络可以看作是一个非线性系统,因为神经元之间的连接是多样的、强弱不一的。
用非线性动力学的方法可以对神经网络模型进行仿真和分析。
神经网络在人工智能、模式识别等领域有广泛应用。
4. 生态系统生态系统是指生物体之间以及生物体与周围环境之间相互作用形成的系统。
生态系统通常是非线性的,因为生物体之间的相互作用和生物体与环境之间的相互作用都是非线性的。
混沌理论及其在人工智能中的应用
混沌理论及其在人工智能中的应用混沌理论指的是一类看似随机、无法预测的动态系统的理论研究。
混沌理论被普遍应用在许多领域,包括天气预报、生态系统、股票市场、流体力学等方面。
近年来,混沌理论在人工智能领域中的应用也备受瞩目。
在传统的计算机科学中,大部分的应用都是基于确定性逻辑的,即事前已经为系统指定好输入和输出。
但是,当系统面临不确定变量时,确定性逻辑就失去了效用。
换言之,当面对某些完全是随机变量时,计算机无法学习和预测。
混沌理论在这时起到了重要的作用。
它是随机性和确定性的融合,是一种旨在对高度不规则的动态过程建立结构性模型的方法。
混沌系统的行为是无规则的,但是它们有固定的规律和特征。
这种特殊的规律就是系统的“混沌行为”。
在人工智能中,混沌理论可以应用于很多方面,包括模式识别、数据挖掘、神经网络、遗传算法等。
其中,神经网络和遗传算法的应用最为广泛。
对于神经网络来说,混沌理论可以被用来生成更好的权重和偏置,来提高网络的性能。
一般而言,利用随机方式初始化权重和偏置,会导致网络在训练过程中陷入“局部最优解”的问题。
利用混沌序列等随机数,可以改善这个问题,从而达到更好的训练效果。
遗传算法也可以利用混沌理论来提高效率,特别是在寻找最优解的时候。
通常情况下,遗传算法的选择、交叉和变异的过程是基于概率的,所以会存在搜索效率低下的问题。
使用混沌序列和混沌映射,可以提高选择和变异的随机性,从而达到更好的搜索效果。
除此之外,混沌理论还可以应用在非线性动力学建模、信息隐藏等方面,这些应用最近也得到了研究人员的关注。
总的来说,混沌理论是一种广泛应用的理论,能够为人工智能领域的发展带来很多新的思路和方法。
虽然混沌系统看起来很难掌握,但是只要理解了混沌思想,就能在实际应用中发挥出重要的作用。
混沌理论原理:看似无序中的隐藏秩序
混沌理论在机器学习算法中的应用
混沌理论在机器学习算法中的应用
• 利用混沌系统的敏感性进行特征提取 和选择 • 结合混沌理论进行模型选择和优化 • 利用混沌系统的高维特性提高机器学 习算法的性能
混沌理论在机器学习算法中的应用实例
• 深度学习:利用混沌神经网络进行图 像识别和语音识别 • 强化学习:利用混沌系统进行策略选 择和优化 • 聚类分析:利用混沌方法进行聚类分 析和异常检测
• 经济学:研究金融市场波动和宏 观经济系统的混沌特性 • 政治学:探讨政治系统和决策过 程的混沌现象 • 心理学:研究人类行为和认知过 程中的混沌特性
02 混沌系统的特性与分析方法
混沌系统的定义与基本特性
混沌系统的基本特性
• 不可预测性:短期行为可以预测,但长期行为难以预测 • 不稳定性:系统状态的微小变化可能导致系统行为的显著变化 • 保守性:系统状态在一定范围内的变化不会影响系统的整体性质
05 混沌理论在预测与建模领域的重要性
混沌预测理论及其方法
01
混沌预测理论
• 基于混沌系统的吸引子和分岔特性进行 预测 • 利用李雅普诺夫指数等定量指标评估预 测方法的准确性 • 结合非线性动力学模型和统计学习方法 进行预测
02
混沌预测方法
• 确定性预测:基于混沌系统的数学模型 进行预测 • 统计预测:基于混沌系统的统计特性进 行预测 • 机器学习方法:利用机器学习算法对混 沌系统进行预测
李雅普诺夫指数的计算 方法
李雅普诺夫指数在混沌 系统分析中的应用
• 基于线性化近似的方法:计算简 单混沌系统的李雅普诺夫指数 • 基于拓扑的方法:计算复杂混沌 系统的李雅普诺夫指数 • 基于数值模拟的方法:通过计算 机模拟计算混沌系统的李雅普诺夫 指数