三角函数应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数应用题
1.生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)
2. 如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长. (参考数据:3=1.73)
3. 如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路。现新修一条路AC 到公路l .小明测量出∠ACD =30°,∠ABD =45°,BC =50m .请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m
1.732)
4. 如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平面AE 垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°. (1)求垂直支架CD 的长度。(结果保留根号)
(2)求水箱半径OD 的长度。(结果保留三个有效数字,参考数据:41.12≈,73.13≈)
5. 某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.
6. 一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°, ∠E =45°,∠A =60°,A C=10,试求CD 的长.
7. 综合实践课上,小明所在小组要测量护城河的
宽度。如图所示是护城河的一段,两岸ABCD ,河岸AB 上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD 的M 处测得∠α=36°,然后沿河岸走50米到达N 点,测得∠β=72°。请你根据这些数据帮小明他们算出河宽FR (结果保留两位有效数字).(参考数据:sin 36°≈0.59,cos 36°≈0.81,tan36°≈0.73,sin 72°≈0.95,cos 72°≈0.31,tan72°≈3.08)
A
C
D
B
E F β α
G
8. 为倡导“地摊生活”,常选择以自行车作为代步
工具,如图1所示是一辆自行车的实物图,车架档AC 与CD 的长分别为45cm ,60cm ,且它们相互垂直,座杆CE 的长为20cm ,点,,A C E 在同一条直线上,且75CAB ∠=︒,如图2.
(1)求车架档AD 的长
(2)求车座点E 到车架档AB 的距离.
(记过精确到1cm ,参考数据:sin 750.959cos750.2588tan 75 3.7321︒≈︒≈︒≈,
,)
9. 图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 的距离为5m ,每层楼高3.5m ,AE 、BF 、CH 都垂直于地面. (1)求16层楼房DE 的高度;
(2)若EF=16m ,求塔吊的高CH 的长(精确到0.1m ).
10.丁丁要制作一个形如图1的风筝,想在一个矩形材料中裁剪出如图2 阴影所示的梯形翅膀,请你根据图2中的数据帮助丁丁计算出BE ,CD 的长度(精确到个位,7.13≈)
B
C
11. 青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图7所示)一天,灰太狼在自家城堡顶部A 处测得懒羊羊所在地B 处的俯角为60°,然后下到城堡的C 处,测得B 处的俯角为30°.已知AC=40米,若灰太狼以5m/s 的速度从城堡底部D 处出发,几秒钟后能抓到懒羊羊?(结果精确到个位)
12.崀山成功列入世界自然遗产名录后,景区管理部门决定在八角寨假设旅游索道设计人员为了计算索道AB (索道起点为山脚B 处,终点为山顶A 处)的长度,采取了如图(八)所示的测量方法。在B 处测得山顶A 的仰角为16°,查阅相关资料得山高AC=325米,求索道AB 的长度。(结果精确到1米,参考数据sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)
13. 如图8,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线.已知公路的宽AB 为8米,电线杆AE 的高为12米,水泥撑杆BD 高为6米,拉线CD 与水平线AC 的夹角为67.4°.求拉线CDE 的总长L (A 、B 、C 三点在同一直线上,电线杆、水泥杆的大小忽略不计).
图7
B
(参考数据:12sin 67.413≈
,5cos 67.413≈ ,12tan67.45
=
)
14. 如图,自来水厂A 和村庄B 在小河l 的两侧,现要在A ,B 间铺设一条输水答道.为了搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东24.5º方向,前行1200m,到达点Q 处,测得A 位于北偏西49º方向,B 位于南偏西41º方向. (1)线段BQ 与PQ 是否相等?请说明理由;
(2)求A ,B 间的距离. (参考数据:cos41º≈0.75)
15. 如图,小明在大楼30米高(即PH=30米)得窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处得俯角为60°,已知该山坡的坡度i (即tan ∠ABC )
为1:3,点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上,且PH ⊥HC. (1)山坡坡角(即∠ABC )的度数等于________度;
(2)求A 、B 两点间的距离(结果精确到0.1米,参考数据:3≈1.732).
16. 如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m ,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m )