智能控制理论及应用 复习
工程学中的智能控制理论研究
工程学中的智能控制理论研究智能控制理论是在现代工程学中极为重要的理论研究领域,它主要关注如何让计算机程序自主地完成设计要求,并控制机器人等自动化装置。
在工程学的现代化建设中,智能控制理论成为研究的热点领域,得到了广泛的应用和发展。
一、智能控制理论的概述智能控制理论是指基于计算机和电子技术,利用人工智能的方法和技术,精确地进行自主控制和自我诊断的控制理论。
智能控制技术在现代工程学中得到广泛的应用,为实现智能工厂,提高生产效率,减少生产工作人员作用发挥了非常重要的作用。
智能控制技术首先应用于机器人等自动化装置中,可以实现机器人自主化操作和独立决策,成为工程学领域中重要的研究方向。
二、智能控制技术的实现基础智能控制理论的实现基础是计算机技术和人工智能技术。
在现代工程学中,计算机技术被广泛应用,包括与电子和通信技术相结合,从而形成了计算机控制技术。
人工智能技术的发展与应用,进一步推动了计算机智能化和自动化技术的提升,这也为实现智能控制技术提供了很好的基础条件。
三、智能控制技术的具体应用智能控制技术的具体应用非常广泛,包括智能家居、智能交通、智能制造等诸多领域。
1.智能家居:智能家居是在房屋建筑领域中的一种新型研究领域,它利用计算机和电子技术控制室内的灯具、窗帘、空调、平板电视等智能化的电器设备,实现人们居住和生活的舒适和便利。
2.智能交通:智能交通实现了无人驾驶技术,它通过计算机导航系统,运用传感器等技术进行自主运行,通过车联网技术实现车与车之间以及车与道路设施之间的信息交互与传递。
3.智能制造:智能制造是一个综合性的制造领域,利用计算机、网络技术,以及人工智能技术等全方位地进行生产过程的自动化控制和精细化管理。
四、发展智能控制技术的未来前景在现代工程学中,智能控制技术是一个非常有发展前景的技术领域。
未来,智能控制技术的创新和应用将会进一步推动工程学的快速发展,有利于实现各领域的自动化发展,提高生活和生产效率,改善人类的生存与发展环境。
智能控制理论及其应用-第一章概述
1.2 智能控制的产生及其发展
(3)智能控制的发展
国际智能自动化学会(International Society Of Intelligent Automation,简称ISIA) 筹委会主席是模糊数学与模糊系统 的创始人L.A.Zadeh教授。筹委会第一次会议已于1995 年10月在加拿大温哥华召开。她的成立将在世界范围内对于 推动智能自动化的研究起到促进作用。 我国也十分重视智能控制理论和应用的研究。1993年在 北京召开了“全球华人智能控制与智能自动化大会”,1994年 在北京和沈阳召开了智能控制两个学术会议,1995年中国智 能自动化学术会议暨智能自动化专业委员会成立大会在天津 召开。
1.2 智能控制的产生及其发展
(1)智能控制的孕育
1966年,Mendel进一步在空间飞行器的学习控制系统 中应用了人工智能技术,并提出了“人工智能控制”的概 念。 1967年,Leondes和Mendel首先正式使用“智能控制” 一词,并把记忆、目标分解等一些简单的人工智能技术用 于学习控制系统,提高了系统处理不确定性问题的能力。 这就标志着智能控制的思想已经萌芽。
1.3 传统控制与智能控制
智能控制的产生来源于被控系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能,可以概括为,智能 控制是“三高三性”的产物,它的创立和发展需要对当代多种 前沿学科、多种先进技术和多种科学方法,加以高度综合和 利用。 因此,智能控制无疑是控制理论发展的高级阶段。
1.4 智能控制理论的主要特征
1.2 智能控制的产生及其发展
(3)智能控制的发展
美国《IEEE控制系统》杂志1991、1993~1995年多次发 表《智能控制专辑》,英国《国际控制》杂志1992年也发表了 《智能控制专辑》,日文《计测与控制》杂志1994年发表了 《智能系统特集》,德文《电子学》杂志自1991年以来连续发 表多篇模糊逻辑控制和神经网络方面的论文;俄文《自动化与 遥控技术》杂志1994年也发表了自适应控制的人工智能基础及 神经网络方面的研究论文。 如果说智能控制在80年代的应用和研究主要是面向工业过 程控制,那么90年代,智能控制的应用已经扩大到面向军事、 高技术领域和日用家电产品等领域。今天,“智能性”已经成为 衡量“产品”和“技术”高低的标准。
智能控制理论及应用 PPT
智能控制理论及应用 PPT智能控制是控制理论发展的高级阶段,它综合了人工智能、自动控制、运筹学等多学科的知识,旨在解决那些传统控制方法难以处理的复杂系统控制问题。
本 PPT 将带您深入了解智能控制理论及其广泛的应用领域。
一、智能控制的概念智能控制是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
与传统控制相比,智能控制具有以下显著特点:1、不确定性:能够处理系统中的不确定性,如模型不确定性、参数变化和外部干扰等。
2、复杂性:适用于复杂的、非线性的和时变的系统。
3、自适应性:可以根据系统的运行情况和环境变化自动调整控制策略。
4、学习能力:能够从数据和经验中学习,不断优化控制性能。
二、智能控制的主要理论1、模糊控制模糊控制是基于模糊集合理论和模糊逻辑推理的一种智能控制方法。
它通过将精确的输入量模糊化,利用模糊规则进行推理,最后将模糊输出解模糊化为精确的控制量。
模糊控制适用于那些难以建立精确数学模型的系统,例如温度控制、速度控制等。
2、神经网络控制神经网络控制是利用人工神经网络的学习和自适应能力来实现控制的方法。
神经网络可以通过对大量数据的学习,提取系统的特征和规律,从而实现对系统的有效控制。
在机器人控制、模式识别等领域有着广泛的应用。
3、专家控制专家控制是将专家系统的知识和经验与控制理论相结合的一种智能控制方法。
专家系统包含了大量的领域知识和控制策略,能够根据系统的状态和需求提供准确的控制决策。
4、遗传算法遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传变异的过程来寻找最优的控制参数或策略。
它在控制器的参数优化、系统的建模和优化等方面发挥着重要作用。
三、智能控制的应用领域1、工业生产在工业生产过程中,智能控制可以提高生产效率、产品质量和设备的可靠性。
例如,在化工生产中,通过智能控制可以实现对反应过程的精确控制,优化生产工艺;在机器人制造中,利用神经网络控制可以实现机器人的精确动作和轨迹规划。
智能控制理论及应用复习
智能控制理论及应用第1章绪论■《智能控制》在自动化课程体系中的位置《智能控制》是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器。
与《自动控制原理》和《现代控制原理》一起构成了自动控制课程体系的理论基础。
■《智能控制》在控制理论中的位置《智能控制》是目前控制理论的最高级形式,代表了控制理论的发展趋势,能有效地处理复杂的控制问题。
其相关技术可以推广应用于控制之外的领域:金融、管理、土木、设计等等。
■经典控制和现代控制理论的统称为传统控制,智能控制是人工智能与控制理论交叉的产物,是传统控制理论发展的高级阶段。
智能控制是针对系统的复杂性、非线性和不确定性而提出来的。
■传统控制和智能控制的主要区别:➢传统控制方法在处理复杂化和不确定性问题方面能力很低;智能控制在处理复杂性、不确定性方面能力较高。
智能控制系统的核心任务是控制具有复杂性和不确定性的系统,而控制的最有效途径就是采用仿人智能控制决策。
➢传统控制是基于被控对象精确模型的控制方式;智能控制的核心是基于知识进行智能决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。
传统控制和智能控制的统一:智能控制擅长解决非线性、时变等复杂的控制问题,而传统控制适于解决线性、时不变等相对简单的控制问题。
智能控制的许多解决方案是在传统控制方案基础上的改进,因此,智能控制是对传统控制的扩充和发展,传统控制是智能控制的一个组成部分。
■智能控制与传统控制的特点。
传统控制:经典反馈控制和现代理论控制。
它们的主要特征是基于精确的系统数学模型的控制。
适于解决线性、时不变等相对简单的控制问题。
智能控制:以上问题用智能的方法同样可以解决。
智能控制是对传统控制理论的发展,传统控制是智能控制的一个组成部分,在这个意义下,两者可以统一在智能控制的框架下。
■智能控制应用对象的特点(1)不确定性的模型模型未知或知之甚少;模型的结构和参数可能在很大范围内变化。
(2)高度的非线性(3)复杂的任务要求■自动控制的发展过程■智能控制系统的结构一般有哪几部分组成,它们之间存在什么关系?答:智能控制系统的基本结构一般由三个部分组成:人工智能(AI):是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发式推理等功能。
1+X智能家居系统集成和应用理论总复习题
1+X智能家居系统集成和应用理论总复习题物联网是在互联网和移动通信网等网络通讯基础上,利用具有感知、通讯和计算的智能物体自动获取现实世界的信息,构建人与物、物与物互联的智能信息服务系统O物联网体系结构主要由()三个层次组成。
感知层、网络层和汇聚层感知层、服务层和应用层感知层、网络层和应用层(I接入层、汇聚层和应用层()一般具备设备控制、场景设置、安全监控、设备分享和信息反馈等功能。
无线紧急按钮场景控制面板智能家居APP智能液晶触摸屏智能家居是由多个智能硬件组合而成的系统。
来自不同厂家、使用不同()的智能家居设备之间存在不能完全“互联互通”的问题。
联网模块通信协议(正确答案)通信模块功能模块()的智能灯泡,在上电后处于间隔IS闪烁状态,此时灯具已恢复出厂设置并处于入网状态,可以直接进行配网。
已配网未配网未做场景已做场景红外遥控器是一种具有()功能,能将接收到的红外信号进行存储,然后再次进行发送红外信息的装置。
它能够控制大多数品牌电视、空调等家电。
无线发射和接收无线发射无线接收以上都不对在办公室用手机APP控制家中的ZigBee智能插座,APP首先发送控制指令到(),最后在智能插座收到指令之后解析出指令的意思,打开或关闭插座220V输出,就完成了一次控制。
智能网关智能插座受控电器云端服务器指纹具有(),因此我们可以把一个人同他的指纹对应起来,通过比较他的指纹特征和预先保存的指纹特征,就可以验证他的真实身份。
终身不变性唯一性方便性以上都对(巾―)作为一款ZigBee设备,无线门窗磁传感器的上报信息会先发送到智能网关,然后上报到云端服务器,最后服务器发送信息到移动端的APP上。
门窗磁传感器在()条件下会上报设备状态。
一个心跳周期产品配网成功打开和闭合事件以上都有可能正产:()是在智能识别的基础上,对图像进行差分计算,自动识别视觉范围内目标的运动方向,并自动控制云台对移动目标进行目标跟踪。
移动跟踪技术正—)AI技术日夜转换技术异常录像天然气报警器接通电源时,蜂鸣器“嘀”的一声,探测器进入“预热”状态,约三分钟后进入正常工作状态。
智能控制理论及应用
智能控制理论及应用在当今科技飞速发展的时代,智能控制理论作为一门新兴的交叉学科,正逐渐改变着我们的生活和生产方式。
它融合了控制理论、计算机科学、人工智能等多个领域的知识,为解决复杂系统的控制问题提供了新的思路和方法。
智能控制理论的核心在于模拟人类的智能行为,使控制系统能够在不确定、复杂的环境中自主地进行决策和控制。
与传统控制理论相比,智能控制具有更强的适应性和自学习能力。
传统控制理论通常基于精确的数学模型,然而在实际应用中,很多系统难以建立精确的数学模型,或者模型会随着环境和工作条件的变化而发生改变。
智能控制则能够在模型不精确或不确定的情况下,通过学习和优化来实现有效的控制。
模糊控制是智能控制的一个重要分支。
它利用模糊集合和模糊逻辑来描述和处理系统中的不确定性和模糊性。
例如,在温度控制中,“高温”“低温”“适中”等概念往往没有明确的界限,模糊控制可以很好地处理这种模糊性,根据经验和规则来调整控制策略。
模糊控制的优点在于它不需要精确的数学模型,只需要根据专家经验或操作人员的知识来制定模糊规则,就能够实现对系统的有效控制。
神经网络控制也是智能控制中的热门领域。
神经网络类似于人类大脑的神经元网络,具有强大的学习和泛化能力。
通过对大量数据的学习,神经网络可以自动提取特征和规律,并用于控制系统的优化和决策。
在机器人控制、图像处理等领域,神经网络控制都取得了显著的成果。
智能控制在众多领域都有着广泛的应用。
在工业生产中,智能控制可以提高生产效率和产品质量。
例如,在自动化生产线中,智能控制系统可以根据实时的生产数据和环境变化,自动调整生产参数,实现生产过程的优化。
在机器人领域,智能控制使机器人能够更加灵活地适应不同的任务和环境,完成复杂的操作,如无人驾驶汽车、工业机器人的精密操作等。
在智能家居方面,智能控制让我们的生活更加便捷和舒适。
通过传感器和智能算法,智能家居系统可以自动调节室内温度、照明、安防等,实现家居设备的智能化管理。
北京市考研控制科学与工程复习资料控制理论与智能控制技术实践讲解
北京市考研控制科学与工程复习资料控制理论与智能控制技术实践讲解北京市考研控制科学与工程复习资料——控制理论与智能控制技术实践讲解控制科学与工程是一门综合性学科,主要研究系统的建模、分析和控制方法,以及利用计算机和智能技术解决实际控制问题的理论和方法。
作为控制科学与工程的一部分,控制理论与智能控制技术是考研考试中的重要内容之一。
本文将为考生们提供一些关于控制理论与智能控制技术实践的资料和讲解,以帮助考生们系统地复习与准备考研。
一、控制理论概述控制理论是控制科学与工程的核心理论。
它研究如何通过系统的输入与输出之间的关系对系统进行控制,以实现预期的目标。
控制理论又可分为经典控制理论和现代控制理论两个方面。
1. 经典控制理论经典控制理论主要研究线性时不变系统和连续时间系统的控制方法。
其中,著名的控制方法包括比例控制、积分控制、微分控制、PID控制等。
这些方法利用数学建模和系统分析的原理,设计出可以稳定系统、减小系统响应时间和减小系统误差的控制器。
2. 现代控制理论现代控制理论主要研究非线性系统、时变系统和离散时间系统的控制方法。
在现代控制理论中,研究者们提出了诸如状态空间法、根轨迹法、频率域法等一系列新的理论和方法,用于解决更为复杂的系统控制问题。
现代控制理论在控制精度、鲁棒性和自适应性方面较经典控制理论具有明显的优势。
二、智能控制技术实践智能控制技术是应用智能计算和智能算法进行系统控制的一种方法。
它结合了控制理论和人工智能技术,旨在通过人工智能算法来提高系统的自学习和自适应能力。
1. 模糊控制模糊控制是一种基于模糊逻辑和模糊推理的控制方法。
它通过将人类专家的经验知识转化为模糊规则,并结合系统输入与输出之间的模糊关系进行控制。
模糊控制在处理模糊和不确定信息方面具有一定的优势,适用于一些复杂且非精确的系统控制问题。
2. 神经网络控制神经网络控制是一种模拟人脑神经网络结构和功能的控制方法。
它通过训练神经网络来建立系统的输入与输出之间的映射关系,并利用训练好的神经网络进行实时控制。
智能控制理论及应用
摘要:介绍了智能控制理论的发展概况、研究对象与工具、功能特点,简要列举了智能控制的集中应用。
关键词:智能控制;神经网络;应用0前言自从美国数学家维纳在20世纪49年代创立控制论以来,智能控制理论与智能化系统发展十分迅速。
智能控制理论被誉为最新一代的控制理论,代表性的理论有模糊控制、神经网络控制、基因控制即遗传算法、混沌控制、小波理论、分层递阶控制、拟人化智能控制、博弈论等。
应用智能控制理论解决工程控制系统问题,这样一类系统称为智能化系统。
他广泛应用于复杂的工业过程控制、机器人与机械手控制、航天航空控制、交通运输控制等。
他尤其适用于被控对象模型包含有不确定性、时变、非线性、时滞、耦合等难以控制的因素。
采用其它控制理论难以设计出合适与符合要求的系统时,都有可能期望应用智能化理论获得满意的解决。
科学技术高度发展导致了被控对象在结构上的复杂化和大型化。
在许多系统中,复杂性不仅仅表现在高维性上,更多则是表现在系统信息的模糊性、不确定性、偶然性和不完全性上。
此时,人工智能得益于计算机技术的飞速发展,已逐渐成为一门学科,并在实际应用中显示出很强的生命力。
同时,国际学术界对智能控制的研究也十分活跃,到了20世纪90年代,各种智能控制的国际学术会议日益频繁。
国内也在20世纪80年代初开始进行智能控制研究。
1智能控制理论的发展阶段虽然智能控制理论只有几十年的历史,尚未形成较完整的理论体系,蛋其已有的应用成果和理论发展表明它已成为自动控制的前沿学科之一。
智能控制主要经历了以下几个发展阶段:1.1 自动控制的发展与挫折上世纪40~50年代,以频率法为代表的单变量系统控制理论逐步发展起来,并且成功地用在雷达及火力控制系统上,形成了“古典控制理论”。
上世纪60~70年代,数学家们在控制理论发展中占据了主导地位,形成了以状态空间法为代表的“现代控制理论”。
他们引入了能控、能观、满秩等概念,使得控制理论建立在严密精确的数学模型之上,从而造成了理论与实践之间巨大的分歧。
智能控制理论及其在机器人上的应用
智能控制理论及其在机器人上的应用第一章:智能控制理论概述智能控制是一种利用人工智能技术实现对系统控制的技术,其目的在于给机器进行指令,控制其运动。
智能控制技术综合了智能计算、模糊逻辑、神经网络等计算机科学中的前沿技术,使得机器可以像人一样对环境做出反应,完成人们的工作任务。
智能控制理论研究了机器在复杂的环境下做出决策的方法,通过对数据的收集、处理以及算法的设计和调整,让机器具有感知、理解和适应环境的能力。
智能控制理论的研究对于机器人、无人飞行器、自动驾驶汽车等自主化系统至关重要。
第二章:智能控制在机器人上的应用机器人是智能控制技术的典型应用之一。
智能控制可以使机器人从一个简单的动作执行者提升为一个拥有自主决策能力、可以接受人类指令、智能感知环境、适应环境的智能机器人。
1. 机器人的感知机器人的感知是指让机器人具有感知环境、收集信息的功能。
机器人的感知技术可以通过传感器实现。
智能控制可以让机器人利用传感器把环境信息收集到机器人的电脑里,对它进行分析,在这个基础上进行相应的决策。
传感器的种类非常多,例如红外线传感器、激光雷达传感器、声波传感器、视觉传感器等,不同的传感器通过不同的方式来感知环境,并生成不同的数据。
智能控制可以帮助机器人对从传感器中收集到的信息进行处理并指导其展开相应的行动。
2. 机器人的决策机器人的决策能力是指让机器人像人类一样生成合理的决策,并根据情况调整自己的决策。
基于智能控制的机器人可以利用数据和算法来进行计算、分析和预测。
例如,基于智能控制的机器人在执行一项任务时,可以根据所处的环境变化、任务目标的变化以及其他因素来生成相应的决策。
如果需要调整,机器人就可以根据新的数据情况重新生成新的决策。
3. 机器人的执行机器人的执行能力是指让机器人能够按照预设计划或者生成的决策来执行任务。
机器人的控制系统可以根据信息反馈不断的调整机器人的动作,使机器人能够适应不同环境、不同任务目标的要求。
智能控制理论及其应用-教学大纲
《智能控制理论及应用》教学大纲课程名称:智能控制理论及应用课程编号:0811010006课程学时:36学时课程学分:2适用专业:控制理论与控制工程课程性质:专业方向课先修课程:《高等数学》、《自动控制原理》、《现代控制理论》大纲执笔人:编写时间:2006年9月一、课程目的与要求本课程主要讲授模糊控制、神经网络控制和遗传算法控制等。
通过本课程的学习,可使学生熟悉智能控制的主要理论分支、数学基础、应用场合及发展趋势,掌握智能控制的理论基础及其在实际控制系统中的应用方法。
二、教学内容及学时安排(一)绪论:2学时主要介绍智能控制定义、智能控制的主要类型、智能控制的产生和发展,(二)模糊控制:10学时2.1模糊控制的数学基础2.2模糊语言变量与模糊语句2.3模糊推理2.4模糊控制器的工作原理2.5模糊控制仿真应用实例(三)神经网络控制:8学时3.1人工神经网络基础3.2 BP网络3.3径向基函数网络3.4 Hopfield网络3.5神经网络系统辨识3.6神经网络控制及应用(四)模糊神经网络控制:2学时4.1模糊神经网络基本思想4.2模糊神经网络结构4.3模糊神经网络控制原理4.4模糊神经网络控制应用(五)遗传算法:8学时5.1遗传算法的基本操作5.2遗传算法实现与改进5.3遗传算法在智能控制中应用(六)专家系统:2学时6.1专家系统基本思想6.2专家系统的应用(七)应用讨论:4学时主要探索智能控制方法在工程中应用三、教材及主要参考书无教材,主要参考书目《智能控制理论与技术》孙增圻编,清华大学出版社,2004.10《智能控制理论及应用》王耀南、孙炜编,机械工业大学出版社,2008 四、考核方式考核方式为平时成绩(30%)+期末试卷考试成绩(70%)。
智能控制理论及应用PPT课件
20世纪50年代至70年代是神经网络研究的萧条期,但仍有 不少学者致力于神经网络模型的研究;
Albus在1975年提出的CMAC神经网络模型,利用人脑记 忆模型提出了一种分布式的联想查表系统;
Grossberg在1976年提出的自谐振理论(ART)解决了无 导师指导下的模式分类;
到了80年代,人工神经网络进入了发展期:
1985年8月,IEEE在美国纽约召开了第一届智能控制学术 研讨会,会上集中讨论了智能控制的原理和系统结构等问题。 这次会议之后不久,IEEE控制系统学会成立了智能控制专业委 员会。1987年1月,IEEE控制系统学会和计算机学会在美国费 城联合召开了智能控制的第一次国际会议,来自美、欧、日、 中以及其他国家的150余位代表出席了这次学术盛会。
从控制论的角度出发:智能控制是驱动智能机器自主地实 现其目标的过程。或者说,智能控制是一类无需人的干预就能 独立地驱动智能机器实现其目标的自动控制方法。
以上各种描述说明:智能控制具有认知和仿人的功能;能 适应不确定性的环境;能自主处理信息以减少不确定性;能可 靠地进行规划,产生和执行有目的的行为,以获取最优的控制 效果。
1968年扎德首次公开发表其“模糊控制算法”;
1973年他又发表了语言与模糊逻辑相结合的系统建立方法; 1974年伦敦大学Mamdani博士首次尝试利用模糊逻辑,成 功地开发了世界上第一台模糊控制的蒸汽引擎;
1979年T.J.Procky和E.H.Mamdani共同提出了自学习概念, 使系统性能大为改善;
11
18.07.2020
北京科技大学自动化学院控制科学与工程系
1.2 智能控制的发展概况
1.2.1 智能控制的产生 人们将智能控制的产生归结为二大主因,一是自动控制理
多智能体协同控制理论及其应用
多智能体协同控制理论及其应用随着智能化技术的不断发展,多智能体协同控制理论已成为一个热门研究方向。
本文将介绍多智能体协同控制理论及其在航空飞行控制、智能制造、交通运输等领域的应用。
一、多智能体协同控制理论多智能体协同控制(Multi-Agent Cooperative Control,简称MACC)理论是指将多个智能体进行协作,实现共同的任务。
在MACC理论中,每个智能体均有自己的状态空间、控制输入和控制逻辑,同时它们之间通过信息交互协同完成任务。
MACC理论的研究内容主要包括多智能体控制算法设计、多智能体控制协议设计、多智能体控制系统性能分析及合成等方面。
其中,多智能体控制算法设计是MACC研究的核心内容,它可以分为集中式和分布式两种。
集中式控制算法是指,所有智能体的状态和控制量都由中心控制器计算并控制。
这种算法具有较高的计算效率和控制精度,但控制器的单点故障容易造成整个系统崩溃。
分布式控制算法是指,智能体之间通过通信实现状态和控制信息的交换,即每个智能体计算自己的控制量,与相邻智能体进行信息交互,相互协调完成任务。
相对于集中式控制算法,分布式控制算法具有较好的抗干扰性和容错性,但计算复杂度较高,且控制精度不如集中式控制算法。
二、多智能体协同控制的应用1、航空飞行控制航空飞行控制是多智能体协同控制的典型应用场景。
比如,无人机编队飞行控制。
在无人机编队飞行任务中,需要对多架无人机进行编队控制,以实现任务需求。
对于无人机编队控制,可使用基于分布式控制算法的角度一致性协议进行控制,以保证编队中所有无人机在空间上维持一致的飞行状态。
2、智能制造智能制造中,需要对工厂内部的机器人进行协同控制,以实现生产流程的自动化和优化。
比如,在汽车制造中,车身焊接任务是一个典型的智能制造应用场景。
通过对车身焊接机器人进行协同控制,可实现多台机器人高效地完成车身焊接任务,提高生产效率和质量。
3、交通运输交通运输中,多智能体协同控制可用于智能交通系统的建设。
智能控制理论与智能控制系统
智能控制理论与智能控制系统班级:自动化0904 姓名:孙慧 学号:2009001182摘要:本文介绍了“智能控制概念、理论及智能控制系统”,以便读者快速理解智能控制的中心内容并了解更多的相关信息。
文中还有几个与该技术相关的例子,方便读者知道该技术的应用领域。
关键字:智能控制、应用领域、智能手机、交通控制系统、智能建筑、火炮发射。
一. 智能控制的概念及理论智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。
定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。
因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。
此外,智能控制的核心在高层控制,即组织控制。
高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。
为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。
这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。
二. 智能控制系统的概括及应用随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。
智能控制正是在这种条件下产生的。
它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。
1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。
1985年,在美国首次召开了智能控制学术讨论会。
1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。
智能控制技术复习题课后答案-图文
智能控制技术复习题课后答案-图文一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和3、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1);(2)10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。
智能控制知识点范文
智能控制知识点范文
1、空调智能控制的基本原理
空调智能控制是一种自动控制空调的技术。
它使用温度传感器和湿度传感器监测室内环境的变化,根据这些信息进行调节,以确保室内环境温度与湿度水平达到设定值。
空调智能控制系统可以在室内温度及湿度超出设定范围时自动启动,以达到舒适状态。
2、空调智能控制系统的优点
(1)减少能耗:空调智能控制系统可以控制室内的温度和湿度,从而减少能耗。
(2)节约用电:当室内温度和湿度超出设定范围时,空调智能控制系统可以自动启动,从而节约用电。
(3)降低噪音:空调智能控制系统可以安静地监测室内环境,减少噪音,为人们提供舒适的环境。
(4)安全性:空调智能控制系统能够满足安防的要求,在室内温度和湿度异常时,可以及时发出警报,确保安全。
3、空调智能控制系统的应用
空调智能控制系统可以用于家庭、公司、医院、学校等各种场所的空调控制。
它可以在有效地节能、降低噪音的同时保证室内的温度和湿度。
智能控制理论及应用(2023版)
智能控制理论及应用智能控制理论及应用⒈简介⑴研究背景⑵研究目的⑶研究内容⑷研究方法⑸研究意义⒉控制理论基础⑴控制系统分类⑵控制系统的基本组成⑶控制系统的数学模型⑷控制系统的性能指标⒊经典控制理论⑴比例控制⑵比例-积分控制⑶比例-积分-微分控制⑷标准PID控制⑸ PID控制器参数整定方法⑹ PID控制在工业领域的应用⒋高级控制理论⑴模糊控制⑵自适应控制⑶预测控制⑷智能控制⑸控制器的设计与实现⒌控制应用案例分析⑴温度控制系统案例分析⑵液位控制系统案例分析⑶速度控制系统案例分析⑷压力控制系统案例分析⑸其他应用案例分析⒍控制系统的优化与调试⑴控制系统的建模与仿真⑵控制系统优化方法⑶控制系统调试技巧⑷控制系统故障排除⒎未来发展趋势⑴智能控制技术的前景⑵控制理论与工程的融合⑶控制系统的自主学习与适应能力⑷控制技术在领域的应用附件:附件1:温度控制系统仿真模型代码附件2:液位控制系统设计方案附件3:PID控制器参数整定方法总结法律名词及注释:⒈控制系统:指用于实现对某个过程或系统变量的调节和稳定的一组设备和方法的总称。
⒉ PID控制:比例-积分-微分控制的简称,是一种常用的控制方法,通过调节比例、积分和微分部分的参数来实现系统的稳定和优化控制。
⒊比例控制:通过调节输出信号与误差信号之间的线性关系,来实现对系统过程的控制。
⒋积分控制:通过在控制过程中累积误差信号,并根据累积误差值进行调节,来实现对系统过程的控制。
⒌微分控制:通过监测误差变化速率,并根据变化速率进行调节,来实现对系统过程的控制。
智能控制理论及应用PPT课件
目 录
• 智能控制理论概述 • 智能控制基础理论 • 智能控制技术与方法 • 智能控制系统设计与实现 • 智能控制在工业领域应用案例 • 智能控制在非工业领域应用案例 • 智能控制发展趋势与挑战
01
智能控制理论概述
智能控制定义与发展
定义
智能控制是模拟人类智能,具有自 学习、自适应、自组织等能力,能 够处理复杂、不确定和非线性系统 的控制方法。
模糊控制器设计 介绍模糊控制器的结构、设计步骤及优化方法, 包括输入输出变量的选择、模糊化方法、模糊规 则制定等。
神经网络基础
01
神经元模型与神经网络结构
阐述神经元模型的基本原理,介绍常见的神经网络结构,如前馈神经网
络、循环神经网络等。
02
神经网络学习算法
介绍神经网络的学习算法,包括监督学习、无监督学习和强化学习等,
发展历程
从经典控制理论到现代控制理论, 再到智能控制理论,经历了数十年 的发展,目前已成为控制领域的研 究热点。
智能控制与传统控制比较
控制对象
控制性能
传统控制主要针对线性、时不变系统, 而智能控制则面向复杂、非线性、时 变系统。
传统控制在稳定性和精确性方面表现 较好,而智能控制则在适应性和鲁棒 性方面更具优势。
智能家居系统架构
包括传感器、控制器、执行器等 组成部分,实现家庭环境的智能 感知与控制。
智能家居应用场景
如智能照明、智能安防、智能家 电等,提高家居生活的便捷性和 舒适性。
智能家居系统实现
技术
包括物联网技术、云计算技术、 人工智能技术等,实现家居设备 的互联互通和智能化控制。
智能交通信号控制策略优化
模糊控制在生产调度中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能控制理论及应用第1章绪论■《智能控制》在自动化课程体系中的位置《智能控制》是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器。
与《自动控制原理》和《现代控制原理》一起构成了自动控制课程体系的理论基础。
■《智能控制》在控制理论中的位置《智能控制》是目前控制理论的最高级形式,代表了控制理论的发展趋势,能有效地处理复杂的控制问题。
其相关技术可以推广应用于控制之外的领域:金融、管理、土木、设计等等。
■经典控制和现代控制理论的统称为传统控制,智能控制是人工智能与控制理论交叉的产物,是传统控制理论发展的高级阶段。
智能控制是针对系统的复杂性、非线性和不确定性而提出来的。
■传统控制和智能控制的主要区别:➢传统控制方法在处理复杂化和不确定性问题方面能力很低;智能控制在处理复杂性、不确定性方面能力较高。
智能控制系统的核心任务是控制具有复杂性和不确定性的系统,而控制的最有效途径就是采用仿人智能控制决策。
➢传统控制是基于被控对象精确模型的控制方式;智能控制的核心是基于知识进行智能决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。
传统控制和智能控制的统一:智能控制擅长解决非线性、时变等复杂的控制问题,而传统控制适于解决线性、时不变等相对简单的控制问题。
智能控制的许多解决方案是在传统控制方案基础上的改进,因此,智能控制是对传统控制的扩充和发展,传统控制是智能控制的一个组成部分。
■智能控制与传统控制的特点。
传统控制:经典反馈控制和现代理论控制。
它们的主要特征是基于精确的系统数学模型的控制。
适于解决线性、时不变等相对简单的控制问题。
智能控制:以上问题用智能的方法同样可以解决。
智能控制是对传统控制理论的发展,传统控制是智能控制的一个组成部分,在这个意义下,两者可以统一在智能控制的框架下。
■智能控制应用对象的特点(1)不确定性的模型模型未知或知之甚少;模型的结构和参数可能在很大范围内变化。
(2)高度的非线性(3)复杂的任务要求■自动控制的发展过程■智能控制系统的结构一般有哪几部分组成,它们之间存在什么关系?答:智能控制系统的基本结构一般由三个部分组成:人工智能(AI):是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发式推理等功能。
自动控制(AC):描述系统的动力学特性,是一种动态反馈。
运筹学(OR):是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。
■智能控制的基本特点(1)分层递阶的组织结构;(2)多模态控制;(3)自学习能力;(4)自适应能力;(5)自组织能力;(6) 优化能力■智能控制的三元结构,它们之间关系的示意图。
把智能控制扩展为三元结构,即把人工智能、自动控制和运筹学交接如下表示:IC=AI∩AC∩OROR一运筹学(Operation research)IC一智能控制( intelligent control);Al一人工智能(artificial intelligence);AC一自动控制(automatic Colltrol);∩一表示交集.■智能控制系统的主要类型,以及各自的特点1)、分级递阶控制系统主要有三个控制级组成,按智能控制的高低分为组织级、协调级、执行级,并且这三级遵循“伴随智能递降精度递增”原则。
2)、专家控制系统专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验。
它具有启发性、透明性、灵活性、符号操作、不一确定性推理等特点。
3)、神经控制系统神经网络具有某些智能和仿人控制功能。
学习算法是神经网络的主要特征。
4)、模糊控制系统在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标。
5)、学习控制系统学习控制正是模拟人类自身各种优良的控制调节机制的一种尝试。
所谓学习是一种过程,它通过重复输入信号,并从外部校正该系统,从而使系统对特定输入具有特定响应。
6)、集成或者(复合)混合控制系统几种方法和机制往往结合在一起,用于一个实际的智能控制系统或装置,从而建立起混合或集成的智能控制系统。
■与常规控制方法相比,模糊控制有以下特点:①模糊控制完全是在操作人员控制经验基础上实现对系统的控制,无需建立数学模型,是解决不确定性系统的一种有效途径。
②模糊控制具有较强的鲁棒性,被控对象参数的变化对模糊控制的影响不明显,可用于非线性、时变、时滞系统的控制。
③由离线计算得到控制查询表,提高了控制系统的实时性。
④控制的机理符合人们对过程控制作用的直观描述和思维逻辑,为智能控制应用打下了基础。
■人工神经网络具有几个突出的特点:①可以充分逼近任意复杂的非线性关系;②所有定量或定性的信息都分布贮存于网络内的各神经元的连接上,故有很强的鲁棒性和容错性;③采用并行分布处理方法,使得快速进行大量运算成为可能;④可学习和自适应不知道或不确定的系统。
■分层递阶智能控制具有两个明显的特点:①对控制来讲,自上而下控制精度愈来愈高;②对识别来讲,自下而上信息回馈愈来愈粗略。
分层递阶智能控制(图)规则库精确量模糊量模糊量精确量模糊化模糊推理逆模糊化过程输出和状态控制动作被控过程模糊控制器的一般结构(a)PID 控制 (b)模型参考自适应控制 (c)前馈反馈控制神经网络控制的3种典型结构第2章 模糊控制的数学基础■模糊集合的定义 给定论域E 中的一个模糊集A ,是指任意元素x ∈E ,都不同程度地属于这个集合,元素属于这个集合的程度可以用隶属函数A (x)μ∈[0,1]来表示。
■模糊集合的表示法1) Zadeh 表示法;2)序偶表示法;3)隶属函数描述法;■模糊集合的运算模糊集合与普通集合一样也有交、并、补的运算。
例、设论域U={a, b, c, d, e}上有两个模糊集分别为:~0.50.30.40.20.1A a b c d e=++++ ~0.20.80.10.70.4B a b c d e =++++ 求~~A B 、~~A B 和~A 。
解:~~0.50.20.30.80.40.10.20.70.10.4A B a b c d e∧∧∧∧∧=++++0.20.30.10.20.1a b c d e=++++~~0.50.20.30.80.40.10.20.70.10.4A B a b c d e∨∨∨∨∨=++++ 0.50.80.40.70.4a b c d e=++++ ~10.510.310.410.210.1A a b c d e-----=++++ 0.50.70.60.80.9a b c d e=++++ ■水平截集的定义在论域U 中,给定一个模糊集合A ,由对于A 的隶属度大于某一水平值λ(阈值)的元素组成的集合,叫做该模糊集合的λ水平截集。
例子:已知~123450.10.30.50.70.9A x x x x x =++++,求A 0.1、A 0.2、A 0.7 解:12.13450{,,,,}A x x x x x =; 20.2345{,,,}A x x x x =;40.75{,}A x x =■模糊关系的运算例、已知~0.10.30.20.4R ⎡⎤=⎢⎥⎣⎦和~0.40.20.50.1S ⎡⎤=⎢⎥⎣⎦求~~R S 、~~R S 和~R 解:0.10.40.30.20.20.50.40.0.10.20.20.~11~R S ∧∧⎡⎤⎡⎤==⎢⎥⎢⎥∧∧⎣⎦⎣⎦0.10.40.30.20.20.50.40.0.40.30.50.~41~R S ∨∨⎡⎤⎡⎤==⎢⎥⎢⎥∨∨⎣⎦⎣⎦~10.110.310.210.40.90.70.80.6R --⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦■模糊关系的合成设R 是论域U ×V 上的模糊关系,S 是论域V ×W 上的模糊关系,则R 和S 可以合成为论域U ×W 上的一个新的模糊关系C ,记做~~~C R S =■ 模糊变换R 是X ×Y 上的模糊关系;设A 和B 分别为X 和Y 上的模糊集:且满足~~~B R A =,则称B 是A 的象,A 是B 的原象,R 是X 到Y 上的一个模糊变换。
例子:已知论域X={x1,x2, x3}和Y={y1,y2},A 是论域X 上的模糊集: ~{0.1,0.3,0.5}A =R 是X 到Y 上的一个模糊变换,~0.50.20.30.10.40.6R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦试通过模糊变换R 求A 的象B解:~~~B A R =0.50.2(0.1,0.3,0.5)0.30.10.40.6⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦[](0.10.5)(0.30.3)(0.50.4)(0.10.2)(0.30.1)(0.50.6)=∧∨∧∨∧∧∨∧∨∧ (0.4,0.5)=■语言规则中蕴涵的模糊关系定义一个语言变量需要定义以下4个方面的内容:• 定义变量名称;• 定义变量的论域;• 定义变量的语言值(每个语言值是定义在变量论域上的一个模糊集合) • 定义每个模糊集合的隶属函数。
•■模糊条件语句1.简单条件语句“如果……那么……”或“如果……那么……,否则……”2.多重条件语句如果u 是A 1,则v 是B 1 ;否则,如果u 是A 2,则v 是B 2 ;……否则,如果u 是A n ,则v 是B n 。
3.多维条件语句如果u 1是A 1,且u 2是A 2,…,且u m 是A m ,则v 是B例子、已知语言规则为“如果e 是A ,并且ec 是B ,那么u 是C 。
”其中 ~1210.5A e e =+、 ~1230.10.61B ec ec ec =++和~1230.30.71C u u u =++试求该语句所蕴涵的模糊关系 R 。
解:~~~~R A B C =⨯⨯ 第一步,先求R 1=A ×B :第二步,将二元关系矩阵R 1排成列向量形式R 1 T ,先将中的第一行元素写成列向量形式,再将中的第二行元素也写成列向量并放在前者的下面,如果是多行的,再依次写下去。
于是R 1可表示为:1~0.10.610.10.50.5T R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第三步,R 可计算如下:1~~~0.10.10.30.10.70.110.60.60.30.60.70.61110.310.711(0.30.71)0.10.10.30.10.70.110.50.50.30.50.70.510.50.50.30.50.70.51T R R C ∧∧∧⎡⎤⎡⎤⎢⎥⎢⎥∧∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧∧=⨯=⨯=⎢⎥⎢⎥∧∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧∧⎢⎥⎢⎥∧∧∧⎣⎦⎣⎦0.10.10.10.30.60.60.30.710.10.10.10.30.50.50.30.50.5⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第3章 模糊控制的设计方法■模糊控制器的基本工作原理将测量得到的被控对象的状态经过模糊化接口转换为用人类自然语言描述的模糊量,而后根据人类的语言控制规则,经过模糊推理得到输出控制量的模糊取值,控制量的模糊取值再经过清晰化接口转换为执行机构能够接收的精确量。