2019年全国高中数学联赛试题及答案详解(B卷)
2019年全国高中数学联赛广西赛区预赛试题与参考答案
由 AD 是角平分线,可得 BAE = BAM + MAE = MAC + MCA = DME . ···········15 分
则有 BHE + BAE = DHE + DME = 180 ,从而 A, B, H , E 四点共圆.
所以 AEB = AHB = 90 . 命题得证. ····································································20 分
从而 MHC = 180 − MHD = 180 − HEC = MEH .
又由 CMH = HME 可知△CMH∽△HME . 故 MH = ME ,从而 MA = ME . ···········10 分
MC MH
MC MA
又因为 CMA = AME ,所以△CMA∽△AME . 故 MCA = MAE .
a
a
a
ห้องสมุดไป่ตู้
a
a
2019 年全国高中数学联赛广西赛区预赛试题参考答案 第1页(共 4 页)
10.(本小题满分
15
分)设
a1
= 1, an
=
n2
n−1 k =1
1 k2
(n 2) . 求证:
(1)
an +1 an+1
=
n2 (n +1)2
(n 2) ;
(2) (1+ 1 )(1+ 1 ) (1+ 1 ) 4 (n 1) .
当 n = 1时,1+ 1 = 2 4 ,不等式成立. ···································································10 分 a1
【竞赛试题】2019年全国和高中数学联赛试卷及答案
æ 4ö 【竞赛试题】2019 年全高中数学联合竞赛一试(B 卷) 参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 已知实数集合{1, 2, 3, x } 的最大元素等于该集合的所有元素之和,则 x 的 值为 .答案:-3 .解:条件等价于1, 2, 3, x 中除最大数以外的另三个数之和为 0 .显然 x < 0 , 从而1 + 2 + x = 0 ,得 x = -3 .2. 若平面向量 a = (2m , -1) 与 b = (2m -1, 2m +1) 垂直,其中 m 为实数,则 a 的 模为 . 答案: 10 . 解:令 2m = t ,则 t > 0 .条件等价于 t ⋅ (t -1) + (-1) ⋅ 2t = 0 ,解得 t = 3 .因此 a 的模为 32 + (-1)2 = 10 .3. 设a , b Î (0, p ) ,cos a , cos b 是方程5x 2 -3x -1 = 0 的两根,则sin a sin b 的 值为. 答案:7 .5解:由条件知 cos a + cos b = 3 , cos a cos b = - 1,从而5 5(s i n a sin b )2 = (1- c os 2 a )(1- c os 2 b ) = 1- cos 2 a - cos 2 b + cos 2 a cos 2 b2 2= (1+ cos a cos b )2 - (cos a + cos b )2 = ÷ æ 3ö - = 7 . ç ÷ ç ÷ çè 5 ø çè5ø 25又由a , b Î (0, p ) 知sin a sin b > 0 ,从而sin a sin b = 7.54. 设三棱锥 P - ABC 满足 PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的 体积的最大值为 .答案: 2 6 .3解:设三棱锥 P - ABC 的高为 h .取M 为棱 AB 的中点,则h £ PM = 32 -12 = 2 2 .当平面 PAB 垂直于平面 ABC 时, h 取到最大值 2 2 .此时三棱锥 P - ABC 的体r n -rnn积取到最大值 1S⋅= 1 ⋅ = 2 6 .3 D ABC3 35. 将 5 个数 2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 . 答案:95 . 解:易知 2, 0, 1, 9, 2019 的所有不以 0 为开头的排列共有 4´ 4! = 96 个.其中, 除了 (2, 0, 1, 9, 2019) 和 (2019, 2, 0, 1, 9) 这两种排列对应同一个数 20192019 ,其余 的数互不相等.因此满足条件的 8 位数的个数为96 -1 = 95 .6. 设整数 n > 4 ,( x + 2 的值为. 答案:51. y -1)n 的展开式中x n -4 与 xy 两项的系数相等,则 nn解:注意到 ( x + 2 y -1)n= år =0C n x (2 y -1)r . 其中 x n -4 项仅出现在求和指标 r = 4 时的展开式 C 4 x n -4 (2 y -1)4中,其 x n -4 项系数为 (-1)4 C 4 = n (n -1)(n - 2)(n -3) .n24而 xy 项仅出现在求和指标 r = n -1 时的展开式 C n -1x ⋅ (2y -1)n -1 中,其 xy 项系数为 n -1 2 n -3 n -3C n C n -1 4⋅ (-1) = (-1) 2n (n -1)(n - 2) .因此有 n (n -1)(n - 2)(n - 3)= (-1)n -3 2n (n -1)(n - 2) .注意到 n > 4 ,化简得24n - 3 = (-1)n -3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51 .7. 在平面直角坐标系中,若以 (r +1, 0) 为圆心、 r 为半径的圆上存在一点 (a , b ) 满足b 2 ³ 4a ,则 r 的最小值为.答案: 4 .解:由条件知 (a - r -1)2 + b 2 = r 2 ,故4a £ b 2 = r 2 - (a - r -1)2 = 2r (a -1) - (a -1)2 . 即 a 2 - 2(r -1)a + 2r +1 £ 0 . 上述关于 a 的一元二次不等式有解,故判别式(2(r -1))2 - 4(2r +1) = 4r (r - 4) ³ 0 ,解得 r ³ 4 .经检验,当 r = 4 时, (a , b ) = (3, 2 3) 满足条件.因此 r 的最小值为 4 .8. 设等差数列{a n } 的各项均为整数,首项 a 1 = 2019 ,且对任意正整数 n ,总 存在正整数 m ,使得 a 1+ a 2 ++ a n = a m .这样的数列{a n } 的个数为.答案:5 .解:设{a n } 的公差为 d .由条件知 a 1 + a 2 = a k ( k 是某个正整数),则2a 1 + d = a 1 + (k -1)d ,a 1即 (k - 2)d = a 1 ,因此必有 k ¹ 2 ,且d =k - 2.这样就有 a = a + (n -1)d = a + n -1a , n 1 1 k - 2 1í而此时对任意正整数 n ,a +a++ a = a n + n (n -1) d = a + (n -1)a + n (n -1) d 1 2 n 1 2 1 12æ n (n -1) ö = a + (n -1)(k - 2) + d ,确实为{a n } 中的一项.ç 1 çè 2 ø 因此,仅需考虑使 k - 2| a 1 成立的正整数 k 的个数.注意到 2019 为两个素数3 与 673 之积,易知 k - 2 可取-1, 1, 3, 673, 2019 这5 个值,对应得到5 个满足条 件的等差数列.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆G 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.解:不妨设平面直角坐标系中椭圆 G 的标准方程为 x2y 2+= 1 (a > b > 0) ,并记 c = a 2 b 2a 2 -b 2 .由对称性,可设 F 为 G 的右焦点. 易知 F 到 G 的左顶点的距离为 a +c ,到右顶点的距离为 a - c ,到上、下顶点的距离均为 a .分以下情况讨论:(1) A , B 分别为左、右顶点.此时a + c = 3, a - c = 2 ,故 AB = 2a = 5 (相应地,b 2= (a + c )(a - c ) = 6 ,G 的方程为4 x 2y 2+ = 1 ). …………………4 分25 6(2) A 为左顶点,B 为上顶点或下顶点.此时 a + c = 3, a = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 3 ,所以 AB =a 2 +b 2= 7(相应的 G 的方程为 x + y = 1 ).4 3…………………8 分(3) A 为上顶点或下顶点, B 为右顶点.此时 a = 3, a - c = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 8 ,所以 AB =a 2 +b 2 = 17(相应的 G 的方程为 x + y= 1 ).9 8…………………12 分综上可知, AB 的所有可能值为5, 7, 17 . …………………16 分10. (本题满分 20 分)设 a , b , c 均大于 1,满足ìïlg a + log b c = 3, ïîlg b + log a c = 4. 求 lg a ⋅ lg c 的最大值.解:设lg a = x , lg b = y , lg c = z ,由 a , b , c >1可知 x , y , z > 0 . 由条件及换底公式知 x + z = 3, y + z= 4 ,即xy + z = 3y = 4x . y x…………………5 分。
2019年全国高中数学联赛广西赛区预赛试题参考答案-2019.4.30
A
l
M
O
x
N
(1)解:直线 l 与 l1 的交点为 A(0,1) .
设点 P(x, y) 是直线 l 上异于点 A(0,1) 的任意一点,点 P0 (x0, y0 ) 是点 P 关于直线 y x 1的对称点.
由 y y0 2
x x0 2
1得 y
x
x0
y0
2 . ·············①
由 y y0 x x0
2[1+ 1 + 1 + + 1 ]
1 2 23
(n −1) n
= 2[1+ (1− 1) + (1 − 1) + 2 23
= 2(2 − 1) 4 n
+ ( 1 − 1)] n −1 n
综上所述,不等式成立.···························································································15 分
当 0 a 1时, f (x) 的减区间是 (0, a] 和[ 1 , +) ,增区间是[a, 1 ] .
a
a
f (x) 的极小值为 f (a) = (a + 1 ) ln a + 1 − a ,极大值为 f ( 1 ) = −(a + 1 ) ln a + a − 1 . ··········15 分
则有 BHE + BAE = DHE + DME = 180 ,从而 A, B, H , E 四点共圆.
所以 AEB = AHB = 90 . 命题得证. ····································································20 分
2019年全国高中数学联合竞赛试题(B卷)
2019 年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8 小题,每小题8 分,满分64 分.1. 已知实数集合{1, 2, 3, x} 的最大元素等于该集合的所有元素之和,则x 的值为.2. 若平面向量a = (2m , -1) 与b = (2m -1, 2m+1 ) 垂直,其中m 为实数,则a 的模为.3. 设a, b ∈ (0, p) ,cos a, cos b 是方程5x2 -3x -1= 0 的两根,则sin a s in b 的值为.4. 设三棱锥P - ABC 满足PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的体积的最大值为.5. 将5 个数2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个8 位数(首位不为0),则产生的不同的8 位数的个数为.6. 设整数n > 4,(1)nx+的展开式中x n-4 与xy 两项的系数相等,则n的值为.7. 在平面直角坐标系中,若以(r +1, 0) 为圆心、r 为半径的圆上存在一点(a, b) 满足b2 ≥ 4a ,则r 的最小值为.8. 设等差数列{an}的各项均为整数,首项a1= 2019 ,且对任意正整数n ,总存在正整数m ,使得a1+ a2++ an= am.这样的数列{an} 的个数为.⎨ n +1 n n +1 n 二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆 Γ 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.10. (本题满分 20 分)设 a , b , c 均大于 1,满足⎧⎪lg a + log b c = 3, ⎪⎩lg b + log a c= 4.求 lg a ⋅ lg c 的最大值.11. (本题满分 20 分)设复数数列{z n } 满足: z 1 = 1 ,且对任意正整数 n , 均有 4z 2 + 2z z + z 2 = 0 .证明:对任意正整数m ,均有 z 1 + z 2 ++ z m < . 32019 年全国高中数学联合竞赛加试(B 卷)一、(本题满分 40 分)设正实数 a 1, a 2 , , a 100 满足 a i ≥ a 101-i (i = 1, 2, , 50) . 记 111(1,2,,99)k k nka x k a a a +==⋅⋅⋅++⋅⋅⋅+.证明:29912991x x x ⋅⋅⋅≤.二、(本题满分 40 分)求满足以下条件的所有正整数 n :(1) n 至少有 4 个正约数;(2) 若 d 1 < d 2 < < d k 是 n 的所有正约数,则 d 2 - d 1, d 3 - d 2 , , d k - d k -1 构 成等比数列.三、(本题满分 50 分)如图,点 A , B , C , D , E 在一条直线上顺次排列,满足BC=CD P 在该直线外,满足PB = PD .点K, L 分别在线段PB, PD 上,满足KC 平分∠BKE ,LC 平分∠ALD .证明:A, K, L, E 四点共圆.(答题时请将图画在答卷纸上)四、(本题满分50 分)将一个凸2019 边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673 条.证明:可作这个凸2019 边形的2016 条在内部互不相交的对角线将其剖分成2017 个三角形,并将所作的每条对角线也染为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.。
2019年全国高中数学联赛试卷及答案-10页文档资料
2019年全国高中数学联合竞赛试卷第一试一、选择题本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确的,请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1. 给定公比为q (q ≠1)的等比数列{a n },设b 1=a 1+a 2+a 3, b 2=a 4+a 5+a 6,…,b n =a 3n -2+a 3n -1+a 3n ,…,则数列{b n } 【答】( ) (A ) 是等差数列 (B ) 是公比为q 的等比数列 (C ) 是公比为q 3的等比数列 (D ) 既非等差数列也非等比数列2. 平面直角坐标系中,纵、横坐标都是整数的点叫做整点,那么,满足不等式(|x |-1)2+(|y |-1)2<2的整点(x ,y )的个数是 【答】( ) (A ) 16 (B ) 17 (C ) 18 (D ) 253. 若(log 23)x -(log 53)x ≥(log 23)y --(log 53)y-,则 【答】( )(A ) x -y ≥0 (B ) x +y ≥0 (C ) x -y ≤0 (D ) x +y ≤0 4. 给定下列两个关于异面直线的命题:命题Ⅰ:若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么,c 至多与a ,b 中的一条相交;命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线。
那么 【答】( ) (A ) 命题Ⅰ正确,命题Ⅱ不正确 (B ) 命题Ⅱ正确,命题Ⅰ不正确 (C ) 两个命题都正确 (D ) 两个命题都不正确5. 在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。
那么,在上述3名选手之间比赛的场数是 【答】( ) (A ) 0 (B ) 1 (C ) 2 (D ) 36. 已知点A (1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B ,C ,那么,△ABC 是(A ) 锐角三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 不确定 【答】( ) 二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
高中数学联赛真题数列B辑(解析版)
备战2021年高中数学联赛之历年真题汇编(1981-2020)专题10数列B辑历年联赛真题汇编1.【2020高中数学联赛A卷(第01试)】在等比数列{a n}中, a9=13,a3=1,则log a113的值为.【答案】13【解析】由等比数列的性质知a1a9=(a9a13)2, a1=a93a132=133.所以log a113=13.2.【2019高中数学联赛B卷(第01试)】设等差数列{a n}的各项均为整数,首项a1=2019,且对任意正整数n,总存在正整数m,使得a1+a2+⋯+a n=a m.这样的数列{a n}的个数为.【答案】5【解析】设{a n}的公差为d.由条件知a1+a2=a k(k是某个正整数),则2a1+d=a1+(k−1)d,即(k-2)d=a1,因此必有k≠2,且d=a1k−2.这样就有a n=a1+(n−1)d=a1+n−1k−2a1,而此时对任意正整数n,a1+a2+⋯+a n=a1n+n(n−1)2d=a1+(n−1)a1+n(n−1)2d=a1+((n−1)(k−2)+n(n−1)2)d,确实为{a n}中的一项.因此,仅需考虑使k−2|a1成立的正整数k的个数.注意到2019为两个素数3与673之积,易知k-2可取-1,1,3,673,2019这5个值,对应得到5个满足条件的等差数列.3.【2018高中数学联赛A卷(第01试)】设整数数列a1,a2,⋯,a10满足a10=3a1,a2+a8=2a5,且a i+1∈{1 +a i,2+a i},i=1,2,⋯,9,则这样的数列的个数为.【答案】80【解析】设b i=a i+1−a i∈{1,2}(i=1,2,⋯,9),则有2a1=a10−a1=b1+b2+⋯+b9①b2+b3+b4=a5−a2=a8−a5=b5+b6+b7②用t表示b2,b3,b4中值为2的项数.由②知,t也是b5,b6,b7中值为2的项数,其中t∈{0,1,2,3}.因此b2,b3,⋯,b7的取法数为(C30)2+(C31)2+(C32)2+(C33)2=20.取定b2,b3,⋯,b7后,任意指定b8,b9的值,有22=4种方式.最后由①知,应取b1∈{1,2}使得b1+b2+⋯+b9为偶数,这样的b1的取法是唯一的,并且确定了整数a1的值,进而数列b1,b2,⋯,b9唯一对应一个满足条件的数列a1,a2,⋯,a10.综上可知,满足条件的数列的个数为20×4=80.4.【2018高中数学联赛B卷(第01试)】在平面直角坐标系xOy中,直线l通过原点,n⃑=(3,1)是l的一个法向量.已知数列{a n}满足:对任意正整数n,点(a n+1,a n)均在l上.若a2=6,则a1a2a3a4a5的值为.【答案】−32【解析】易知直线l的方程是3x+y=0.因此对任意正整数n,有3a n+1+a n=0,即a n+1=−13a n,故{a n}是以−13为公比的等比数列于是a3=−13a2=−2.由等比数列的性质可得a1a2a3a4a5=a35=(−2)5=−32.5.【2017高中数学联赛A卷(第01试)】设两个严格递增的正整数数列{a n},{b n}满足:a10=b10<2017,对任意正整数n,有a n+2=a n+1+a n,b n+1=2b n,则a1+b1的所有可能值为.【答案】13、20【解析】由条件可知:a 1,a 2,b 1均为正整数,且a 1<a 2. 由于2017>b 10=29⋅b 1=512b 1,故b 1∈{1,2,3}.反复运用{a n }的递推关系知a 10=a 9+a 8=2a 8+a 7=3a 7+2a 6 =5a 6+3a 5=8a 5+5a 4=13a 4+8a 3=21a 3+13a 2=34a 2+21a 1, 因此21a 1≡a 10=b 10=512b 1≡2b 1( mod 34),而13×21=34×8+1,故有a 1≡13×21a 1≡13×2b 1=26b 1( mod 34) ①另一方面,注意到a 1<a 2,有55a 1<34a 2+21a 1=512b 1,故a 1<51255b 1②当b 1=1时,①、②分别化为a 1≡26( mod 34),a 1<51255,无解当b 1=2时,①、②分别化为a 1≡52( mod 34),a 1<102455,得到唯一的正整数a 1=18,此时a 1+b 1=20.当b 1=3时,①、②分别化为a 1≡78( mod 34),a 1<153655,得到唯一的正整数a 1=10,此时a 1+b 1=13.综上所述,a 1+b 1的所有可能值为13、20.6.【2017高中数学联赛B 卷(第01试)】在等比数列{a n }中,a 2=√2,a 3=√33,则a 1+a2011a 7+a2017的值为.【答案】89【解析】数列{a n }的公比为q =a 3a 2=√33√2,故a 1+a 2011a 7+a 201=a 1+a 2011q 6(a 1+a 2011)=1q 6=89.7.【2016高中数学联赛(第01试)】设a 1,a 2,a 3,a 4是1,2,…,100中的4个互不相同的数,满足(a 12+a 22+a 32)(a 22+a 32+a 42)=(a 1a 2+a 2a 3+a 3a 4)2,则这样的有序数组(a 1,a 2,a 3,a 4)的个数为.【答案】40【解析】由柯西不等式知,(a12+a22+a32)(a22+a32+a42)⩾(a1a2+a2a3+a3a4)2,等号成立的充分必要条件是a1a2=a2a3=a3a4,即a1,a2,a3,a4成等比数列.于是问题等价于计算满足{a1,a2,a3,a4}⊆{1,2,3,⋯,100}的等比数列a1,a2,a3,a4的个数.设等比数列的公比q≠1,且q为有理数.记q=nm,其中m、n为互素的正整数,且m≠n.先考虑n>m的情况:此时a4=a1⋅(nm )3=a1n3m3,注意到m3与n3互素,故l=a1m3为正整数.相应地,a1,a2,a3,a4分别等于m3l,m2nl,mn2l,n3l,它们均为正整数.这表明,对任意给定的q=nm>1,满足条件并以q为公比的等比数列a1,a2,a3,a4的个数,即为满足不等式n3l⩽100的正整数l的个数,即[100n3].由于53>100,故仅需考虑q=2,3,32,4,43,这些情况,相应的等比数列的个数为[100 8]+[10027]+[10027]+[10064]+[10064]=12+3+3+1+1=20.当n<m时,由对称性可知,亦有20个满足条件的等比数列a1,a2,a3,a4,综上可知,共有40个满足条件的有序数组(a1,a2,a3,a4).8.【2014高中数学联赛(第01试)】数列{a n}满足a1=2,a n+1=2(n+2)n+1a n(n∈N∗),则a2014a1+a2+⋯+a2013=.【答案】20152013【解析】由题设a n=2(n+1)n a n−1=2(n+1)n⋅2nn−1a n−2=⋯=2(n+1)n⋅2n n−1⋯⋅⋅2⋅32a 1=2n−1(n +1),记数列{a n }的前n 项和为S n ,则S n =2+2×3+22×4+⋯+2n−1(n +1), 所以2S n =2×2+22×3+23×4+⋯+2n (n +1),将上面两式相减, 得S n =2n (n +1)−(2n−1+2n−2+⋯+2+2)=2n (n +1)−2n =2n n ,故a 2014a 1+a 2+⋯+a 2013=22013×201522013×2013=20152013.9.【2013高中数学联赛(第01试)】已知数列{a n }共有9项,其中a 1=a 9=1,且对每个i ∈{1,2,⋯,8},均有a i+1a i∈{2,1,−12},则这样的数列的个数为.【答案】491【解析】令b i =a i+1a i(1⩽i ⩽8),则对每个符合条件的数列{a n },有∏b i8i=1=∏a i+1a i8i=1=a 9a 1=1,(b i ∈{2,1,−12},1⩽i ⩽8)①反之,由符合条件①的8项数列{b n }可唯一确定一个符合题设条件的9项数列{a n }.记符合条件①的数列{b n }的个数为N .显然b i (1≤i ≤8)中有偶数个−12,即2k 个−12;继而有2k 个2,8-4k 个1.当给定k 时,{b n }的取法有C 82k C 8−2k 2k 种,易知k 的可能值只有0,1,2,所以N =1+C 82C 62+C 84C 44=1+28×15+70×1=491.因此,根据对应原理,符合条件的数列{a n }的个数为491.10.【2011高中数学联赛(第01试)】已知a n =C 200n ⋅(√63)200−n⋅(√2)n(n =1,2,⋯,95),则数列{a n }中整数项的个数为 .【答案】15【解析】由题意知a n =C 200n ⋅3200−n3⋅2400−5n6,要使a n (1≤n ≤95)为整数,必有200−n 3,400−5n 6均为整数,从而6|n +4.当n =2,8,14,20,26,32,38,44,50,56,62,68,74,80时,200−n 3和400−5n6均为非负整数,所以a n 为整数,共有14个.当n =86时,a 86=C 20086⋅338⋅2−5, 在C 20086=200!86!⋅114!中,200!中因数2的个数为[2002]+[20022]+[20023]+[20024]+[20025]+[20026]+[20027]=197,同理可计算得86!中因数2的个数为82,114!中因数2的个数为110,所以C 20086中因数2的个数为197−82−110=5,故a 86是整数.当n =92时a 92=C 20092⋅336⋅2−10,在C 20092=200!92!⋅108!中,同样可求得92!中因数2的个数为88,108!中因数2的个数为105.故C 20086中因数2的个数为197−88−105=4,故a 92不是整数. 因此,整数项的个数为14+1=15.11.【2010高中数学联赛(第01试)】已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,且存在常数α,β使得对每一个正整数n 都有a n =log αb n +β,则α+β= .【答案】√33+3【解析】设{a n }的公差为d ,{b n }的公比为q ,则3+d =q①3(3+4d)=q 2②式①代入式②得9+12d =d 2+6d +9,求得d =6,q =9, 从而有3+6(n −1)=log α9n−1+β对一切正整数n 都成立, 即6n −3=(n −1)log α9+β对一切正整数n 都成立. 从而log α9=6,−3=−log α9+β,求得α=√33,β=3,α+β=√33+3.12.【2009高中数学联赛(第01试)】一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是(可以用指数表示)【答案】101×298 【解析】易知: (1)该数表共有100行;(2)每一行构成一个等差数列,且公差依次为d 1=1,d 2=2,d 3=22,⋯,d 99=298, (3)a 100为所求.设第n (n ≥2)行的第一个数为a n ,则a n =a n−1+(a n−1+2n−2)=2a n−1+2n−2=2[2a n−2+2n−3]+2n−2=22[2a n−3+2n−4]+2×2n−2=23a n−3+3×2n−2=⋯=2n−1a 1+(n −1)×2n−2=(n +1)2n−2. 故a 100=101×298.13.【2008高中数学联赛(第01试)】设数列{a n }的前n 项和S n 满足:S n +a n =n−1n(n+1),n =1,2,…,则通项an =. 【答案】12n−1n(n+1)【解析】因为a n+1=S n+1−S n =n (n+1)(n+2)−a n+1−n−1n(n+1)+a n ,即2a n+1=n+2−2(n+1)(n+2)−1n+1+1n(n+1)+a n =−2(n+1)(n+2)+a n +1n(n+1),由此得2(a n+1+1(n+1)(n+2))=a n +1n(n+1),令b n =a n +1n(n+1),因此b 1=a 1+12=12(a 1=0),b n+1=12b n ,故b n =12n,可得a n =12n−1n(n+1).14.【2007高中数学联赛(第01试)】已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数.若a 1=d,b 1=d 2,且a 12+a 22+a 32b 1+b 2+b 3是正整数,则q 等于 .【答案】12【解析】因为a 12+a 22+a 32b 1+b 2+b 3=a 12+(a 1+d )2+(a 1+2d )2b 1+b 1q+b 1q 2=141+q+q 2,故由已知条件可知:1+q +q 2为14m,其中m 为正整数.令1+q +q 2=14m,则q =−12+√14+14m−1=−12+√56−3m 4m,由于q 是小于1的正有理数,所以1<14m<3,即5⩽m ⩽13且56−3m 4m是某个有理数的平方,由此可知q =12.15.【2005高中数学联赛(第01试)】将关于x 的多项式f(x)=1−x +x 2−x 3+⋯−x 19+x 20表示为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+⋯+a 19y 19+a 20y 20,其中y =x -4.则a 0+a 1+⋯+a 20=.【答案】521+16【解析】由题设知,f (x )和式中的各项构成首项为1,公比为-x 的等比数列,由等比数列的求和公式,得f(x)=(−x)21−1−x−1=x 21+1x+1,令x =y +4,得g(y)=(y+4)21+1y+5,取y =1,有a 0+a 1+a 2+⋯+a 20=g(1)=521+16.16.【2005高中数学联赛(第01试)】如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .【答案】52000【解析】因为方程x 1+x 2+⋯+x k =m 的非负整数解的个数为C m+k−1m,而使x 1⩾1,x i ⩾0 (i ⩾2)的整数解个数为C m+k−2m−1.现取m =7,可知,k 位“吉祥数”的个数为P(k)=C k+56.2005是形如2abc 的数中最小的一个“吉祥数”,且P(1)=C 66=1,P(2)=C 76=7,P(3)=C 86=28,对于四位“吉祥数”1abc ,其个数为满足a +b +c =6的非负整数解个数,即C 6+3−16=28个.因为2005是第1+7+28+28+1=65个“吉祥数”,即a 65=2005.从而n =65,5n =325,又P(4)=C 96=84,P(5)=C 106=210,而∑5k=1P(k)=330,所以从大到小最后6个五位“吉祥数”依次是70000,61000,60100,60010,60001,52000. 故第325个“吉祥数”是52000,即a 5n =52000.17.【2004高中数学联赛(第01试)】已知数列a 0,a 1,a 2,⋯,a n ,⋯满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则∑1a ini=0的值是 .【答案】13(2n+2−n −3)【解析】设b n =1a n(n =0,1,2,⋯),则(3−1b n+1)(6+1b n)=18,即3b n+1−6b n−1=0.所以b n+1=2b n +13,b n+1+13=2(b n +13),故数列{b n +13}是公比为2的等比数列.因此b n +13=2n (b 0+13)=2n (1a 0+13)=13×2n+1,所以b n =13(2n+1−1),则∑1a ini=0=∑b in i=0=∑13ni=0(2i+1−1)=13[2(2n+1−1)2−1−(n +1)]=13(2n+2−n −3).18.【2003高中数学联赛(第01试)】设M n ={(十进制)n 位纯小数0.a 1a 2⋯a n |a i 只取0或1(i =1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则limn→∞S nT n= .【答案】118【解析】因为M n 中的小数的小数点后均有n 位,而除最后一位上的数字必为1外,其余各位上的数字均有两种选择(0或1)方法,故T n =2n−1,又因在这2n−1个数中,小数点后第n 位上的数字全是1,而其余各位上数字是0或1,各有一半.故:S n =12⋅2n−1(110+1102+⋯+110n−1)+2n−1⋅110n =2n−2⋅110(1−110n−1)1−110+2n−1⋅110n=2n−2⋅19(1−110n−1)+2n−1⋅110n,故limS n T n=lim n→∞[118(1−110n−1)+110n]=118.19.【2000高中数学联赛(第01试)】设a n 是(3−√x)n 的展开式中x 项的系数(n =2,3,4,…),则lim n→∞(32a 2+33a 3+⋯+3n a n)= .【答案】18【解析】由题意,由二项式定理有a n =C n 23n−2, 所以3n a n=3n ×2n(n−1)=18(1n−1−1n),所以lim n→∞(32a 2+33a 3+⋯+3n a n)=lim n→∞18(1−12+12− 13+⋯+1n−1−1n)=lim n→∞18(1−1n)=18.20.【2000高中数学联赛(第01试)】等比数列a+log23,a+log43,a+log83的公比是.【答案】13【解析】由题意,不妨设公比为q,可知q=a+log43a+log23=a+log83a+log43,又根据比例的性质,有q=a+log43−(a+log83) a+log23−(a+log43)=log43−log83log23−log43=12log23−13log23log23−12log23=13.21.【1999高中数学联赛(第01试)】已知正整数n不超过2000,并且能表示成不少于60个连续正整数之和,那么,这样的n的个数是.【答案】6【解析】首项为a的连续k个正整数之和为S k=ka+k(k+1)2⩾k(k+1)2,由S k⩽2000可得60⩽k⩽62,当k=60时S k=60a+30×59,由S k⩽2000可得a⩽3,故S k=1830,1890,1950;当k=61时S k=61a+30×61,由S k⩽2000可得a≤2,故S k=1891,1952;当k=62时S k=62a+31×61,由S k⩽2000可得a≤1,故S k=1953.所以题中的n有6个.22.【1998高中数学联赛(第01试)】各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有项.【答案】8【解析】设a1,a2,⋯,a n是公差为4的等差数列,则a12+a2+a3+⋯+a n⩽100,等价于a12+(a1+4)+[a1+4(n−1)]2(n−1)⩽100,等价于a12+(n−1)a1+(2n2−2n−100)⩽0①当且仅当Δ=(n−1)2−4(2n2−2n−100)⩾0时,至少不存在一个实数a1满足不等式①.因为Δ⩾0等价于7n2−6n−401⩽0,等价于n1⩽n⩽n2②其中n1=3−√28167<0,8<n2=3+√28167<9,所以,满足不等式②的自然数n的最大值为8,即满足题设的数列至多有8项.23.【1994高中数学联赛(第01试)】已知95个数a1,a2,a3,⋯,a95,每个数都只能取+1或-1两个值之一,那么它们的两两之积的和a1a2+a1a3+⋯+a94a95的最小值是.【答案】13【解析】记N=a1a2+a1a3+⋯+a94a95①设a1,a2,⋯,a95中有m个+1,n个-1,则m+n=95②式①乘2,加上a12+a22+⋯+a952=95得(a1+a2+⋯+a95)2=2N+95.又a1+a2+⋯+a95=m−n,所以(m−n)2=2N+95.使上式成立的最小自然数N=13,此时(m−n)2=112,即m−n=±11③联立式②与③可求出m=53,n=42或m=42,n=53.据此可构造出N达到最小值的情况,故所求最小正值为13.24.【1992高中数学联赛(第01试)】设x,y,z是实数,3x,4y,5z成等比数列,且1x ,1y,1z成等差数列,则xz+zx的值是.【答案】3415【解析】由题意得{(4y)2=15xz①2y=1x+1z②,由式②得y =2xz x+z,以此代入式①有16(2xz x+z)2=15xz ,即(x+z)2xz=6415,故x z+z x=3415.25.【1992高中数学联赛(第01试)】设数列a 1,a 2,⋯,a n ,⋯满足a 1=a 2=1,a 3=2,且对任何自然数n ,都有a n a n+1a n+2≠1,又a n a n+1a n+2a n+3=a 1+a n+1+a n+2+a n+3,则a 1+a 2+⋯+a 100的值是 .【答案】200【解析】因为a 1=a 2=1,a 3=2,又a 1a 2a 3a 4=a 1+a 2+a 3+a 4,所以a 4=4. 又由条件得a n a n+1a n+2a n+3=a n +a n+1+a n+2+a n+3, a n+1a n+2a n+3a n+4=a n+1+a n+2+a n+3+a n+4.将上述两式相减,得a n+1a n+2a n+3(a n −a n+4)=a n −a n+4, 即(a n −a n+4)(a n+1a n+2a n+3−1)=0. 依已知条件a n+1a n+2a n+3≠1,故a n+4=a n . 从而∑a k 100i=1=1004(a 1+a 2+a 3+a 4)=200.26.【1988高中数学联赛(第01试)】(1)设x ≠y ,且两数列x,a 1,a 2,a 3,y 和b 1,x,b 2,b 3,y,b 4均为等差数列,那么b 4−b 3a 2−a 1= .(2)(√x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为.(3)在△ABC 中,已知∠A =a ,CD ,BE 分别是AB ,AC 上的高,则DE BC= .(4)甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛……直到有一方队员全被淘汰为止,另一方获胜,形成一种比赛过程,那么所有可能出现的比赛过程的种数为.【答案】3432【解析】(1)设两个数列的公差分别为d,d',则y−x=4d=3d′,dd′=34.所以b4−b3a2−a1=2d′d=2×43=223.(2)设(√x+2)2n+1=f(x)+√xg(x),其中f(x),g(x)是x的多项式,那么所求的是f(1).而(2+√x)2n+1+(2−√x)2n+1=f(x)+√xg(x)+f(x)−√xg(x),所以f(1)=12[(2+√1)2n+1+(2−√1)2n+1]=12(32n+1+1).(3)因为∠BDC=∠BEC,所以B,D,E,C共圆.∠ADE=∠ACB,△AED∽△ABC,DE2BC2=SΔAEDSΔABC=AD⋅AEAB⋅AC=cos2a.所以DEBC=|cosa|.(4)设甲队队员为a1,a2,⋯,a7,乙队队员为b1,b2,⋯,b7,下标表示事先安排好的出场顺序,比赛过程可表示为这14个字母互相穿插地依次排列,其前后顺序就是先后被淘汰的顺序,但最后一定是胜队中不被淘汰的队员和可能未曾参赛的队员,所以比赛过程表示为14个位置中任取7个位置安排甲队员(当然,其余位置安排乙队队员),比赛过程的总数为C147=3432.优质模拟题强化训练1.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.【答案】√5−12<q<√5+12【解析】设三边按递增顺序排列为a,aq,aq2,其中a>0,q≥1.则a+aq>aq2,即q2−q−1<0.解得1−√52<q<1+√52.由q≥1 知q的取值范围是1≤q<1+√52.设三边按递减顺序排列为a,aq,aq2,其中a>0,0<q<1.则aq2+aq>a,即q2+q−1>0.解得√5−12<q<1.综上所述,1−√52<q<1+√52.2.在数列{a n}中,a1=2,a n+a n+1=1(n∈N+),设S n为数列{a n}的前n项和,则S2017−2S2018+S2019的值为____________ .【答案】3【解析】当n为偶数时,a1+a2=a3+a4=⋯=a n−1+a n=1,故S n=n2.当n奇数时,a1=2,a2+a3=a4+a5=⋯=a n−1+a n=1,故S n=2+n−12=n+32.故S2017−2S2018+S2019=1010−2018+1011=3.故答案为:3.3.已知集合A ={1,2,3,…,2019},对于集合A 的每一个非空子集的所有元素,计算它们乘积的倒数.则所有这些倒数的和为____________ . 【答案】2019 【解析】集合A 的22019-1个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2019,1×2,1×3…,2018×2019,…,1×2×…×2019,它们的倒数和为1+12+⋯+12019+11×2+11×3+⋯+12018×2019+⋯+11×2×⋯×2019=(1+1)(1+12)⋯(1+12019)−1=2×32×⋯×20202019−1=2019.故答案为:2019.4.已知数列{a n }满足:a n =[(2+√5)n +12n](n ∈N ∗),其中[x ]表示不超过实数x 的最大整数.设C 为实数,且对任意的正整数n ,都有∑1a k a k+2nk=1⩽C ,则C 的最小值是_____ .【答案】1288 【解析】记x 1=2+√5,x 2=2−√5,则a n =[x 1n+12n ]. 记T n =x 1n +x 2n,则T n+2=(x 1+x 2)T n+1−x 1x 2T n =4T n+1+T n ,而T 1=x 1+x 2=4,T 2=x 12+x 22=(x 1+x 2)2−2x 1x 2=18,因此,对任意的正整数n ,T n ∈Z .又注意到−12<2−√5<0,从而|x 2|<12,于是−1+12n ⩽−12n <x 2n<12n .因此,x 1n +x 2n −1<x 1n +12n −1<a n ⩽x 1n +12n =x 1n +(−1+12n )+1<x 1n +x 2n +1. 又注意到x 1n +x 2n −1,a n ,x 1n +x 2n +1均为整数,故a n =x 1n +x 2n. 于是a n+2=4a n+1+a n ,且a 1=4,a 2=18.又1ak a k+2=14⋅4a k+1a k a k+1a k+2=14⋅a k+2−a k a k a k+1a k+2=14(1a k a k+1−1a k+1a k+2),故∑1a k a k+2nk=1=14∑(1a k a k+1−1a k+1a k+2)nk=1=14(1a 1a 2−1a n+1a n+2)=1288−14a n+1a n+2.显然a n >0,于是a n+2>4a n+1,从而a n ⩾4n−2a 2(n ⩾2), 故limn→∞1a n+1a n+2=0.因此,∑1a k a k+2nk=1<1288,且lim n→∞(∑1a k a k+2nk=1)=1288.所以,常数C 的最小值为1288.故答案为:1288.5.等差数列{a n }中,a 2=5,a 6=21,记数列{1a n}的前n 项和为S n ,若S 2n+1−S n ⩽m15对任意的n ∈N +恒成立,则正整数m 的最小值为____________ . 【答案】5 【解析】由题意可得:{a 1+d =5a 1+5d =21,解得a 1=1,d =4,∴1a n=11+4(n−1)=14n−3,∵(S 2n+1−S n )−(S 2n+3−S n+1)=(1a n+1+1a n+2+⋯+1a2n+1)−(1a n+2+1a n+3+⋯+1a2n+3)=1a n+1−1a2n+2−1a2n+3=14n+1−18n+5−18n+9=(18n+2−18n+5)+(18n+2−18n+9)>0,∴数列{S2n+1−S n}(n∈N∗)是递减数列,数列{S2n+1−S n}(n∈N∗)的最大项为S3−S1=15+19=1445,∵1445⩽m15,∴m⩾143,又∵m是正整数,∴m的最小值为5.故答案为:5.6.公差为d,各项皆为正整数的等差数列{a n},若a1=1919,a m=1949,a n=2019,则正整数m+n的最小值是___ _________ .【答案】15【解析】1949=1919+(m−1)d,2019=1919+(n−1)d,显然有m>1,n>1,d=30m−1,以及d=100n−1,得去d得:10m−3n=7,其通解为{m=1+3tn=1+10t,为使m>1,n>1且d为正整数,则正整数t只能在{1,2,5,10}中取值(因(30,100)=10,t取值只能为10的正因数).当t=1时,m=4,n=11为最小,此时m+n=15.故答案为:15.7.数列{a n}满足:a0=√3,a n+1=[a n]+1{a n}(其中[a n]和{a n}分别表示实数a n的整数部分与小数部分),则a2019= ____________ .【答案】3029+√3−12【解析】a0=1+(√3−1),a1=1√3−1=2+√3−12,a2=2√3−1=3+√3=4+(√3−1),a3=4√3−1=5+√3−12,归纳易得,a2k=3k+1+(√3−1),a2k+1=3k+2+√3−12.因此a2019=3029+√3−12.故答案为:3029+√3−12.8.设等差数列{a n}的公差为d(d≠0),前n项和为S n.若数列{√8S n+2n}也是公差为d的等差数列,则数列{a n}的通项a n=________.【答案】4n−94【解析】设a n=a1+(n−1)d=dn+a,这里a=a1-d,于是S n=na1+n(n−1)2d=d2n2+(a1−d2)n=d2n2+(a+d2)n,所以√8S n+2n=√4dn2+(8a+4d+2)n,故√4dn2+(8a+4d+2)n=dn+b,这里b=√8a1+2−d.所以4dn2+(8a+4d+2)n=d2n2+2bdn+b2,于是4d=d2,8a+4d+2=2bd,b2=0,解得d=4,b=0,a=−94,故a n=4n−94.故答案为:4n−94.9.设数列{a n}满足:a1=1,4a n+1−a n+1a n+4a n=9,则a2018=______.【答案】53【解析】由4a n+1−a n+1a n+4a n=9可得(4−a n)(4−a n+1)=7.设b n=4−a n,则有b n b n+1=7.又b1=4−a1=3,故b2=73.一般地,有b2k−1=3,b2k=73,于是a2k−1=4−3=1,a2k=4−73=53,所以a2018=53.10.数列{a n}满足a1=1,a2=3,且a n+2=|a n+1|−a n(n∈N+),记{a n}的前n项和为S n.则S100=_________ _.【答案】89【解析】由已知得a k+9=a k,则S100=a1+11(a1+a2+⋯+a9)=8911.已知数列{a n}前n项和为S n,a1=15,且对任意正整数m、n,均有a m+n=a m a n若S n<a对任意的n∈Z+恒成立,则实数a的最小值为______.【答案】14【解析】由题意,取m =1得a n+1=a 1a n =15a n .又a 1=15,则{a n }是以为首项、为公比的等比数列,即a n =15n (n ∈Z +)故S n =a 1+a 2+⋯+a n =15+152+⋯+15n =15×1−15n 1−15=14(1−15n ) 由对任意的n ∈Z +,均有S n <a 1,知a =14.12.已知数列{a n }满足a 1=0,|a n+1|=|a n −2|.记数列{a n }的前2016项和为S .则S 的最大值为______.【答案】2016【解析】由|a k+1|=|a k −2|⇒a k+12=a k 2−4a k +4(k =1,2,⋅⋅⋅,2016).累加得a 20172=a 12−4S +4×2016≥0.因此,S ≤2016.当k 为奇数时,a k =0;当k 为偶数时,a k =2,此时可取等号. 13.已知数列{a n }满足a n+1=3n+1⋅a n a n +3n+1,a 1=3,则数列{a n }的通项公式是______. 【答案】a n =2⋅3n 3n −1【解析】 由a n+1=3n+1⋅a n an +3n+1可得1a n+1−1a n =13n+1,a 1=3, 则1a 2−1a 1=132,1a 3−1a 2=133,⋅⋅⋅,1a n −1a n−1=13n .以下用累加法得,1a n −1a 1=132+133+⋅⋅⋅+13n . 得到1a n =13+132+⋅⋅⋅+13n =13(1−13n )1−13=12(1−13n ),从而,a n =2⋅3n3n −1.14.在数列{a n }中,若a n 2−a n−12=p(n ≥2,n ∈N ∗,p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①数列{(−1)n }是等方差数列;②若{a n }是等方差数列,则{a n 2}是等差数列;③若{a n }是等方差数列,则{a kn }(k ∈N ∗,k 为常数)也是等方差数列; ④若{a n }既是等方差数列,又是等差数列,则该数列为常数列.其中正确的命题序号为________.(将所有正确的命题序号填在横线上)【答案】①②③④【解析】①因为[(−1)n ]2−[(−1)n−1]2=0,所以{(−1)n }符合“等方差数列”定义; ②根据定义,显然{a n 2}是等差数列;③a kn 2−a k(n−1)2=a kn 2−a kn−12+a kn−12−a kn−22+⋯+a kn−k+12−a k(n−1)2=kp 符合定义; ④数列{a n }满足a n 2−a n−12=p ,a n −a n−1=d (d 为常数).若d=0,显然{a n }为常数列; 若d≠0,则两式相除得a n +a n−1=p d ,所以a n =d 2+p 2d (常数),即{a n }为常数列.故答案为:①②③④15.设数列{a n }满足a 1=1 ,a n+1=5a n +1 (n =1,2,…),则 ∑2018n=1a n =________.【答案】5201916−807716【解析】由a n+1=5a n +1⇒a n+1+14=5(a n +14)⇒a n =5n 4−14,所以∑2018n=1a n =14(51+52+⋯+52018)−20184=516(52018−1)−20184=5201916−807716.16.已知数列{a n }满足a 1=1,a n+1=na n +2(n+1)2n+2,则数列{a n }的通项公式为__________. 【答案】16n(n +1)(n +2)【解析】由题设得(n +2)a n+1=na n +2(n +1)2⇒(n +1)(n +2)a n+1=n(n +1)a n +2(n +1)3. 令b n =n(n +1)a n ,则b 1=2,b n+1=b n +2(n +1)3.故b n =b 1+∑(b i+1−b i )n−1i=1=2(1+23+33+⋯+n 3)=12n 2(n +1)2.于是,数列{a n }的通项公式为a n =b n n(n+1)=12n(n +1). 因此,前n 项的和为S n =12(∑n k=1k 2+∑n k=1k) =12[n(n+1)(2n+1)6+n(n+1)2]=16n(n +1)(n +2).17.已知2015个正整数a 1,a 2,⋯,a 2015满足a 1=1,a 2=8,a n+1=3a n −2a n−1(n ≥2,且n ∈N).则a 2015−a 2014的所有正因子之和为_________。
(完整word版)2019年全国高中数学联赛新疆赛区初赛试卷详细解答
2019年全国高中数学联赛新疆赛区初赛试卷一、填空题(本大题共8小题,每小题8分,共64分.把答案填在横线上.)1.已知集合U ={1, 2, 3,4, 5, 6, 7, 8},A ={1,2, 3, 4, 5},B ={4,5, 6, 7, 8},则是集合U 的子集但不是集合A 的子集,也不是集合B 的子集的集合个数为 .解法一:因为U B A =Y 且}5,4{=B A I ,所以满足题意的集合所含的元素至少在{1,2,3}中取一个且至少在{6,7,8}中取一个,集合{4,5}中的元素可取或不取,于是满足题意的集合有1962)12)(12(233=⨯--个.解法二:集合U 的子集个数为82,其中是集合A 或集合B 的子集个数为255222-+.所以满足条件得集合个数为196)222(22558=-+-个.2.设n 为正整数.若n +++Λ21的和恰好等于一个三位数且该三位数的每个数字均相同,则所有可能的n 值为 .解:设aaa n =+++Λ21,化简可得a n n ⨯=+1112)1(.由于373111⨯=且37是素数,故n 和1+n 中要有一个被37整除.再由100021<+++n Λ,可知45<n .因此36=n 或37整除.经计算6663621=+++Λ且7033721=+++Λ,故n =36.3.已知z y x ,,是正数且满足⎪⎩⎪⎨⎧=++=++=++,35,15,8zx x z yz z y xy y x 则xy z y x +++= .解:由8=++xy y x 知91=+++xy y x ,即9)1)(1(=++y x .(1)同理可得⎩⎨⎧=++=++,36)1)(1(16)1)(1(x z z y ,(2)由⑴和(2)可知643)1)(1)(1(⨯⨯=+++z y x .(3)由⑴和(3)可知7=z .同理可得27=x 和1=y .从而15=+++xy z y x .4.随机取一个由0和1构成的8位数,它的偶数位数字之和与奇数位数字之和 相等的概率为 .解:设n 是满足题意的8位数,故知其偶数位上的1的个数和在奇数位上的 1的个数相同,从而在奇数位上与偶数位上的1的个数可能为1,2,3或4.注 意到首位为1,下面分情况讨论:(i )奇数位上与偶数位上有1个1, 3个0,共有1403C C ⋅=4种可能;(ii)奇数位上与偶数位上有2个1, 2个0,共有2413C C ⋅=18种可能;(iii)奇数位上与偶数位上有3个1, 1个0,共有3423C C ⋅=12种可能; (iv)奇数位上与偶数位上有4个1,共有4433C C ⋅=1种可能;合计共有4 + 18 + 12+1 = 35个满足条件的自然数n.又因为0和1构成的 8位数共有27 = 128个,从而概率为12835. 5.设722cos sin 1=+x x 且n m x x =+sin cos 1,其中nm为最简分数,则n m += . 解:注意到2sin 2cos cos ,2cos 2sin 2sin 22x x x x x x -==,且2sin 2cos 122x x +=.由722cos sin 1=+x x 可得7222sin 2cos 2sin2cos 2sin 2cos 2cos 2sin 21cos sin 122=-+=-+=+x x xx x x x x x x ,2sin 292cos 15x x =.于是,15292sin 2cos2sin 2cos 12cos 21sin cos 1222==--+=+=x xx x x x x n m . 从而441529=+=+n m .6.记][x 为不超过实数x 的最大整数.若]87[]87[]87[]87[202020192++++=ΛA , 则A 除以50的余数为 .解:注意到8787212kk ,-均不是整数.按定义122122122121278787]87[]87[)187()187(27-----=+<+<-+-=-k k k k k k k k ,所以对任意正整数k 均有17717]87[]87[2212212-⋅=-=+---k k kk 1)49(71-⋅=-k 1)150(71--⋅=-k )50(mod 1)1(71--⋅≡-k , 从而 )50(mod 401010)11(10007≡--⋅⋅≡A .7. 一个150×324×375的长方体由1×1×1的单位立方体拼在一起构成的,则该长方体的一条对角,穿过 个不同的单位立方体.解:从左到右151个互相平行两两距离为1的平面与对角,有151个交点, 将对角,分为150段.同样,从上到下,从前到后的两两距离为1的平面又 增加一些分点.除去对角线的一端外,共有150+324+375-(150,324)-(324,375)-(375,150)+(150,324,375)=768个分点(容斥原理),将对角线分为768段,每段属于一个单位立方体,即对角,穿过768个单位立方体.(注:b a ,为正整数,记(b a ,)为a 与b 的最大公约数.)8.已知数列:ΛΛΛΛ,313,,34,32272627227427296949232n n n n -,,,,,,,,,,,那么21872020是该数列的第 项.解:依题意知,可将已知数列进行分组,第一组为}32{;第二组为}98,96,94,92{; 第三组为}2726,,274,272{Λ;…; 第n 组为}313,,34,32{n n n n -Λ.又76320203<<,故分数21872020在数列第7组. 下面我们计算数列分组后,前6组共有数列中)]13()13()13()13()13()13[(21654321-+-+-+-+-+- 543]613)13(3[216=---=项. 又21872020为数列第7绢的第1010位. 所以分数21872020为数列的第543+1010位,即1553位.二、解答题(本大题共3小题,其中第1题16分,第2, 3题各20分,共56分.)1.设F 是椭圆E :1322=+y x 的左焦点,过点F 斜率为正的直线l 与E 相交于B A ,两点,过点B A ,分别作直线AM 和 BN 满足l AN l AM ⊥⊥,,且直线AM , BN 分别与x 轴相 交于M 和N .试求||MN 的最小值.解:设过椭圆E 的左焦点F 的直线l 的倾斜角为α,依题意知02>>απ.如图 设'F 为椭圆E 的右焦点在MAF Rt ∆中||||cos MF AF MFA =∠,所以 MFA AF MF ∠=cos ||||.在NBF Rt ∆中,同理有NFBBF NF ∠=cos ||||,所以有 αcos ||cos ||cos ||||||||AB NFB BF MFA AF NF MF MN =∠+∠=+=.(4) 连结'BF ,在'FBF ∆中,记x BF =||,则x BF -=32||'.由余弦定理知αcos ||||2||||||'2'22'FF BF FF BF BF -+=,即αcos 222)22()32(222⋅⋅-+=-x x x .所以有αcos 231⋅-=x ,即αcos 231||⋅-=BF .(5)同理有αcos 231||⋅+=AF .(6)由(5) (6)知ααα2cos 2332cos 231cos 231||-=⋅++⋅-=AB . 由(4)知ααcos )cos 23(32||2-=MN . 令ααα222cos 4)cos 23()(-=f ,则αααα222cos 4)cos 23)(cos 23()(--=f .根据均值不等式知3222222cos 4)cos 23)(cos 23(3cos 4)cos 23()cos 23(αααααα--≥+-+-.所以8cos 4)cos 23)(cos 23(222≤--ααα且等号成立当且仅当αα22cos 4cos 23=-,即4πα=.所以当且仅当4πα=时,4))((max =αf . 从而当且仅当4πα=时6||min =MN .2.设n a a a a ,,,,210Λ是正实数,且1210>>>>>n a a a a Λ并满足)11(2)11()11()11(021a a a a n -=-++-+-Λ试求出(n a a a a ,,,,210Λ)所有可能的).解:由题意知,对n i ≤≤0均有2≥i a .于是有2)11()11()11()11(22210n a a a a n >-++-+-=->Λ. 可得4<n .由于n 是正整数,故}3,2,1{∈n .当1=n 时,我们有10112a a +=得01012a a a a +=.注意到11>a .从而0010122a a a a a >+=,即01a a >,这与10a a >矛盾.当2=n 时,我们有210112a a a +=.由于1210>>>a a a ,故1011a a <且2011a a <.从而210112a a a +=是不可能的,故2=n 也不成立. 当3=n 时,我们有321011121a a a a ++=+,则必定有23=a ,否则等式右边至多为1514131<++.同理32=a ,不然等式右边至多为1514121<++.因此我们有61261101>+=a a ,从而631<<a . 当41=a 时240=a ;当51=a 时600=a .综上所述,(n a a a a ,,,,210Λ)所有可能的解为(24, 4, 3, 2)或(60, 5, 3, 2).3.给定正实数b a <<0,设],[,,,4321b a x x x x ∈.试求4321124423322221x x x x x x x x x x x x ++++++的最大值与最小值.解:(i )因为],[,,,4321b a x x x x ∈,且b a <<0,所以有⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥+≥+≥+≥+,2,2,2,241124344232332212221x x x x x x x x x x x x x x x x从而有4321124423322221x x x x x x x x x x x x +++≥+++,并且等号成立当且仅当4321x x x x ===.于是当4321x x x x ===时 4321124423322221x x x x x x x x x x x x ++++++取到最小值1.(ii )因为],[,,,4321b a x x x x ∈,且b a <<0,所以有],[1abb a x x i i ∈+,其中15x x =. 注意到1112+++=i i i i i x x x x x .于是有abx x x ba i i i ≤≤++112.从而 0))((112112≤--++++i i i i i i x ab x x x b a x x . 即0)(112≤++-++i i i i x x a b b a x x .所以,对所有41≤≤i 均有 112)(++-+≤i i i i x x abb a x x .其中,15x x =.从而有 ))(1(4321124423322221x x x x baa b x x x x x x x x +++-+≤+++, 于是14321124423322221-+≤++++++ba ab x x x x x x x x x x x x ,并且等号成立当且仅当b x a x b x a x ====4321,,,,或a x b x a x b x ====4321,,,,所以4321124423322221x x x x x x x x x x x x ++++++取到最大值1-+b a a b .。
2019全国高中数学联赛贵州初赛(B卷)参考答案
(A)3
(B)4
(C)5
(D)6
解:选 C. 素数 x y z ,由 x ,解得 x ,故 x, y 的所有可能取值是
3,5,7,11,13,17,19,23. 由 z , z ,解得 z ,故 z 的所有可能取值是
29,31,37,41,43.
当 z 时, x y ,无解;
当 z 时, x y ;
当 z 时, x y ;
当 z 时, x y ;
当 z 时, x y ,无解.
综上,原不定方程共由 5 个解: (,,), (,,), (,,), (,,), (,,) .
g(x) 在 (0,) 单调递增,所以 g( ) g(3) e e3 3 e e3 3 ,c a .
3. 一圆锥的高是 12cm,底面半径是 5cm,设该圆锥的内切球半径为 r ,外接球半径为 R ,
则 r ( ). R (A)
(B)
(C)
(D)
解:选 C. 如图 1 是圆锥内切球的截面图, O 是球心, E 是切点,由相似比得 r , r
解得 r . 如图 2 是圆锥外接球的截面图,O 是球心,由勾股定理得 ( R) R ,
解得 R
.
所以
r R
.
图1
图2
4.计算: sin cos sin cos ( )
(A)
(B)
(C)
(D)
解:选 A. 余弦定理: a b ab cos C c ,由正弦定理得,
(A) a b c (B) b c a
(C) c b a
(D) b a c
解:选 D.设 f (x) x ln x, f '(x) x 1 ,知 f (x) 在 (1,) 单调递增,所以 f ( ) f (3) , x
2019年全国高中数学联赛试题及答案详解(B卷)
3 22 s-1
=
¥ k=s+1
3 22k-1
¥
=
k=s+1
z2k-1 + z2k
,
故
å å z1 + z2 ++ zm
£
æçççè
k
s =1
z2k-1 + z2k ÷ö÷÷ø+
z2 s+1
¥
<
k =1
z2k-1 + z2k
=
2
3 3
.
综上,结论获证.
…………………20 分
2019 年全国高中数学联合竞赛加试(B 卷) 参考答案及评分标准
3. 设 a, b Î (0, p) ,cosa, cosb 是方程 5x2 -3x -1= 0 的两根,则 sin asin b 的
值为
.
答案:
7 5
.
解:由条件知 cosa + cosb = 3 , cosa cos b = -1 ,从而
5
5
(sin a sin b)2 = (1-cos2a)(1- cos2 b) = 1- cos2a - cos2 b + cos2a cos2 b
=
(-1)n-32n(n -1)(n
- 2)
.
因此有
n(n
-1)(n 24
2)(n
-
3)
=
(-1)n-3
2n(n
-1)(n
-
2)
.注意到
n
>
4
,化简得
n -3 = (-1)n-3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51.
2019年全国高中数学联赛A卷及B卷试题答案及评分标准
的值为 8.将 6 个数 2,0,1,9,20,19 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 二解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明,证明过程或演算步骤 9(本题分 16 分)在△ABC 中,BC=a,CA=b,AB=c,若 b 是 a 与 c 的等比中项,且 sinA 是 sin(B-A)与 sinC 的等差中项,求 cosB 的值 10.(本题满分 20 分)在平面直角坐标系 xOy 中,圆Ω与抛物线Γ:y2=4x 恰有一个公共点,且圆Ω与 x 轴相切于Γ的焦 点 F,求圆Ω的半径
2019 年全国高中数学联赛 A 卷 一试部分
一、填空题(本大题共 8 小题,每题 8 分,共 64 分)
1.已知正实数 a 满足 aa (9a)8a ,则 loga (3a) 的值为
2.若实数集合{1,2,3,x}的最大元素与最小元素之差等于该集合的所有元素之和,则 x 的值为
而 b≡-1(mod3),此时 a 有 7 种选法,b 有 4 种选法,这样的(a,b)有 7*4=28 组.因此 N=9+28=37.于是所求的概率为 37 100
6.对任意闭区间 I,用 MI 表示函数 y=sinx 在 I 上的最大值,若正数 a 满足 M[0,a]=2M[a,2a],则 a 的值为
4 s2 5 | s | ,解得 | s |[1, 4] ,即 s2 [1,16] ,于是 | a | 4 s2 [ 5, 2 5]
法二:由
2019年全国高中数学联赛A+B卷(含答案)
2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e =.由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有一处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 . 答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24yx =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故 222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i i i i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。