粉末冶金常用烧结方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金常用烧结方法
《often-used teehnigues in powder metallurgy sintering》
摘要:粉末冶金是一门重要的零件成形技术。粉末冶金新技术、新工艺的不断出现,必将促进高技术产业的快速发展,也必将带给材料工程和制造技术光明的前景。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。因此,大力发展粉末冶金新技术的研究,对提高我国粉末冶金产品的档次和技术水平,缩短与国外先进水平的差距具有非常重要的意义。粉末冶金烧结就是将粉末或粉末压坯经过加热而得到强化和致密化制品的方法和技术。烧结是粉末冶金过程中最重要的工序。在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。
Abstract:Powder metallurgy forming technology is an important part。New technology of powder metallurgy technologies, emerging, will promote the rapid development of high-tech industry, will bring brighter prospects of material engineering and manufacturing technology. At present, the low overall level of powder metallurgy industry in China, process and equipment behind, compared with foreign advanced technical level there is a large gap. Therefore, development of study on the new technology of powder metallurgy, on improving the grade of powder metallurgical products and technology, reduced the gap with foreign advanced level has very important significance. Powder metallurgy sintering powder or powder Compact is strengthening and densification of products by the heating method and technology. Sintering is the most important process of powder metallurgy process. During the sintering process, due to changes in temperature of the Compact of powder particles bond between physical and chemical changes, thus increasing the resistivity of sintered products, strength, hardness and density, reduces the porosity of densification and grain structure.
关键词:粉末冶金(Powder metallurgy),烧结(Sintering),技术(technology),
粉末冶金烧结是使压坯或松装粉末体进一步结合起来,以提高强度及其他性能的一种高温处理工艺。它是粉末冶金的重要工序之一。在烧结过程中粉末颗粒要发生相互流动、扩散、熔解、再结晶等物理化学过程,使粉末体进一步致密,消除其中的部分或全部孔隙。
烧结方法通常有以下几类:
液相烧结粉末压坯中如果有两种以上的组元,烧结有可能在某种组元的熔点以上进行,因而烧结时粉末压坯中出现少量的液相。
加压烧结在烧结时,对粉末体施加压力,以促进其致密化过程。加压烧结有时与热压(hot pressing)为同义词,热压是把粉末的成形和烧结结合起来,直接得到制品的工艺过程。
活化烧结在烧结过程中采用某些物理的或化学的措施,使烧结温度大大降低,烧结时间显著缩短,而烧结体的性能却得到改善和提高。
电火花烧结粉末体在成形压制时通入直流电和脉冲电,使粉末颗粒间产生电
弧而进行烧结;在烧结时逐渐地对工件施加压力,把成形和烧结两个工序合并在一起。
一、粉末固相烧结(solid-state sintering of powder)
松装粉末或压坯在烧结过程中组元不发生熔化的粉末烧结方法。粉末固相烧结按其组元多少可分为单元系固相烧结和多元系固相烧结两类。
单元系固相烧结纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为绝对熔点温度的2/3~4/5)进行的粉末烧结。单元系固相烧结过程除发生粉末颗粒间粘结、致密化和纯金属的组织变化外,不存在组织间的溶解,也不出现新的组成物或新相。又称为粉末单相烧结。
单元系固相烧结过程大致分3个阶段:(1)低温阶段(T
烧≤0.25T
熔
)。主要发生金属
的回复、吸附气体和水分的挥发、压坯内成形剂的分解和排除。由于回复时消除了压制时的弹性应力,粉末颗粒间接触面积反而相对减少,加上挥发物的排除,烧结体收缩不明显,甚至略有膨胀。此阶段内烧结体密度基本保持不变。(2)中
温阶段(T
烧≤0.4~0.557T
熔
)。开始发生再结晶、粉末颗粒表面氧化物被完全还原,
颗粒接触界面形成烧结颈,烧结体强度明显提高,而密度增加较慢。(3)高温阶
段(T
烧=0.5~0.857T
熔
)。这是单元系固相烧结的主要阶段。扩散和流动充分进行
并接近完成,烧结体内的大量闭孔逐渐缩小,孔隙数量减少,烧结体密度明显增加。保温一定时间后,所有性能均达到稳定不变。
影响单元系固相烧结的因素主要有烧结组元的本性、粉末特性(如粒度、形状、表面状态等)和烧结工艺条件(如烧结温度、时间、气氛等)。增加粉末颗粒间的接触面积或改善接触状态,改变物质迁移过程的激活能,增加参与物质迁移过程的原子数量以及改变物质迁移的方式或途径,均可改善单元系固相烧结过程。
多元系固相烧结两种组元以上的粉末体系在其中低熔组元的熔点以下温度进行的粉末烧结。多元系固相烧结除发生单元系固相烧结所发生的现象外,还由于组元之间的相互影响和作用,发生一些其他现象。对于组元不相互固溶的多元系,其烧结行为主要由混合粉末中含量较多的粉末所决定。如铜一石墨混合粉末的烧结主要是铜粉之间的烧结,石墨粉阻碍铜粉间的接触而影响收缩,对烧结体的强度、韧性等都有一定影响。对于能形成固溶体或化合物的多元系固相烧结,除发生同组元之间的烧结外,还发生异组元之间的互溶或化学反应。烧结体因组元体系不同有的发生收缩,有的出现膨胀。异扩散对合金的形成和合金均匀化具有决定作用,一切有利于异扩散进行的因素,都能促进多元系固相烧结过程。如采用较细的粉末,提高粉末混合均匀性、采用部分预合金化粉末、提高烧结温度、消除粉末颗粒表面的吸附气体和氧化膜等。在决定烧结体性能方面,多元系固相烧结时的合金均匀化比烧结体的致密化更为重要。多元系粉末固相烧结后既可得单相组织的合金,也可得多相组织的合金,这可根据烧结体系合金状态图来判断二、粉末液相烧结
粉末液相烧结(liquid phase sintering of powder)具有两种或多种组分的金属粉末或粉末压坯在液相和固相同时存在状态下进行的粉末烧结。此时烧结温度高于烧结体中低熔成分或低熔共晶的熔点。由于物质通过液相迁移比固相扩散要快得多,烧结体的致密化速度和最终密度均大大提高。液相烧结工艺已广泛用来制造各种烧结合金零件、电接触材料、硬质合金和金属陶瓷等。
类型根据烧结过程中固相在液相中的溶解度不同,液相烧结可分为3种类型。(1)固相不溶于液相或溶解度很小,称为互不溶系液相烧结。如w-Cu、w-Ag等假合金以及A12O3-Cr、Al2O3一Cr-Co—Ni、A12O3一Cr—W、BeO一Ni等氧化物-