牛顿运动定律巧解滑块--滑板模型
牛顿运动定律在滑块滑板模型中的应用
![牛顿运动定律在滑块滑板模型中的应用](https://img.taocdn.com/s3/m/79c8d0461fd9ad51f01dc281e53a580217fc504f.png)
动摩擦力。sin37°=0.6,g=10m/s2,求:
解题指南:从运动→力,再从力→运 动。
方法指导:(1)隔离体法。(2)临 界条件分析法。(3)事先通过审题自 己加上板块相对运动的插图,并进行受 力分析和运动分析。(4)把两个研究 对象作一个v-t图象反映全部运动过程
整个运动过程可以用下面v-t图 象表示:
5
这样就把整个思路给打通了!
【例3】(2015年全国新课标Ⅱ卷25题)(20分)下暴雨时,有时会发
考点分析:牛顿运动定律的应用
特征:小物块和木板先一起向右做匀减速运动,板碰撞 挡板后按原速反弹,双方开始发生相对运动,某时刻有 向左的共同速度,又开始一起向左做匀减速运动至停止 (1)滑动摩擦力;(2)动摩擦因数;(3)受力分析; (4)牛顿运动定律;(5)匀变速直线运动及其公式; (6)v-t图象。
不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小
物块的v-t图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大
小g取10 m/s2.求:
(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;
(2)木板的最小长度;
(3)木板右端离墙壁的最终距离。
双体多过程
二、知能要求高考试题解答指导 (一)滑块滑板模型
【例1】(2015年全国新课标I卷25题)(20分)一长木板置于粗糙水
平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的
距离为4.5 m,如图(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右
运动,直至t=l s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小
观点:争取拿下第(1)问,其他看时间。
牛顿运动定律巧解滑块-滑板模型
![牛顿运动定律巧解滑块-滑板模型](https://img.taocdn.com/s3/m/0d535b7f366baf1ffc4ffe4733687e21af45ffb6.png)
当滑块在滑板上做匀速运动时,滑块受到重力、支持力和摩擦力的作用。由于是匀速运动,合外力为零,因此摩 擦力的大小等于滑块的重力沿斜面向下的分力。通过求解摩擦力和斜面的角度关系,可以得到滑块在滑板上的运 动规律。
例题二:滑块在滑板上的加速运动
总结词
利用牛顿第二定律求解滑块在滑板上的 加速运动问题。
当滑板减速滑动时,滑板受到的摩擦力大于支持力,合力提供滑板减速运动的加速 度。
滑块与滑板的相互作用力
滑块和滑板之间的相互作用力包括滑 块对滑板的压力和滑板对滑块的反作 用力。
这两个力是改变滑块和滑板运动状态 的原因,即产生加速度的合外力。
这两个力大小相等、方向相反,作用 在同一条直线上。
04
CATALOGUE
当滑块加速滑动时,滑块受到 的摩擦力小于支持力,合力提 供滑块加速运动的加速度。
当滑块减速滑动时,滑块受到 的摩擦力大于支持力,合力提 供滑块减速运动的加速度。
滑板与地面的摩擦
滑板与地面接触时,受到地面对它的支持力和摩擦力的作用。
当滑板加速滑动时,滑板受到的摩擦力小于支持力,合力提供滑板加速运动的加速 度。
详细描述
根据惯性定律,如果滑块或滑板 不受外力作用,它将保持原来的 静止状态或匀速直线运动状态。
第二定律(动量定律)
总结词
描述了力对时间的累积效应,即物体 动量的变化率等于作用在物体上的力 。
详细描述
动量定律是解决滑块-滑板问题的关键 ,它可以帮助我们理解力和速度之间 的关系,以及在力的作用下物体的加 速或减恒等基本物理规律
。
在工程学中,滑块-滑板模型 可以用来分析机械系统、车辆
和机器人的运动。
在日常生活中,滑块-滑板模 型可以用来解释交通工具的运
滑块—滑板模型分析
![滑块—滑板模型分析](https://img.taocdn.com/s3/m/a2e125c752d380eb63946d65.png)
高三物理专题复习:滑块一滑板模型典型例题例1.如图所示,在粗糙水平面上静止放一长L质量为M=1kg的木板B, —质量为m=1Kg的物块A以速度v。
=2.0m/s滑上长木板B的左端,物块与木板的摩擦因素卩1=0.1、木板与地面的摩擦因素为卩2=0.1,已知重力加速度为g=10m/s , 求:(假设板的长度足够长)(1)物块A、木板B的加速度;(2)物块A相对木板B静止时A运动的位移;R ---------------------B(3)物块A不滑离木板B,木板B至少多长?"TTTTTTTTTTTT/TT TTTTTT1考点:本题考查牛顿第二定律及运动学规律考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。
解析:(1)物块A的摩擦力:f A二jmg =1N-f A 2A的加速度:a i 一二-1m/ s 方向向左m木板B受到地面的摩擦力:f地二」2(M ■ m)g =2N f A故木板B静止,它的加速度a2 =02(2)物块A的位移:S二二仏二2m2a(3)木板长度:L _ S = 2m拓展1.在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素卩3=0.4,其余条件保持不变,(假设木板足够长)求:(1)物块A与木块B速度相同时,物块A的速度多大?(2)通过计算,判断AB速度相同以后的运动情况; A ______________(3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热多大?考点:牛顿第二定律、运动学、功能关系考查:木板与地的摩擦力计算、AB是否共速运动的判断方法、相对位移和摩擦热的计算。
解析:对于物块 A : f A =」4mg = 4N加速度: a A =— =-」4g - -4.0m/ s 2,方向向左。
m 对于木板:f 地-"2(m • M)g = 2N加速度:a C =卫 f 地 = 2.0m /s 2,方向向右。
M物块A 相对木板B 静止时,有:a B t^v 2 -a C t 1解得运动时间:I =1/3.s ,V A = V B = a p t r = 2 / 3m / S(2)假设AB 共速后一起做运动, a 二 J (M ―- -1m/s 2物块A 的静摩擦力:二 ma =1N :: f A所以假设成立,AB 共速后一起做匀减速直线运动。
牛顿运动定律之滑块与传送带问题(含解析)
![牛顿运动定律之滑块与传送带问题(含解析)](https://img.taocdn.com/s3/m/4bc8221bd1f34693daef3ed2.png)
牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。
牛顿运动定律巧解滑块—滑板模型
![牛顿运动定律巧解滑块—滑板模型](https://img.taocdn.com/s3/m/7c3bea4dba68a98271fe910ef12d2af90342a85e.png)
解决复杂问题
在滑块—滑板模型中,利用牛顿 运动定律可以解决一些复杂的问 题,如碰撞、摩擦力和外力作用
等。
建立数学模型
利用牛顿运动定律,我们可以建 立滑块—滑板模型的数学方程,
从而进行数值分析和模拟。
对未来研究的展望
深入研究动力学
未来可以进一步深入研究滑块—滑板模型的动力学特性,探索更 复杂的运动规律和现象。
滑块与滑板间的相对运动
相对静止
当滑块与滑板间无相对运 动时,两者保持相对静止 状态。
相对滑动
当滑块受到的合外力大于 最大静摩擦力时,滑块将 相对于滑板滑动。
滑动摩擦力的作用
滑动摩擦力阻碍相对运动, 但不影响绝对运动。
滑块与滑板的初速度和加速度分析
初速度分析
牛顿第二定律的应用
在滑块—滑板模型中,需要分析滑块 和滑板的初速度,判断是否满足相对 静止或相对滑动的条件。
总结词
考虑作用力和反作用力对滑块和滑板运 动的影响。
VS
详细描述
根据牛顿的第三定律,作用力和反作用力 大小相等、方向相反。在滑块—滑板模型 中,当滑块和滑板之间存在相互作用力时 ,作用力和反作用力将影响它们的运动状 态。因此,在解决问题时需要考虑第三定 律,分析作用力和反作用力对滑块和滑板 运动的影响。
响。
04
牛顿运动定律在滑块— 滑板模型中的运用
运用第一定律解决相关问题
总结词
理解滑块和滑板在静止和匀速直线运动状态下的受力平衡。
详细描述
根据牛顿的第一定律,滑块和滑板在不受外力或合外力为零时,将保持静止或 匀速直线运动状态。因此,在解决滑块—滑板模型问题时,需要分析滑块和滑 板的受力情况,判断其运动状态。
高三专题复习“经典八式”法解滑块与滑板模型
![高三专题复习“经典八式”法解滑块与滑板模型](https://img.taocdn.com/s3/m/2a067306eef9aef8941ea76e58fafab069dc4460.png)
“经典八式”法解滑块与滑板模型一 分析要点1、相互作用:滑块之间的摩擦力2、相对运动:具有相同的速度时相对静止。
两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。
3、通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是我们解决力和运动突破口。
4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时:通常会用到系统能量守恒定律。
6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
7、当滑块和滑板同向运动时相对位移等于滑块位移与滑板位移之差,若二者同向运动相对位移等于二者位移之和。
二 分类讲解【模型一】滑块以一定的初速度滑上木板。
例题一 如图所示,质量kg m 3.02=的小车静止在光滑的水平面上,车长m L 5.1=,现有质量kg m 2.01=的可视为质点的物块,以水平向右的速度s m v /20=从左端滑上小车,最 后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数5.0=μ,取2/10s m g =,求:⑴物块在车面上滑行的时间t ;⑵要使物块不从小车右端滑出,物块滑上小车左端的速度0v 不超过多少? 【解法一】牛顿运动定律+运动学公式 “经典八式”法1m 在2m 上向右做匀减速直线运动由牛顿第二定律:111-a m g m =μ①得21/5s m a -= 2m 向右做匀加速直线运动由牛顿第二定律:221a m g m =μ②得22/310s m a =设二者历时t 时相对静止此时具有共同速度v ,则 对于1m :t a v v 10+=③ 对于2m :t a v 2=④ 联立③④得⎩⎨⎧==st sm v 24.0/8.0二者在这段时间内发生的位移分别为1x 、2x 则对于1m :t vv x 201+=⑤对于2m :t vx 22=⑥二者的相对位移:21x x x -=∆⑦ 要使物块不从小车右端滑出则x ≤∆⑧ 联立⑤⑥⑦⑧得s m v /50≤【解法2】(1)设物块与小车的共同速度为v ,以水平向右为正方向,根据动量守恒定律有 v m m v m )(2101+= ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有011v m v m ft -=- ② 其中 g m f 1μ= ③ 解得 gm m v m t )(2102+=μ代入数据得 s t 24.0= ④(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v ′,则 v m m v m '+=')(2101 ⑤ 由功能关系有'+-'=2212011)(2121v m m v m gL m μ ⑥代入数据解得 s m v /5='故要使物块不从小车右端滑出,物块滑上小车的速度v 0′不能超过5m/s 。
牛顿运动定律巧解滑块—滑板模型
![牛顿运动定律巧解滑块—滑板模型](https://img.taocdn.com/s3/m/58c106db4028915f814dc210.png)
水平推力F′,如图(2)所示,要使A、B不相对滑动,求
F′的最大值Fm.
解:根据图(1),设A、B间的静摩擦力达到最大 值f时,系统的加速度为a,根据牛顿第二定律有: F=(mA+mB)a…① f=mAa…② 代入数据解得:f=2.0N…③ 根据图(2)设A、B刚开始滑动时系统的加速度为a′ ,根据牛顿第二定律有: f=mBa′…④ Fm=(mA+mB)a′…⑤ 代入数据联立解得:Fm=6.0N. 答:F′的最大值为6.0N.
滑块和滑板整体的加速度,最后把滑块和滑板的整体加
速度与不受外力 F作用的那个物体的最大临界加速度进 行大小比较。若滑块与滑板整体的加速度不大于(小于 或等于)滑块的最大加速度,即 a amax ,二者之间就 不发生相对滑动,反之二者之间就会发生相对滑动。
【例1】如图所示,m =40kg的木板在无摩擦的地板上,木板上 又放m =10kg的石块,石块与木板间的动摩擦因素μ=0.6。求: (1)当水平力F=50N时,石块与木板间有无相对滑动?
(答:不滑动)
(2)当水平力F=100N时,石块与木板间有无相对滑动?( g=10m/s )此时m 的加速度为多大? (答:相对滑动,此时m 的加速度:a =4 m/s )
F
m1
【例2】.如图所示,在光滑水平面上有一小车A,其质量 为mA=2.0kg,小车上放一个物体B,其质量为mB=1.0kg ,如图(1)所示.给B一个水平推力F,当F增大到稍大 于3.0N时,A、B开始相对滑动.如果撤去F,对A施加一
解析:由于力F的大小末知,若力F较小,木块和木板可能 保持相对静止,一起做匀加速直线运动.加速度大小相 等.故A正确.若力F较大,物块和木板之间的摩擦力达到 最大静摩擦力,木块可能相对木板向前滑,即木块的加速 度大于木板的加速度,都做匀加速直运动.故B错误,C正 确.D错误.故选:AC.
高中物理牛顿运动定律的应用_牛顿运动定律的应用之“滑块_木板模型”
![高中物理牛顿运动定律的应用_牛顿运动定律的应用之“滑块_木板模型”](https://img.taocdn.com/s3/m/cff292d6376baf1ffd4fad29.png)
高中物理牛顿运动定律的应用-牛顿运动定律的应用之“滑块-木板模型”一、模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动,滑块-木板模型 ( 如图所示),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中。
二、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
三、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【名师点睛】1. 此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。
管理资料牛顿运动定律巧解滑块滑板模型1汇编
![管理资料牛顿运动定律巧解滑块滑板模型1汇编](https://img.taocdn.com/s3/m/832a8b290242a8956bece4dd.png)
2.运动学条件判断法: 先求出不受外力 F作用的那个物 体的最大临界加速度,再用假设法求出在外力 F作用下 滑块和滑板整体的加速度,最后把滑块和滑板的整体加 速度与不受外力 F作用的那个物体的最大临界加速度进 行大小比较。若滑块与滑板整体的加速度不大于(小于 或等于)滑块的最大加速度,即 a ? amax ,二者之间就 不发生相对滑动,反之二者之间就会发生相对滑动。
牛顿运动定律巧解滑块—滑板 模型1
1.模型特点: 上、下叠放两个物体,并且两物体在摩擦力的相互作用下发 生相对滑动.
2.基本思路: (1)受力分析,根据牛顿第二定律分别求出滑块和木板的 加速度;
( 2 )运动状态分析,找出位移关系,速度关系,建立方 程.(特别注意位移都是相对地面的位移).
3.两种位移关系:(相对滑动的位移关系)
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同
向运动,位移之差等于板长;反向运动时,位移之和等于板
长.
F
x1
Lx2F x2 NhomakorabeaL x1
方法指导 :
一、滑块与滑板间是否发生相对滑动的两种判断方法 1.动力学条件判断法: 即通过分析滑块 ——滑板间的摩 擦力是否为滑动摩擦力来进行判断。可先假设滑块与木 板间无相对滑动,然后根据牛顿第二定律对滑块与木板 整体列式求出加速度,再把滑块或木板隔离出来列式求 出两者之间的摩擦力,把求得的摩擦力与滑块和木板之 间的滑动摩擦力进行比较,分析求得的摩擦力是静摩擦 力还是滑动摩擦力,若为静摩擦力,则两者之间无相对 滑动;若为滑动摩擦力,则两者之间有相对滑动。
(答:相对滑动,此时m 的加速度:a =4 m/s )
F
m1
【例2】.如图所示,在光滑水平面上有一小车A,其质量 为mA=2.0kg,小车上放一个物体B,其质量为 mB=1.0kg,如图(1)所示.给B一个水平推力F,当F 增大到稍大于3.0N时,A、B开始相对滑动.如果撤去 F,对A施加一水平推力F′,如图(2)所示,要使A、 B不相对滑动,求F′的最大值Fm.
13 牛顿运动定律的应用之”滑块—木板“模型
![13 牛顿运动定律的应用之”滑块—木板“模型](https://img.taocdn.com/s3/m/01583f0ea5e9856a56126095.png)
【专题概述】在物理中经常会出现一类题就是滑块在滑板上运动类型的题目,这类题目一般会牵涉到牛顿第二定律,也会用到动能定理及能量守恒或者能量转换之间的关系,考试范围广,也成为近年来高考的重点,那么我们在处理此类问题时,我们着重从以下几个方面来分析问题1 . 滑块能不能从滑板上脱落的问题,所以在这个专题中就存在临界问题。
2 . 始运动时时滑块和滑板一起运动,还是分开各走各的,那么这儿就存在一个判断问题,如果出现这类情况我们就可以采取假设的方法,假设两个物体一起运动然后通过他们之间的摩擦力是否超过最大静摩擦力来判断是否一起运动。
3. 解这类题很多时候我们采用的是用运动学公式来求解,所以一般解此类题会导致我们的计算量比较大,也是考察学生的计算能力和数学方法归类的能力【典例精讲】1. 滑块和滑板的动力学问题.典例1如图所示,质量为m1的足够长木板静止在水平面上,其上放一质量为m2的物块.物块与木板的接触面是光滑的.从t=0时刻起,给物块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是()A B.C.D.典例2如图所示,一长木板在水平地面上运动,初速度为v0,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,己知物块与木板的质量相等,设物块与木板间及木板与地面间均有摩擦且摩擦因数为μ,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度-时间图象可能是选项中的()A. B.C.D.典例3 (多选)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零2 滑块、滑板中的临界问题典例4 (多选)如图所示,A,B两物块的质量分别为2m和m,静止叠放在水平地面上,A,B间的动摩擦因数为μ,B与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g,现对A施加一水平拉力F,则()A.当F<2μmg时,A,B都相对地面静止B.当F=μmg时,A的加速度为μgC.当F>3μmg时,A相对B滑动D.无论F为何值,B的加速度不会超过μg典例5如图所示,质量m1=0.5 kg的长木板在水平恒力F=6 N的作用下在光滑的水平面上运动,当木板速度为v0=2 m/s时,在木板右端无初速轻放一质量为m2=1.5 kg的小木块,此时木板距前方障碍物s=4.5 m,已知木块与木板间动摩擦因数μ=0.4,在木板撞到障碍物前木块未滑离木板.g取10 m/s2.(1)木块运动多长时间与木板达到相对静止;(2)求木板撞到障碍物时木块的速度.【总结提升】牛顿运动定律在滑块一木板类问题中的应用问题实质是牛顿运动定律与运动学等知识的综合问题,着重考查学生分析问题、运用知识的能力。
第10讲 牛顿运动定律之滑块-滑板模型(解析版)
![第10讲 牛顿运动定律之滑块-滑板模型(解析版)](https://img.taocdn.com/s3/m/137c8dce0b4e767f5bcfce0f.png)
第10讲滑板-滑块模型11.模型特点上、下叠放的两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
2.解题指导(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间位移关系或速度关系,建立方程。
(3)通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是解决问题的突破口。
(4)求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
(5)求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时,通常会用到系统能量守恒定律。
(6)求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
3.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,二者位移之差等于滑板长度;反向运动时,二者位移之和等于滑板长。
4.易错点(1)不清楚滑块、滑板的受力情况,求不出各自的加速度;(2)不清楚物体间发生相对滑动的条件。
说明:两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力(动力学条件);(2)二者速度或加速度不相等(运动学条件)。
(其中动力学条件是判断的主要依据)5.分析“滑块—滑板模型”问题时应掌握的技巧(1)分析题中滑块、滑板的受力情况,求出各自的加速度;(2)画好运动草图,找出位移、速度、时间等物理量间的关系;(3)明确每一过程的末速度是下一过程的初速度。
2一、单选题1.(2020·四川省高三三模)如图所示,质量均为M 的物块A 、B 叠放在光滑水平桌面上,质量为m 的物块C 用跨过轻质光滑定滑轮的轻绳与B 连接,且轻绳与桌面平行,A 、B 之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,下列说法正确的是( )A.若物块A 、B 未发生相对滑动,物块A 受到的摩擦力为2f MmgF M m=+B.要使物块A 、B 发生相对滑动,应满足关系1Mm μμ>- C.若物块A 、B 未发生相对滑动,轻绳拉力的大小为mgD.若物块A 、B 未发生相对滑动时,轻绳对定滑轮的作用力为22MmgF M m=+【答案】A【解析】A .若物块A 、B 未发生相对滑动,A 、B 、C 三者加速的大小相等,由牛顿第二定律得()2mg M m a =+对A ,由牛顿第二定律得f F Ma =解得2f MmgF M m=+,故A 正确;B .当A 、B 发生相对滑动时,A 所受的静摩擦力达到最大,根据牛顿第二定律有Mg Ma μ=解得a g μ=以A 、B 、C 系统为研究对象,由牛顿第二定律得()2mg M m a =+解得21Mm μμ=- 故要使物块A 、B 之间发生相对滑动,则21Mm μμ>-,故B 错误; C .若物块A 、B 未发生相对滑动,设轻绳拉力的大小为F ,对C 受力分析,根据牛顿第二定律有mg F ma -=解得F mg ma mg =-<,故C 错误;D .若物块A 、B 未发生相对滑动时,由A 可知,此时的加速度为2f mgMmF a M ==+对C 受力分析,根据牛顿第二定律有mg F ma -=解得22MmgF M m=+根据力的合成法则,可得轻绳对定滑轮的作用力2222+=2MmgN F F M m=+故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云和课堂:
牛顿运动定律巧解滑块--滑板模型
(第一课时)综述及计算题 王海桥12.10
1.模型特点:
上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.
2.建模指导:
基本思路:
(1)受力分析,根据牛顿第二定律分别求出滑块和木板的加速度;
(2)运动状态分析,找出位移关系,速度关系,建立方程.(特别注意位移都是相对地面的位移).
3.两种位移关系:(相对滑动的位移关系)
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.
4.滑块与滑板间是否发生相对滑动的判断方法
(1).动力学条件判断法:
分析滑块—滑板间的摩擦力是否为滑动摩擦力 。
若为静摩擦力,则两者之间无相对滑动;
若为滑动摩擦力,则两者之间有相对滑动。
(2).运动学条件判断法:
求出不受外力F 作用的物体的最大临界加速度amax ,
若滑块与滑板整体的加速度a 满足条件
二者之间就不发生相对滑动,
(3).滑块滑离滑板的临界条件
当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到共同速度是滑块滑离滑板的临界条件.
【例1】如图所示,m1 =40kg 的木板在无摩擦的地板上,木板上又放m2 =10kg 的石块,
石块与木板间的动摩擦因素μ=0.6。
试问:
(1)当水平力F=50N 时,石块与木板间有无相对滑动?
(2)当水平力F=100N 时,石块与木板间有无相对滑动?(g=10m/s )此时m 的加速度为多大?
【例2】.如图所示,在光滑水平面上有一小车A ,其质量为mA=2.0kg ,小车上放一个物体B ,其质量为mB=1.0kg ,如图(1)所示.给B 一个水平推力F ,当F 增大到稍大于3.0N 时,A 、B 开始相对滑动.如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B 不相对滑动,求F ′的最大值Fm .
【例3】木板M 静止在光滑水平面上,木板上放着一个小滑块m ,与木板之间的动摩擦因数μ,为了使得m 能从M 上滑落下来,求下列情况下力F 的大小范围。
(第二课时)选择题及小结 【例2】如图所示,光滑的水平面上静置质量为M =8 kg 的平板小车,在小车左端加一个由零逐渐增大的水平推力F ,一个大小不计、质量为m =2 kg 的小物块放在小车右端上面,小物块与小车间的动摩擦因数μ=0.2,小车足够长.重力加速度g 取10 m/s 2
,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )
A.当F增加到4 N时,m相对M开始运动
B.当F增加到20 N时,m相对M开始运动
C.当F=10 N时,m对M有向左的2 N的摩擦力
D.当F=10 N时,m对M有向右的4 N的摩擦力
【例4】滑块与皮带
如图所示,一物体以初速度V0=10m/s冲上长度为SAB=5m的粗糙斜面,斜面与水平面的夹角θ=37,斜面的末端B与传送带用光滑弧形相接,传送带始终保持v=2m/s的速率顺时针运行.已知传送带长度SBC=3m,物体与斜面及传送带间的动摩擦因数均为μ=0.5.试求:
(1)物体在斜面滑动时加速度a1的大小;
(2)物体刚滑上传送带时加速度a2的大小;
(3)物体从A运动到C所用的时间t.
分析滑块—木板模型问题时应掌握
的技巧小结:
1.分析题中滑块、木板的受力情况,求出各自的加速度.
2.画好运动草图,找出位移、速度、时间等物理量间的关系.
3.知道每一过程的末速度是下一过程的初速度.
4.两者发生相对滑动的条件:
(1)摩擦力为滑动摩擦力.
(2)二者加速度不相等.。