初一数学行程问题常见题型分析
初一数学行程问题题型总结
初一数学行程问题题型总结摘要:一、初一数学行程问题概述二、初一数学行程问题题型分类与解题方法1.直线行程问题2.曲线行程问题3.相遇问题4.追及问题5.比例行程问题6.往返行程问题三、解题技巧与策略四、巩固练习与答案解析正文:一、初一数学行程问题概述初一数学行程问题主要研究物体在一定时间内所行驶的路程、速度和时间之间的关系。
通过对行程问题的学习,学生可以更好地理解代数、几何和三角函数等知识,为后续学习打下基础。
二、初一数学行程问题题型分类与解题方法1.直线行程问题:题目中涉及物体在直线上的运动,通过已知条件求解速度、时间或路程等问题。
解题方法:掌握速度、时间、路程之间的关系公式,如v=s/t,s=vt,t=s/v等。
2.曲线行程问题:题目中涉及物体在曲线上的运动,需要运用三角函数等知识求解。
解题方法:将曲线问题转化为直线问题,运用三角函数关系式,如sinα=对边/斜边,cosα=邻边/斜边等。
3.相遇问题:两个或多个物体在某一地点相向而行,求解相遇时间、地点等问题。
解题方法:利用相对速度的概念,设相遇时间为t,则各物体行驶的路程之和等于总路程,即v1+v2=s/t。
4.追及问题:一个物体在另一个物体前追逐,求解追及时间、距离等问题。
解题方法:利用相对速度的概念,设追及时间为t,则追及距离等于速度差乘以时间,即v1-v2=s/t。
5.比例行程问题:物体在两种不同速度下行驶相同距离,求解速度比等问题。
解题方法:设两种速度分别为v1和v2,行驶时间为t1和t2,则v1/v2=t2/t1。
6.往返行程问题:物体在往返过程中,求解总时间、总路程等问题。
解题方法:将往返过程分为两个单程,利用速度、时间、路程之间的关系求解。
三、解题技巧与策略1.画图辅助:对于复杂问题,可以通过画图来帮助理解题意,更好地找出已知条件和未知量。
2.设立未知量:根据题意,设定合适的未知量,然后列出方程求解。
3.单位统一:在解题过程中,要保持单位一致,便于计算。
初中数学《一次函数应用—行程问题》典型例题及答案解析
初中数学《一次函数应用—行程问题》典型例题及答案解析一、单选题1.一辆汽车和一辆摩托车分别从A,B两地去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1h;②A,B两地的路程为20km;③摩托车的速度为45km/h,汽车的速度为60km/h;④汽车出发1小时后与摩托车相遇,此时距B地40千米.其中正确结论的个数是()A.2个B.3个C.4个D.1个【答案】B【解析】试题解析:分析图象可知(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;故正确的有3个,故选B.2.小明的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是().A.B.C.D.【答案】D【解析】爷爷从家里到公园这一过程,y随着x的增大而增大;打太极这一过程,y保持不变;沿原路漫步回家这一过程,y随着x的增大而减小.故选D.点睛:此题主要根据函数的增减性进行判断.3.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是()A.Q=40B.Q=40C.Q=40D.Q=40【答案】C【解析】汽车油箱内有油40L,每行驶100km耗油10L,汽车行驶过程中油箱内剩余的油量与行驶路程之间的函数表达式为: Q=40故选: C.4.甲从P地前往Q地,乙从Q地前往P地.设甲离开P地的时间为t( 小时),两人距离Q地的路程为S( 千米),图中的线段分别表示S与t之间的函数关系.根据图象的信息,下列说法正确的序号是( )①甲的速度是每小时80千米;②乙的速度是每小时50千米;③乙比甲晚出发1小时;④甲比乙少用2.25小时到达目的地;⑤图中a的值等于A.①②③④⑤B.①③④⑤C.①③⑤D.①③【答案】C【解析】①由图甲走了300千米,耗时3.75/小时.正确.②由图知乙走了300千米,耗时5/小时.错误.③乙在前一个小时路程没变,所以乙比甲晚出发1小时,正确.④由图知,5-3.75=1.25小时.错误.⑤由题意得,上下两个三角形相似,解得a 正确. 所以①③⑤正确.点睛:本题也可以根据图象信息,在直角坐标系下,看懂横纵坐标所表示的意义及其关系,把两个一次函数解析式求出来,函数的k 就是速度(可解决①②),函数的交点问题,只需要联立一次函数解析式(可解决⑤).5.目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数关系式是( )A . 0.05y x =B . 5y x =C . 100y x =D . 0.05100y x =+【答案】B【解析】由题意得,一分钟滴水1000.055⨯=,所以5y x = 选B.6.在一条笔直的公路上,依次有A 、B 、C 三地.小军、小扬从A 地同时出发匀速运动,小军以2千米/分的速度到达B 地立即返回A 地,到达A 后小军原地休息,小扬途经B 地前往C 地.小军与小扬的距离s (单位:千米)和小扬所用的时间t (单位:分钟)之间的函数关系如图所示.下列说法:①小军用了4分钟到达B 地;②当t=4时,小军和小扬的距离为4千米;③C 地与A 地的距离为10千米;④小军、小扬在5分钟时相遇.其中正确的个数为( )A . 1个B . 2个C . 3个D . 4个【答案】C【解析】试题解析:由图可知,小军到达B 所用的时间为4分钟,故①正确;当小扬与小军相距8千米时,小军刚好返回A 地,则此时小军行驶的总的时间为8分钟,故小扬的速度为8÷8=1千米/分,∴当t=4时,小军和小扬的距离为:4×(2-1)=4千米,故②正确;∴C 地与A 地的距离为:1×10=10千米,故③正确;∴小军和小扬相遇的时间为:8×2÷(1+2)=分钟,故④错误;故选C .7.甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( )A . M 、N 两地的路程是1000千米;B . 甲到N 地的时间为4.6小时;C . 甲车的速度是120千米/小时;D . 甲乙两车相遇时乙车行驶了440千米.【答案】C【解析】试题解析: 0t =时, 560,S = ,M N ∴两地的路程560千米.A 错误. 甲车的速度为()5604401120km/h.-÷= C 正确. 设乙车的速度为km/h v , 则()()12031440.v +⨯-= 解得100.v =乙车行驶速度为100km/h. 甲车到达N 地的时间为.B 错误. ∵甲车出发1小时后乙车出发,∴乙车出发312-=小时后与甲车相遇. 甲乙两车相遇时乙车行驶了1002200⨯=千米.D 错误.故选:C.8.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象.下列结论中,错误的是( )A . 轮船的速度为20 km /hB . 快艇的速度为40 km /hC . 轮船比快艇先出发2 hD . 快艇不能赶上轮船【答案】D【解析】试题解析:观察图象,该函数图象表示的是路程与之间的函数关系,可知轮船出发4小时后被快艇追上,在4小时时快艇和轮船行驶的路程相等,所以错误的是第四个结论.故选D .9.汽车由A 地驶往相距120 km 的B 地,它的平均速度是30 km /h ,则汽车距B 地的路程s(km )与行驶时间t(h )的函数关系式及自变量t 的取值范围是( )A . s =120-30t(0≤t≤4)B . s =120-30t(t >0)C . s =30t(0≤t≤4)D . s =30t(t <4)【答案】A【解析】平均速度是30km/h ,∴t 小时行驶30tkm ,∴S=120-30t ,∵时间为非负数,汽车距B 地路程为非负数,∴t≥0,120-30t≥0,解得0≤t≤4.故选A .10.小明和小亮在同一条笔直的道路上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y (米)与小亮出发的时间t (秒)之间的函数关系如图所示,则下列结论错误的是( ).A . 8a =B . 92b =C . 123c =D . 当20t =时, 10y =【答案】D【解析】根据题意, 0t =时,小明出发2秒行驶的路程为8米, 所以,小明的速度824=÷=米/秒,∵先到终点的人原地休息,∴100秒时,小亮先到达终点, ∴小亮的速度5001005=÷=米/秒,∴a=8÷(5-4)=8(秒),()51004100292b =⨯-⨯+=(米), 100924123c =+÷=(秒), ∴小明出发123秒时到达了终点,故A 、B 、C 均正确, 小亮出发20秒,小亮走了205100⨯=米,小明走了22488⨯=米,1008812-=米, ∴小亮在小明前方12米,故D 错误.故选D.【点睛】本题主要考查一次函数的应用,能正确地识图,明确图中的拐点的含义是解题的关键.11.甲乙两辆车分别从A 、B 二地相对开出,2)。
初一数学第16节:特殊行程问题
第16节:特殊行程问题模块一:火车行程问题火车的行程问题大体上可以分为三类:火车过桥/山涧/隧道的问题;火车与行人的相遇和追及问题;火车与火车的相遇和追及问题.一、火车经过桥/山洞/隧道的过程.1、"火车通过桥”即指“火车从车头上桥到车尾离桥”的过程,如图所示:火车在通过桥/山洞/隧道时行驶的总路程是火车车长与桥/山洞/隧道的长度之和2、"火车完全在桥上”即指“火车从车尾上桥到车头离桥”的过程,如图所示:火车完全在桥上/山洞中/隧道中行驶的总路程是桥/山洞/隧道的长度与火车车长之差.二、火车与行人的相遇和追及问题1、火车从静止的人身旁经过的过程是非常简单的,从车头遇到人到车尾离开人,整个过程中火车行驶的路程就是火车长度-其实可以把人看作缩短至长度为0的桥.2、火车与人相遇:行人和火车迎面相遇,从相遇时刻到错开时刻,火车和行人的路程和=火车的长度.3、火车追人:火车追行人,从追上时刻到离开时刻,火车和行人的路程差=火车的长度.三、两列火车之间的相遇与追及.1、火车与火车相遇:火车和火车相遇,从相遇时刻到错开时刻,两列火车的路程和=两列火车车长之和.2、火车追火车:火车追火车,从追上时刻到离开时刻,两列火车的路程差=两列火车车长之和.【例1】火车进山洞燧道,从车头进入到车尾进人洞口,共用a分钟,又当车头开始进入洞口直到车尾出洞口,共用b分钟,且:8:3b a ,又知山洞隧道长是300米,那么火车车长为多少米?【例2】甲乙两列火车在平行的轨道上相向而行,两车从车头相遇到车尾相离共用4 秒。
甲车长135米,速度是每秒行48 米,乙车每秒行52 米,乙车车长多少米?1.【2018·中大附6】一列火车以每分钟600米的速度通过一座220米的大桥,如果火车全长20米,那么从车头上桥到车尾离开桥,共需分钟。
2.【2018·广附黄华路】两列火车相向而行,客车每小时行80 千米,货车每小时行55千米,两车相遇错过时,客车上的旅客从看见货车的车头到车尾经过10秒钟,货车的全长是。
行程问题 九大题型 与 五大方法 附行程问题典型例题
行程问题“九大题型”与“五大方法”。
很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。
1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。
2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。
⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。
示意图包括线段图、折线图,还包括列表。
图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。
另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。
ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。
更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。
ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。
⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。
这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。
⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。
ps:方程法尤其适用于在重要的考试中,可以节省很多时间。
行程问题公式目录基本概念行程问题是研究物体运动的。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇时间×速度和=相遇路程相遇问题(直线)甲的路程-乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2船速:(顺水速度+逆水速度)÷2解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
初一数学行程问题常见题型分析
行程问题常见题型分析一、弄清行程问题中基本的量和它们之间的关系。
行程问题中有三个基本量:速度、时间、路程。
这三个量之间的关系是:路程=时间×速度变形可得到:速度=路程/时间时间=路程/速度这三个量的作用是知道其中两个就可以表示第三个。
二、行程问题常见类型1、普通相遇问题。
2、追及(急)问题。
3、顺(逆)水航行问题。
4、跑道上的相遇(追急)问题三、行程问题中的等量关系所谓等量关系就是意义相同的量,能用等量连接的关系。
若路程已知,则应找时间的等量关系和速度的等量关系;若速度已知,则应找时间的等量关系和路程的等量关系;若时间已知,则找路程的等量关系和速度的等量关系。
在航行问题中还有两个固定的等量关系,就是:顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度四、分类举例例1 :小明每天早上要在7:50之前赶到距离家1000米的学校去上学。
小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
爸爸追小明用了多长时间分析:此题中小明的速度,爸爸的速度均已告诉。
因此速度之间不存在等量关系。
我们只能在父子二人的时间和父子二人的路程上找等量关系。
由于小明比爸爸早出发5分钟,且相遇时在同一个时刻,因此相遇时爸爸比小明少用5分钟,可得时间的等量关系:①爸爸的时间+5分钟=小明的时间,当爸爸追上小明时,父子二人都是从家走到相遇的地点,故爸爸行的路程与小明行的路程相等。
得路程相等关系。
②爸爸路程=小明路程,如果爸爸追上小明用了x分钟,则第一个相等关系得:小明用了(x+5)分钟,带入第二个等量关系,可得方程180x=80(x+5)例2:甲乙两人在环形跑道上练习跑步。
已知环形跑道一圈长400米,乙每秒跑6米,甲的速度是乙的4/3倍。
⑴若甲、乙两人在跑道上相距8米处同时相向出发,经过几秒两人相遇⑵若甲在乙前8米处同时同向出发,那么经过多长时间两人首次相遇分析:此题甲乙两人的速度均已告诉,因此我们只能在时间中找等量关系,在路程中找等量关系。
行程问题九大题型初中公式
行程问题九大题型初中公式
在解决行程问题时,初中阶段主要涉及到的公式主要包括以下九大题型:
1. 相遇问题:
公式:总路程 = (甲速度 + 乙速度) × 相遇时间
2. 追及问题:
公式:追及时间 = 追及路程 / (快速 - 慢速)
公式:追及路程 = (快速 - 慢速) × 追及时间
3. 环形跑道上的相遇与追及:
公式:外圈路程 - 内圈路程 = 快者速度× 时间 - 慢者速度× 时间
4. 行程问题中的正反比例关系:
公式:路程一定,速度与时间成反比
5. 航行问题:
公式:顺水速度 = 静水速度 + 水流速度
公式:逆水速度 = 静水速度 - 水流速度
6. 火车过桥问题:
公式:车长 + 桥长 = 火车速度× 火车过桥时间
7. 流水问题:
公式:船速的(1 - 水速/船速)× 时间 = (顺水路程 / 顺水时间)× 时间
8. 行程问题中的比例关系:
公式:路程一定时,时间和速度成反比
9. 行程问题中的线性关系:
公式:速度一定时,路程和时间成正比
在解决具体问题时,需要根据问题的具体情况选择合适的公式进行计算。
同时,理解和掌握这些公式的含义和应用方法,对于提高解决实际问题的能力非常重要。
行程问题7大经典题型总结
行程问题7大经典题型归纳总结拓展简单地将行程问题分类:(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)(2)火车过人、过桥和错车问题(3)多个对象间的行程问题(4)环形问题与时钟问题(5)流水、行船问题(6)变速问题一些习惯性的解题方法:(1)利用设数法、设份数处理(2)利用速度变化情况进行分段处理(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解1. 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。
如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。
因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。
呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。
而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。
例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。
已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。
求列车与货车从相遇到离开所用的时间。
例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。
一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。
数学初中行程问题
初中数学中的行程问题通常涉及到两个物体在不同的速度下相对运动的情况。
以下是一些常见的行程问题类型和解决方法:
1.相遇问题:两个物体从不同的地点出发,相向而行,最终相遇。
通常需要求出相遇时间或两地之间的距离。
解决方法:利用速度和×相遇时间=距离这个公式来解决。
2.追及问题:一个物体在前,另一个物体在后,后者速度大于前者,
最终追上前者。
通常需要求出追及时间或开始时两者之间的距离。
解决方法:利用速度差×追及时间=距离这个公式来解决。
3.环形跑道问题:两个物体在环形跑道上运动,可能是同向或反向。
通常需要求出它们相遇或追及的时间。
解决方法:根据具体情况,利用相遇问题或追及问题的公式进行求解。
4.飞行问题:涉及到两个物体在不同的高度或速度下飞行,通常需
要求出它们相遇或相距的时间或距离。
解决方法:根据具体情况,利用速度、时间和距离之间的关系进行求解。
5.流水行船问题:涉及到船在水中顺流或逆流航行,通常需要求出
航行的时间或距离。
解决方法:利用顺流速度=船速+水流速度,逆流速度=船速-水流速度,以及路程=速度×时间的公式进行求解。
解决行程问题的关键是理解物体的运动情况,画出示意图,明确速度、时间和距离之间的关系,并选择合适的公式进行计算。
同时,要注意单位的一致性,确保计算的准确性。
初中数学专题行程问题
初中数学专题行程问题行程问题是指与路程、速度、时间这三个量有关的问题。
常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。
行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。
下面我们将行程问题归类,由易到难,逐步剖析。
1.单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从80km/h提高到100km/h,运行时间缩短了3h。
甲,乙两城市间的路程是多少?分析】设甲,乙两城市间的路程为xkm,那么列车在两城市间提速前的运行时间为xxh,提速后的运行时间为h。
根据等量关系式,提速前的运行时间减去提速后的运行时间等于缩短的时间3h,列出方程80x/(100-80)-x/(100-80)=3,解得x=300km。
例2:某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s。
求火车的速度和长度。
分析】设火车的速度为x m/s,火车的长度为y m,用线段表示大桥和火车的长度,根据题意可画出示意图。
根据等量关系式,列出方程组60x=1000+y,40x=1000-y,解得x=25m/s,y=300m。
举一反三:1.XXX家和学校相距15km。
XXX从家出发到学校,XXX先步行到公共汽车站,步行的速度为60m/min,再乘公共汽车到学校,发现比步行的时间缩短了20min,已知公共汽车的速度为40km/h,求XXX从家到学校用了多长时间。
设XXX步行到公共汽车站的时间为t1 min,公共汽车行驶的时间为t2 min,则有15=60t1/1000+40t2/60,以及t1-t2=20,解得t1=40min,t2=20min,所以XXX从家到学校用了60min。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km。
行程问题7大经典题型归纳总结拓展
行程问题7大经典题型归纳总结拓展引言行程问题是数学中常见的问题之一,主要研究物体在不同速度、时间、距离条件下的运动情况。
本文将对行程问题中的7大经典题型进行归纳总结,并进行拓展分析。
题型一:相遇问题定义相遇问题是指两个或多个物体从不同地点出发,以不同的速度相向而行,最终在某一点相遇的问题。
公式设A、B两点相距( d ),甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b )。
若甲乙相遇于C点,则相遇时间为( t ),有:[ t = \frac{d}{v_a + v_b} ]拓展可以拓展到多物体相遇问题,考虑物体间的速度差和相对运动。
题型二:追及问题定义追及问题是指一个物体追赶另一个物体,两者以不同速度运动,最终追上的问题。
公式设甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b ),甲追上乙所需时间为( t ),则:[ t = \frac{d}{v_a - v_b} ]拓展考虑追及过程中的加速、减速情况,以及追及的临界条件。
题型三:往返问题定义往返问题是指物体在两点间来回运动,可能涉及速度变化的问题。
公式设A、B两点相距( d ),物体速度为( v ),往返一次所需时间为( t ),则:[ t = \frac{2d}{v} ]拓展考虑物体在往返过程中速度的变化,以及往返次数与时间的关系。
题型四:流水行船问题定义流水行船问题是指船只在有水流的河流中航行,需要考虑船速与水流速度的问题。
公式设船在静水中的速度为( v_s ),水流速度为( v_r ),船顺流而下的速度为( v_{up} ),逆流而上的速度为( v_{down} ),则:[ v_{up} = v_s + v_r ][ v_{down} = v_s - v_r ]拓展考虑船只在不同水流速度下的航行策略,以及如何最优化航行时间。
题型五:环形跑道问题定义环形跑道问题是指物体在环形跑道上运动,可能涉及速度和圈数的问题。
人教版数学七年级上册 行程问题 一元一次方程常见题型
■ 例1 小明和小红约定一起去操场打羽毛球,两人都步行从教室 出发,并且沿同一路线走,教室距离操场1800米.小红先出发,步行 的速度是30米 /分,小明比小红晚出发10分钟 ,比小红早20分钟 到达图书馆.
■ (1 )求小明步行的速度;
■ (2 )求小红出发多长时间后小明追上小红(要 求列方程解答).
■ 解 :设火车的速度为x米/秒,则火车的长度 可表示为(60x-1000) 米,车长又可以表示为(1000 -40x)米,
■ 因此根据题意有60x-1000=1000-40x, ■ 解得x=20,则60x-1000=200 ■ 所以火车的速度为20米/秒,火车的长度为 200米.
谢谢观看!
■ 因此甲船从A码头出发行驶了24/7或24小时
环形相遇问题
■ 人在圆、椭圆、多边形等封闭线路上的运动问 题,若是相向而行,则为相遇问题。 ■ 同起点、同时间、背向出发,首次相遇时,两者合 走了1圈.等量关系:从出发到相遇
所用时间=环形 周长/两者速度和.第n次相遇时,两者合走了n圈. ■ 不同起点、同时出发的追及或相遇问题,也有类 似的等量关系.但要注意,第一次相
■ 解 :设小明和小红跑了x秒后第一次相遇,则 小狗跑了x-(6)秒, ■ 根据题意有2x+3x=400, ■ 解得x=80, ■ 则小狗跑的时间为x-6=80-6=74秒, ■ 所以小狗共跑了6×74=444米
火车过桥问题
■ 这是一类车过桥、车过隧道的问题.相关的概念 有车长、桥长(隧道长) 车速等,问题类似“车完全在 桥上(或隧道里)的时间,车从上桥到完全离 开桥的 时间”等。
■ 解: ■ (1)1800÷(1800÷30-10-20)=60, 因此小明的速度为60米/分。 ■ (2)设小红出发x分钟后小明追上小红,则此 时小明出发x-(10)分
初一数学上册:一元一次方程解决应用题【行程问题】
初一数学上册:一元一次方程解决应用题【行程问题】知识点1、行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2、行程问题基本类型相遇问题:快行距+慢行距=原距追及问题:快行距-慢行距=原距航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系专项练习1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为_____。
解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:X/8-X/40=3.62、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系(1)速度15千米行的总路程=速度9千米行的总路程(2)速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:X/15+15/60=X/9-15/603、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?等量关系:①两种情形下火车的速度相等②两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。
解:⑴行人的速度是:3.6km/时=3600米÷3600秒=1米/秒骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒⑵方法一:设火车的速度是X米/秒,则26×(X-3)=22×(X-1) 解得X=4方法二:设火车的车长是x米,则(X+22×1)/22=(X+26×3)/264、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
七年级-第十讲:行程问题经典例题
第十讲:行程问题分类例析主讲:何老师行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设甲车共行使了xh ,则乙车行使了h x )(6025-.(如图1)依题意,有72x+48)(6025-x =360+100, 解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会.例2:一架战斗机的贮油量最多够它在空中飞行4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回?分析:列方程求解行程问题中的顺风逆风问题.顺风中的速度=静风中速度+风速逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++x x 解得:x=1320.答:这架飞机最远飞出1320km 就应返回.解法二: 设飞机顺风飞行时间为th.依题意,有(575+25)t=(575-25)(4.6-t),解得:t=2.2.(575+25)t=600×2.2=1320.答:这架飞机最远飞出1320km 就应返回.图1说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题.解答:(1)设经过xh 两人首次相遇.依题意,得(21+14)x=42,解得:x=1.2.因此,经过1.2小时两人首次相遇.(3) 设经过xh 两人第二次相遇.依题意,得21x-14x=42×2,解得:x=12.因此,经过12h 两人第二次相遇.说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.有趣的行程问题【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?分析与解: 出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇.本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A 点出发,乙从C 点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
初一应用题分类总结----行程问题
初一应用题分类总结---------典型题型归类与解题思路(一)行程问题: 基本公式 时间×速度=距离行程问题包括相遇问题、追击问题、跑道赛跑、火车相遇、水中行船、时钟问题,还有相关的判断问题。
关键点:位置、距离、时间、速度。
清楚各点之间相关量的关系,忽略过程的细节。
1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
分析:行走问题,可以理解为追击问题时间等量关系 车行时间+3.6=人行时间 x÷40+3.6=x÷8 距离等量关系人行时间×人行速度=甲乙距离(x÷40+3.6)×8=x2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
分析:相遇问题---相向而行(反方向) 甲距离+乙距离=某距离(1)甲乙两次的行走时间均已知,(2)两次行走的总距离均已知,(3)第一次甲乙时间同距离等量关系 第二次甲走+第二次乙走=18 ---(2)设甲速度x,乙的速度=距离÷第一次同时行走时间-x ---(3)x×(40+1时30)+(距离÷第一次同时行走时间-x)×1时30=18----单位应一致速度等量关系第二次甲40分钟路程÷40分钟=甲的速度第二次甲40分钟路程=总行程-第二次共同走过的行程第二次共同走过的行程=总行程×两次共同走过的时间比速度等量关系第一次共同行走时的速度=第二次行走时的速度18÷1小时48分=(18-x×40分)÷1小时30分 ----单位应一致3. 某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?分析:行走问题。
初中奥数“行程问题”类型归纳及解题技巧总结
初中奥数“行程问题”类型归纳及解题技巧总结概述初中奥数中的“行程问题”类型是指涉及对象的移动路径和位置的数学问题。
这类问题需要学生根据给定的条件,确定对象的具体位置和路径,并运用数学方法进行计算。
本文将对初中奥数中的“行程问题”类型进行归纳,并总结解题技巧。
类型归纳初中奥数中的“行程问题”类型可以分为以下几类:1. 直线行程问题:涉及对象沿直线路径移动的问题。
该类问题通常需要计算对象的起始位置、终止位置、移动距离或移动时间。
2. 圆周行程问题:涉及对象沿圆周路径移动的问题。
该类问题通常需要计算对象的起始位置、终止位置、移动角度或移动距离。
3. 多边形行程问题:涉及对象沿多边形路径移动的问题。
该类问题通常需要计算对象的起始位置、终止位置、移动距离或移动顺序。
解题技巧解决初中奥数中的“行程问题”可以采用以下技巧:1. 画图辅助:根据问题描述,画出对象的移动路径和位置图示,有助于直观理解问题。
2. 利用几何知识:根据问题描述和已知条件,应用几何知识来求解问题。
例如,使用直线段的长度计算公式、圆的周长公式等。
3. 分析问题条件:仔细分析问题中给出的条件,提取关键信息,确保理解问题的要求和限制。
4. 列方程求解:根据已知条件和问题要求,列出合适的方程式来求解问题。
通过代入计算,得出结果。
5. 反复验证:在求解过程中,反复验证计算结果的准确性,确保解答正确。
总结初中奥数中的“行程问题”类型包括直线行程、圆周行程和多边形行程问题。
解答这些问题时可以使用画图辅助、几何知识应用、分析问题条件、列方程求解和反复验证的技巧。
通过熟练掌握这些技巧,学生可以更好地解决“行程问题”类型的数学题目。
行程问题7类经典题型
行程问题经典题型例题 1甲乙两地相距 800 千米,一辆客车以每小时40 千米的速度从甲地开出 3 小时后,一辆摩托车以每小时 60 千米的速度从乙地开出,开出后几小时与客车相遇习题:1、甲、乙两地相距1160 千米,小明以每分钟30 米的速度从甲地从发 6 分钟后,小华以每分钟 40 米的速度从乙地出发,几分钟后与小明相遇2、甲、乙两地相距1080 千米,一辆货车以每小时60 千米的速度从甲地从发4 小时后,一辆摩托车以每小时80 千米的速度从乙地出发,开出后几小时与货车相遇3、客车以每小时70 千米的速度从甲地开出 3 小时后,一辆货车以每小时 60 千米的速度从乙地开出 5 小时后与客车相遇,甲、乙两地相距多少千米4、小红一人去 14 千米远的叔叔家,她每小时行 6 千米。
从家出发 1小时后,叔叔闻讯立刻以每小时 10 千米的速度前来接她,几小时后能够接到小红例题 2六(1)班同学徒步去狼山看日出。
去时每小时行8 千米,按原路返回时每小时行 6 千米。
他们来回的均匀速度是多少1、一艘船从 A 地开往 B 地。
去时每小时行20 千米,按原路返回时每小时行 25 千米。
这艘船来回的均匀速度是多少2、一辆客车从甲地开往乙地。
去时每小时行40 千米,按原路返回时每小时行 35 千米。
这辆客车来回的均匀速度是多少3、一艘轮船,静水速度是每小时18 千米,此刻从下游开往上游,水流速度是每小时 2 千米,请问他来回一次的均匀速度是多少4、一列火车从甲站开往乙站。
去时每小时行120 千米,按原路返回每小时行 150 千米。
这列火车来回的均匀速度是多少例题 3甲、乙两车同时从A、B 两地相对开出,几小时后在距中点40 千米出相遇。
已知甲车行完整程要8 小时,乙车行完要10 小时,求 A、B 两地相距多少1、甲、乙两车同时从 A、B 两地出发,相对而行,在距离中点 6 千米处相遇。
已知甲车速度是乙车速度的5/6,求两地相距多少千米2、快、慢两车同时从甲、乙两地相对开出,几小时后在距离中点55千米处相遇。
初一行程问题及解答
初一行程问题及解答1.轮船在两个码头之间航行,顺水航行需要4小时,逆水行驶需要5小时,水流的速度是2千米/时,求轮船在静水中的行驶速度?(用方程解应用题)2.甲,乙两站相距360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米,慢车先开出25分钟,两车相向而行,慢车开几小时与快车相遇?(用方程解应用题)3.一个人从甲村走到乙村。
如果他每小时走4千米,那么走到预定的时间,离乙村还有0.5千米;如果他每小时走5千米,那么比一定时间少用半小时就可以到达乙村。
求预定时间是多少小时,甲村到一寸的路程是多少千米?(用方程解应用题)4.一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进,突然一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会和。
一号队员从离队开始到与队员重新会和,经过多长时间?(用方程解应用题)5.某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路。
虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离。
6.甲、乙两站相距380km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km,慢车先开25分钟。
两车相向而行,慢车开出多长时间后与快车相遇?7.一队学生从学校出发去部队军训,行进速度是5千米/时,走了45千米时,一名通讯员按原路返回学校报信,然后他随即追赶队伍,通讯员的速度是14千米/时,他距部队6千米处追上队伍.问学校到部队的距离是多少?8.某人原计划骑车以每小时12千米的速度由A第到B地,这样便可在规定的时间到达,但他因有事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到B地,求AB两地距离.9.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。
(完整)七年级数学行程问题(整理)
行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:简单行程:路程=速度×时间相遇问题:路程和=速度和×时间追击问题:路程差=速度差×时间流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。
一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。
(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
随便一道题解析
随便一道题解析朋友!今天咱就来聊聊一道题的解析哈。
咱就拿数学里那种常见的行程问题来说说吧。
1. 题目亮相。
比如说啊,有这么一道题:“小明和小红同时从两地相对而行,小明每小时走5千米,小红每小时走4千米,经过3小时两人相遇。
问两地相距多远呀?”你看,这题一出来,是不是感觉挺熟悉的,就像生活中两个人朝着对方走,最后碰面那种场景哈。
2. 思路分析。
咱来想想哈,要求两地相距多远,其实就是求小明和小红一共走了多远的路。
那怎么求呢?咱得知道他们各自走了多远,然后把这两段路加起来不就成了嘛。
小明每小时走5千米,走了3小时,那他走的路程就是速度乘以时间,也就是5×3 = 15千米。
这就好比小明一步一步稳稳地走,3个小时就走出了15千米的距离哈。
小红呢,每小时走4千米,同样走了3小时,那她走的路程就是4×3 = 12千米。
小红也没闲着,3个小时也走出了自己的一段路哈。
3. 计算过程。
现在知道小明走了15千米,小红走了12千米,那两地的距离就是把他们走的路程加起来呀,15 + 12 = 27千米。
就这么简单,轻轻松松就把两地的距离算出来啦。
4. 换个角度看。
其实啊,这种题还有个更巧妙的方法呢。
咱可以把小明和小红看成一个整体,他们俩相对而行,那他们每小时一共走的路程就是两人速度之和,也就是5 + 4 = 9千米。
然后呢,他们走了3小时相遇,那总路程就是这个速度和乘以时间,9×3 = 27千米。
你看,是不是也能算出同样的结果呀,这种方法是不是还挺好玩的。
5. 总结一下哈。
像这种行程问题呢,关键就是要搞清楚速度、时间和路程之间的关系。
只要把这些关系理清楚了,不管题目怎么变,咱都能轻松应对。
就像生活中,只要咱们把事情的来龙去脉搞明白了,解决问题也就没那么难啦。
而且啊,做这种题的时候,咱可以多想想生活中的实际场景,比如说你和朋友约着见面,你们各自从家里出发,走了多久碰面啦,这样一想,是不是就更容易理解题目啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题常见题型分析
一、弄清行程问题中基本的量和它们之间的关系。
行程问题中有三个基本量:速度、时间、路程。
这三个量之间的关系是:路程=时间×速度变形可得到:速度=路程/时间
时间=路程/速度这三个量的作用是知道其中两个就可以表示第三个。
二、行程问题常见类型
1、普通相遇问题。
2、追及(急)问题。
3、顺(逆)水航行问题。
4、跑道上的相遇(追急)问题
三、行程问题中的等量关系
所谓等量关系就是意义相同的量,能用等量连接的关系。
若路程已知,则应找时间的等量关系和速度的等量关系;
若速度已知,则应找时间的等量关系和路程的等量关系;
若时间已知,则找路程的等量关系和速度的等量关系。
在航行问题中还有两个固定的等量关系,就是:
顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度
四、分类举例
例1 :小明每天早上要在7:50之前赶到距离家1000米的学校去上学。
小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
爸爸追小明用了多长时间?
分析:此题中小明的速度,爸爸的速度均已告诉。
因此速度之间不存在等量关系。
我们只能在父子二人的时间和父子二人的路程上找等量关系。
由于小明比爸爸早出发5分钟,且相遇时在同一个时刻,因此相遇时爸爸比小明少用5分钟,可得时间的等量关系:①爸爸的时间+5分钟=小明的时间,当爸爸追上小明时,父子二人都是从家走到相遇的地点,故爸爸行的路程与小明行的路程相等。
得路程相等关系。
②爸爸路程=小明路程,如果爸爸追上小明用了x分钟,则第一个相等关系得:小明用了(x+5)分钟,带入第二个等量关系,可得方程 180x=80(x+5)
例2:甲乙两人在环形跑道上练习跑步。
已知环形跑道一圈长400米,乙每秒跑6米,甲的速度是乙的4/3倍。
⑴若甲、乙两人在跑道上相距8米处同时相向出发,经过几秒两人相遇?
⑵若甲在乙前8米处同时同向出发,那么经过多长时间两人首次相遇?
分析:此题甲乙两人的速度均已告诉,因此我们只能在时间中找等量关系,在路程中找等量关系。
第一问是一个在环形跑道上的相遇问题。
由于两人反向同时出发,最后相遇。
故相遇时两人跑的时间是相等。
得到第一个等量关系:①甲时间=乙时间由于两人出发时相距8米,所以当两人第一次相遇时,共跑了(400-8)米。
故可以得到第二个路程的等量关系②甲路程+乙路程=400-8 设x秒后两人相遇,则相遇时乙跑了6x米,甲跑了6×x米,代入第二个等量关系中可得方程 6×x+6x=400-8
第二问是一个环形跑道上的追及问题。
因两人同时出发,故当甲追上乙时,两人用时相同。
可得第一个时间等量关系①甲时间=乙时间
由于两人同向出发时相距8米,且速度较快的甲在前,故当两人第一次相遇时甲必须比乙多跑(400-8)米,可得第二个行程的等量关系②甲路程=乙路程+400-8
设X秒后甲与乙首次相遇,此时甲跑了6× x米,乙跑了6x米,代入第二个等量关系可得方程:6×x=6x+400-8
例3:一货轮航行于A、B两个码头之间,水流速度为3km/小时,顺水需2.5小时,逆水需3小时,求两码头之间的距离。
分析:此题是一个航行问题,由于顺水所需时间,逆水所需时间均已告诉,所以我们只找速度等量关系,路程等量关系,而其速度的两个等量关系时固有的,即:顺水速度=静水速度+水速、逆水速度=静水速度-水速。
对此提来讲就是①顺水速度=静水速度+3;
②逆水速度=静水速度-3.路程关系是比较明显的,即:③顺水路程=逆水路程
我们用③来列方程,那就是需要顺水时间、顺水速度、逆水时间、逆水速度,两个时间已知,只要放出静水速度为xkm/h,由①、②就可以分别列出表示出顺水速度=(x+3)km/h,逆水速度=(x+3)km/h,代入③可得方程:2.5(x+3)=3(x-3)
我们看到设出来的未知数不是题中要问的,这就是间接设元。
若设出来的未知数正好是题中所要求的,那就是直接设元。
好多题都是间接设元比较简单。
此题若是直接设元会比较难。
例4:一列火车匀速前进,从开进入300米长的隧道到完全驶出隧道共用了20秒,隧道顶部一盏固定的聚关灯照射火车10秒,这列火车的长度是多少?
分析:此题的关键是把题意理解清楚。
“开始进入隧道到完全驶出隧道”的意思是火车
进入隧道到火车完全离开隧道。
此过程火车行驶的路程应为隧道的长度与火车长度的和。
故可得第一个等量关系①火车路程=火车长度+300 “聚光灯照射火车10秒”的意思是火车以它的速度10秒行进的路程是火车的长度。
故可得第二个等量关系②火车长度=火车速度×10 设该火车的速度为x米/秒,则由②得火车长度为10x米。
代入第一个等量关系中,可得方程20x=10x+300
例5 :某行军总队以8千米/时的速度前进。
队末的通信员以12千米/时的速度赶到排头送一封信,送到后立即返回队尾,共用时14.4分钟。
求这支队伍的长度。
分析:此题在通信员追上排头以前是一个追急问题。
从排头回到排尾是一个相遇问题。
我们应分着两种情形去考虑问题。
由时间共用14.4分钟可得一个等量关系:①通信员追上排头的时间 +通信员回到排尾的时间=14.4分钟再由两个固定关系相遇路程/速度和=相遇时间追急路程/速度差=追击时间可得两个等量关系:②相遇路程/8+12=相遇时间③追急路程/12-8=追急时间设队伍长x千米,则追急时间为小时,相遇时间为小时,
代入第①个等量关系中可得方程+ =
总之,利用列方程来解决问题的方法是数学里面一个重要思想,就是方程思想。
具体做法是从题中找出反映题中全部意义的所有等量关系,然后根据等量关系用字母代替未知数列出方程。