集合的基本运算知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的基本运算

1.并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )记作:A ∪B ,读作:“A 并B ”,即: A ∪B={x|x ∈A ,或x ∈B},Venn 图表示:

说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

2.交集:一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。记作:A ∩B ,读作:“A 交B ”,即: A ∩B={x|∈A ,且x ∈B},交集的Venn 图表示: 说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

拓展:求下列各图中集合A 与B 的并集与交集

说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

3.全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。

补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,记作:C U A 即:C U A={x|x ∈U 且x ∈A}

补集的Venn 图表示: A

U

C U A 说明:补集的概念必须要有全集的限制 A B A(B) A B B A B A

4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.并集、交集与补集的常用性质

并集的性质:

(1)A ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A

(2)若A ∪B=B ,则A ⊆B ,反之也成立

交集的性质:

(1)A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A

(2)若A ∩B=A ,则A ⊆B ,反之也成立

补集的性质:

(1)(C U A )∪A=U,(C U A )∩A=∅

(2))(A C C u u =A,U C u =)(φ

混合运算性质:

(1) ()()()u u u C A B C A C B ⋂=⋃

(2) ()()()u u u C A B C A C B ⋃=⋂

6.若x ∈(A ∩B ),则x ∈A 且x ∈B ;若x ∈(A ∪B ),则x ∈A ,或x ∈B

相关文档
最新文档