厦门大学概率论与数理统计试卷

合集下载

2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021《概率论与数理统计》期末课程考试试卷A4适应专业:软件 考试时间: 考试类型:闭卷考试所需时间:120分钟 考试成绩:一. 单项选择题(每小题2分,共12分)1. 设离散型随机变量X 的可能取值为3,2,1,相应的概率依次为a a a a +22,7,, 则a =( ) .(A) 1/4 (B) -1/2 (C) 1/2 (D) -1/42. 设随机变量X ~)1,2(N ,)1,1(~N Y ,令Y X Z +=2,则)(Z E =( ). (A) 4 (B) 2 (C) 1 (D) 53. 已知6/1)(,3/1)(,2/1)(===AB P B P A P ,则事件A 与B ( ).(A) 相互独立 (B) 互斥 (C) 相等 (D) 互为对立事件4. 设随机变量),(~2σμN X ,则概率}1{μ+≤X P ( ).(A) 随μ增加而变大 (B) 随μ增加而减小 (C) 随σ增加而不变 (D) 随σ增加而减小5. 设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)|(B A P ( ). (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.86. 设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( )时,一般采用统计量nX Z /0σμ-=(其中σ为标准差)(A) μ未知,检验202σσ= (B) μ已知,检验202σσ= (C) 2σ已知,检验0μμ= (D) 2σ未知,检验0μμ=二. 填空题(每空2分,共18分)1. 设A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 三个事件中至 少有一个发生 .2. 已知3/1)(,2/1)(==B P A P ,如果事件A 与B 互斥,则=)(B A P ,如果事件A 与B 独立,则=)(B A P .3. 设由来自正态总体X~)9.0,(2μN 的容量为9的简单随机样本,得样本均值5=x , 则未知参数μ的置信水平为0.95的置信区间是 。

厦门大学《概率统计》课程试卷期末考试卷

厦门大学《概率统计》课程试卷期末考试卷

以下解题过程可能需要用到以下数据:(1.65)0.9505,(1.76)0.9608,(1.82)0.9656,(2)0.9772,(2.33)0.9901Φ=Φ=Φ=Φ=Φ= 计算1.(10分) 有甲、乙两个袋子,甲袋有3个黑球,2个红球,乙袋有2个黑球,3个红球。

分别独立地从甲、乙两袋各任取2个球。

求(1) 从甲、乙两袋都取得1个黑球,1个红球的概率。

(2) 从甲袋所取得的黑球数少于从乙袋取得的黑球数的概率。

2.(12分) 某产品由甲、乙、丙三家工厂生产,这三家工厂的次品率分别为0.1、0.2、0.3.现任选一家工厂,以有放回的方式随机抽取3个产品检验。

(1) 若已知所选工厂为甲厂,则利用二项分布计算所检产品中有一个次品的条件概率。

(2) 计算所检产品中有2个次品的概率。

(3) 若已知所检产品中有2个次品,请分别计算所检产品来自甲、乙、丙工厂的概率并由此判定该产品来自哪家工厂的概率最大?厦门大学《概率统计》课程试卷____学院____系____年级____专业主考教师:____试卷类型:(A 卷/B 卷)3.(10分) 设随机变量X 具有概率密度函数 29,0,3()sin ,,30,xx f x k x x ππππ⎧≤<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其它。

其中k 为未知参数。

求(1) k (2) X 的概率分布函数F(x)(3) (,)42P X ππ⎧⎫∈⎨⎬⎩⎭4.(10分) 设随机变量X 服从(,)22ππ-上的均匀分布, (1) 求4Y X =的概率密度函数。

(2) 求()3tan Z X =的概率密度函数。

5.(12分) 二维随机变量(X ,Y )的概率密度函数为 sin ,0,0,(,)0,kx y x y f x y ππ≤≤≤≤⎧=⎨⎩其它。

(1) 求k 的值.(2) 分别求关于X 与Y 的边缘分布并以此判断X 与Y 是否独立?(3) 计算{2}P X Y ≤的值。

13142《概率论与数理统计》期中试卷_参考答案

13142《概率论与数理统计》期中试卷_参考答案

所以可知这件产品是次品的概率为 0.0185,若此件产品是次品,则该产品是乙车间生产的概 率为 0.38.
五、 (15 分)设 (X, Y) 的概率密度为
2
x 2 a x y , 0 x 1, 0 y 2, f ( x, y) 0, 其它, ,试求(1)a ; (2)
(2) P{ X Y 1}
f ( x, y )dxdy 0 dx 1 x ( x x y 1
1

xy 65 )dy 3 72
(3)
f X ( x)

2x 2 2 xy )dy 2 x 2 , 0 x 1, 0 ( x f ( x , y )dy 3 3 0, 其它. 1 y 1 2 xy )dx , 0 y 2, 0 ( x f ( x , y )dx 3 3 6 0, 其它.
p q k 1 q k p qi q k k 1 k 0 k 1 i2




p q i q k k 0 i 0


1 1 p 1 q 1 q
3
xe- x , x 0, f ( x) 假设各周的需求量相互独立,以 Uk 表示 k 周的总 0, 其它。
需求量。 (1)求 U2、U3 的概率密度; (2)求接连三周中的最大需求量的概率密度
解 利用卷积公式. 设 Xi 表示第 i 周的需求量, i=1,2,3, Z 表示三周中的周最大需求量.于是
解: 记 q=1-p, X 的概率分布为 P{X=k}=qk-1 p, k=1,2,…,

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

厦门大学概率论与数理统计期中试卷2

厦门大学概率论与数理统计期中试卷2

(说明:共10题,每题10分)1.设6件产品中有2次品,采用不放回抽样方式,每次抽一件,记A 为“第一次抽到正品”的事件,B “第二次抽到正品”的事件,求P (A ),P (AB ),P (B|A ),P (B ).2.某类电灯泡使用时数在1000小时以上的概率为0.2,求三个灯泡在使用1000小时以后最多只有一个坏的概率.3.设两箱内装有同种零件,第一箱装50件,其中有10 件一等品,第二箱装30件,其中有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回任取两个零件,求(1)先取出的零件是一等品的概率p 。

(2)在先取出的 是一等品的条件下,后取 的仍是一等品的条件概率q.4. 设随机变量X 服从参数为0λ>的泊松分布,且已知E[(X+1)(X-2)]=2,求(1)λ(2)P{X>1}. 5 设随机变量X 服从参数为2λ=的指数分布,试证21X Y e -=-在(0,1)上服从均匀分布.6 设连续型随机变量X 的密度函数为0()1/40202x ke x f x x x ⎧<⎪=≤<⎨⎪≥⎩,求(1)系数k;(2)X 的分布函数;(3)P{X=1},P{1<X<2}.7.设随机变量X 在 [-1,2]区间上服从均匀分布,随机变量Y 与X 的关系是100010X Y X X -<⎧⎪==⎨⎪>⎩若求EY ,DY.8.设(X ,Y )的联合分布律为求:(1) E (X ),EY;(2) X 和Y 是否独立?(3)在Y=0条件下X 的条件分布. 厦门大学《概率论与数理统计》试卷____学院____系____年级____专业主考教师:____试卷类型:(A 卷)9.设二维随机向量(X ,Y)的联合密度函数为⎧≤<<=⎨⎩801(,)0其它xy x y f x y(1) 分别求X 和Y 的边缘密度函数;(2) 判断X 与Y 是否独立;(3) 求条件密度函数|(|)X Y f x y 在y=1/2时的函数值。

厦门大学概率论与数理统计试卷

厦门大学概率论与数理统计试卷

《概率论与数理统计》试卷题 供参考1.计算机在进行加法运算时,有时要对每个加数取整(取最接近它的整数)。

设所有取整误差都是相互独立的,且都在(-0.5,0.5)上服从均匀分布。

(1) 若进行1500个数的加法运算,问误差总和绝对值超过15的概率多大? (2) 进行多少个数的加法运算,才能使得误差总和绝对值小于10的概论为0.9? (已知 1.3420.91, 1.290.90 1.6450.95ΦΦΦ()=()=,()=)2.设总体X 服从参数为λ的泊松分布,12...n X X X ,,为样本,221111,()1nniii i X XS X X nn ====--∑∑。

求:(1)()E X (2)2()E S (3)()D X (4)λ的矩估计量 3.(1)设样本12,,X X X来自同一总体X , ()E X θ=,则121231231111 (), 3442X X X X X X θθ∧∧=++=++,① 证明它们是θ的无偏估计量 ② 12,θθ∧∧哪个更有效?(2)已知()X t n ,求证:2(1,)X F n 。

4.设总体2(0,)X N σ ,12X X ,是样本。

(1)证明12X X +和12X X -不相关。

由此说明它们是否独立? (2)求212212()()X X Y X X +=+的分布5设总体X 的分布函数为11 1(,)0 1x F x xx ββ⎧->⎪=⎨⎪≤⎩。

其中未知参数1,β>12...n X X X ,,为来自总体X 的简单随机样本。

求: (1)β的矩估计(2)β的极大似然估计量 6.(1)一批电子元件,随机取5只作寿命试验,测得寿命数据如下:21160,9950,x S ==若寿命服从正态分布,试求寿命均值的置信水平为0.95的单侧置信下限。

(已知0.051.6450.95(4) 2.1318t Φ=()=,)(2)设221122(,),(,)A B X N X N μσμσ 参数都未知,随机取容量25,15A B n n ==的两个独立样本,测得样本方差22B6.38, 5.15AS S ==,求二总体方差比2122σσ的置信水平为0.90的置信区间。

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案一、选择题(每题3分,共30分)1. 设随机变量X服从标准正态分布,下列说法正确的是()。

A. X的期望值E(X)=0B. X的方差Var(X)=1C. X的概率密度函数为f(x)=1/√(2π)e^(-x^2/2)D. 以上说法都正确答案:D2. 随机变量X服从二项分布B(n, p),其中n=10,p=0.3,下列说法正确的是()。

A. X的期望值E(X)=np=3B. X的方差Var(X)=np(1-p)=2.1C. P(X=k)=C(n, k)p^k(1-p)^(n-k)D. 以上说法都正确答案:D3. 设随机变量X服从泊松分布,其参数为λ=2,下列说法正确的是()。

A. X的期望值E(X)=λ=2B. X的方差Var(X)=λ=2C. P(X=k)=e^(-λ)λ^k/k!D. 以上说法都正确答案:D4. 设随机变量X服从均匀分布U(a, b),下列说法正确的是()。

A. X的期望值E(X)= (a+b)/2B. X的方差Var(X)= (b-a)^2/12C. X的概率密度函数为f(x)=1/(b-a), a≤x≤bD. 以上说法都正确答案:D5. 设随机变量X和Y相互独立,且X服从正态分布N(μ, σ^2),Y 服从正态分布N(ν, τ^2),下列说法正确的是()。

A. X+Y服从正态分布N(μ+ν, σ^2+τ^2)B. X-Y服从正态分布N(μ-ν, σ^2+τ^2)C. XY服从正态分布N(μν, σ^2τ^2)D. 以上说法都不正确答案:A6. 设随机变量X服从指数分布,其参数为λ=0.5,下列说法正确的是()。

A. X的期望值E(X)=1/λ=2B. X的方差Var(X)=1/λ^2=4C. X的概率密度函数为f(x)=λe^(-λx), x>0D. 以上说法都正确答案:D7. 设随机变量X服从几何分布,其参数为p=0.4,下列说法正确的是()。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

2022―2022学年第二学期概率论与数理统计试卷(本科及专升本)

2022―2022学年第二学期概率论与数理统计试卷(本科及专升本)

2022 —2022学年第二学期概率论与数理统计试卷(本科及专升本)一、单项选择题(每小题 3分,共21分)1.对于事件A,B,若AB,则下列说法中正确的是(A、A,B为对立事件B、P(A)0 或 P(B)0C、A,B 互不相容D、A,B 独立2.设随机变量某的分布函数为F(某),下列说法中错误的是(A、F(某)是不减函数B、F(某)必为(,)上的连续函数C、F()0D、F(某)13.设连续型二维随机变量的联合概率密度函数为f (某,y),则必有(A、0f(某,y)1B、f (某,y)为某0y平面上的连续函数C、f (某,y)d 某dy1D、f(,)14.设某,Y是两个随机变量,则下式中一定成立的是(A、E(某Y)E(某)E(Y)B、E(某Y)E(某)E(Y)C、D(某Y)D(某)D(Y)D、D(某Y)D(某)D(Y)5.随机变量某1,某2,,某n相互独立,服从同一分布,且具有期望和方差,E(某k),D(某k)20,当n充分大时,近似服从N(0,1)的是(nknn某kA、k1nB、k1n2nnC、k1knnD、k1n2 6.设某1,某2,某3,某4是来自均值为的指数分布的样本,其中未知,以下估计量中哪个不是的无偏估计量?()A、T某1某2某3某414B、T3某12某22某3某417C、T某1某2某3某2某2某3某416 某 43D、T115)7.对于一个原假设为H0的假设检验问题,有可能犯的第一类错误是指()A、H0成立时,检验结果接受H0B、H0成立时,检验结果拒绝H0C、H0 不成立时,检验结果接受 H0D、H0 不成立时,检验结果拒绝 H0 )二、填空题(每小题 3 分,共24 分)1.设A,B,C为三个事件,则事件“A,B,C都不发生”可以用A,B,C 的运算关系表示为.2.10 片药片中有 5 片是安慰剂,从中任取 2 片,其中至少有 1 片是安慰剂的概率为.3.三人独立地去破译一份密码,各人能译出的概率分别为0.1,0.2,0.3,三人中至少有一人能将此密码译出的概率为.)第 1 页共 3 页)4.一射击运动员每次射击命中的概率为0.7,以某表示他首次命中时累计已射击的次数,则 P 某 3 为.5.随机变量某在 1,2,3,4 中等可能地取一个值,随机变量 Y 在 1~某中等可能地取一个整数值,则 PY4 为.1某2.设随机变量某具有概率密度f(某)k某(1)确定常数k;(2)求P0某2.,0某1,1某3,其它6.随机变量某~U(0,2),贝D(某).7.总体某~2(6),某1,某2,,某10是来自某的样本,贝U D(某)8.设某 1,某 2,,某n是来自正态总体N(,2)的样本,某是样本均值,贝卩某~.三、解答题(第1题8分,第2 题 9分,共 17 分)四、解答题(第1题10 分,第 2题10分,共20 分)1.对以往的数据分析结果表明,当机器调整得良好时,产品的合格率为 80%,而当机器发生某种故障时,产品的合格率为30%.每天早上机器开动时,机器调整良好的概率为 90%.1.设随机变量某与Y的联合分布律为(1)求每天早上第一件产品是合格品的概率;求:(1)常数a值;(2)若某天早上第一件产品是合格品,求此时机器调整良好的概率.(2)某与 Y 是否独立?为什么?(3)设Z某Y,求Z的分布律.第 2 页共 3 页某(以年计)服从指数分布,概率密度为某13e,某 030,某 01000800 元,试求厂方出售一台设备净赢利的数学期望.五、解答题(第1题8分,第2 题 10 分,共 18分)某具有分布律 1)为未知参数.某 13,某 21,某 32,求的矩估计值.2.某批铁矿石的 9 个样品中的含铁量,经测定为(%)353636383839394041设测定值总体服从正态分布,但参数均未知,(1)求样本均值和样本标准差;(2)在0.01 下能否接受假设:这批铁矿石的含铁量的均值为39%?(t0.005(8)3.3554)第3 页共3页。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。

答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。

答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。

答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。

答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。

厦门大学2010学年概率论与数理统计期中试卷

厦门大学2010学年概率论与数理统计期中试卷

厦门大学 学院 2010 学年 第一学期 专业 级《 概率统计 》期中试卷考试形式:( 闭卷 )一、填空题(共 30 分,每空2分):1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 .2.设()4.0=A P ,()3.0=B P ,()4.0=B A P Y ,则()=B A P .3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 .4.设随机变量X 的分布函数()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31318.0114.010x x x x x F ,则X 的分布列为 .5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 .6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}412=>k X P .7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY .8. 已知随机变量X 的概率密度函数为()⎩⎨⎧>-<≤≤-=2,202225.0x x x x f ,则X 服从分布,设随机变量12+=X Y ,则=EY .二、选择题(共10 分,每小题 2 分)1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )()()A P B A P =(C )()0=B A P (D )()()()B P A P AB P =2.设()x F 1与()x F 2分别为任意两个随机变量的分布函数,令()()()x bF x aF x F 21+=,则下列各组数中能使()x F 成为某随机变量的分布函数的有( )(A )52,53==b a (B )32,32==b a (C )21,23==b a (D )23,21==b a3.设随机变量X 的概率密度函数为()x f ,且()()x f x f =-,()x F 是X 的分布函数,则对任意实数a ,有( ) (A )()()dx x f a F a⎰-=-01 (B) ()()dx x f a F a⎰-=-021 (C) ()()a F a F =- (D) ()()12-=-a F a F4.如果随机变量X 的概率密度函数为()⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,x x x x x f ;则{}=≤5.1X P ( )(A )()⎰⎰-+5.1112dx x xdx (B )()⎰-5.112dx x(C )()⎰-5.111dx x (D )()⎰∞--5.12dx x5.设()2,~σμN X ,且3=EX ,1=DX ,()x 0Φ为标准正态分布的分布函数,则{}=≤≤-11X P ( )(A )()1120-Φ (B )()()2400Φ-Φ (C )()()2400-Φ--Φ (D )()()4200Φ-Φ三、计算题(共 50 分,每小题 10 分)1.城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台中任意选购一台,求该顾客购到正品的概率。

厦门大学概率论与数理统计期中试卷1

厦门大学概率论与数理统计期中试卷1

以下解题过程可能需要用到以下数据:(1)0.8413,(1.28)0.9000,(1.65)0.9500,(2)0.9772,(2.33)0.9900Φ=Φ=Φ=Φ=Φ= 计算(总分100,要求写出解题步骤)1.(8分)已知事件A 与B 相互独立,P(A)=0.3, P(B)=0.4。

求()P AB 和()P A B ⋃。

2.(10分)一个坛中有4个黑球2个白球, 先后取球两次。

第一次从该坛中任取一只球,察看其颜色后放回, 同时放入与之颜色相同的2个球, 然后第二次再从该坛中任取一只球。

(1). 问第二次取出的是白球的概率为多少?(2). 若已知第二次取出的是白球, 问第一次所取为白球的概率是多少?3.(10分)设随机变量X 的概率密度函数为,12,(),01,0,c x x f x x x -<≤⎧⎪=<≤⎨⎪⎩其它, 其中c 为未知常数.(1). 求c 的值. (2). 求()1/23/2P X <<.4. (10分) 设某厂生产的灯泡寿命服从正态分布2(1200,50)N (单位:小时)。

(1)求该厂灯泡寿命超过1136小时的概率;(2)若购买该厂灯泡5只,则其中至少2只灯泡寿命超过1136小时的概率是多少?5.(18分)设随机变量X ,Y 相互独立同分布, 其概率密度函数均为 1,03,()30,x f x ⎧<<⎪=⎨⎪⎩其它(1)求(,)X Y 的联合概率密度函数(,)f x y ;(2)求{/2}P Y X ≤;(3)求Z=max{,}X Y 的概率密度函数()Z f z 。

厦门大学《概率统计》课程试卷____学院____系____年级____专业主考教师:____试卷类型:(A 卷/B 卷)6.(18分)设随机向量(X,Y )的概率密度函数为,01,01(,)0,x y x y f x y +<<<<⎧=⎨⎩其它 (1) 分别求关于X 与Y 的边缘概率密度;(2) 问X 与Y 是否相互独立?请说明理由;(3) 求条件概率密度|1()2Y X f y ; (4) 求条件概率11()42P Y X >=。

大学概率论与数理统计试题库及答案

大学概率论与数理统计试题库及答案

<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

(完整版)厦门理工学院概率论与数理统计习题册答案

(完整版)厦门理工学院概率论与数理统计习题册答案

概率论与数理统计练习题(理工类)系 专业 班 姓名 学号第一章 随机事件及其概率 §1.1 随机事件及其运算一、选择题1.对掷一颗骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A) 不可能事件 (B) 必然事件 (C) 随机事件 (D) 样本事件 2.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B 表示 [ C ](A) 二人都没射中 (B) 二人都射中 (C) 二人没有都射中 (D) 至少一个射中3. 在电炉上安装了4个温控器,其显示温度的误差是随机的。

在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电。

以E 表示事件“电炉断电”,设(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增排列的温度值,则事件E 等于 (考研题 2000) [ C ] (A) (1)0{}T t ≥ (B) (2)0{}T t ≥ (C) (3)0{}T t ≥ (D) (4)0{}T t ≥ 二、填空题:1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“ 甲种产品滞销或乙种产品畅销 ”。

2. 假设B A ,是两个随机事件,且 AB A B =,则AB ==A B Ω, AB ==A B ∅。

3. 对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2 个次品就停止检查,或检查4 个产品就停止检查,记录检查的结果,样本空间Ω为 {(正,正,正,正),(正,正,正,次),(正,正,次,正),(正,正,次,次), (正,次,正,正),(正,次,正,次),(正,次,次),(次,正,正,正), (次,正,正,次),(次,正,次,正),(次,正,次,次),(次,次)} 。

三、计算题:1.一盒内放有四个球,它们分别标上1,2,3,4号,试根据下列3种不同的随机实验,写出对应的样本空间:(1)从盒中任取一球后,不放回盒中,再从盒中任取一球,记录取球的结果;(2)从盒中任取一球后放回,再从盒中任取一球,记录两次取球的结果; (3)一次从盒中任取2个球,记录取球的结果。

厦门大学统计学考研868概率论与数理统计考试重难点校真题答案与考试真题

厦门大学统计学考研868概率论与数理统计考试重难点校真题答案与考试真题

厦门大学统计学考研868概率论与数理统计考试重难点、名校真题答案与考试真题《概率论与数理统计教程》考试重难点与名校真题答案(茆诗松第二版)由群贤厦大考研网依托多年丰富的教学辅导经验,组织教学研发团队与厦门大学优秀研究生合作整理。

全书内容紧凑权威细致,编排结构科学合理,为参加2019厦门大学考研同学量身定做的必备专业课资料。

《概率论与数理统计教程》考试重难点与名校真题答案全书编排根据厦门大学考研参考书目:《概率论与数理统计教程》(茆诗松第二版)本资料旨在帮助报考厦门大学考研的同学通过厦大教材章节框架分解、配套的课后/经典习题讲解及相关985、211名校考研真题与解答,为考生梳理指定教材的各章节内容,深入理解核心重难点知识,把握考试要求与考题命题特征。

通过研读演练本书,达到把握教材重点知识点、适应多样化的专业课考研命题方式、提高备考针对性、提升复习效率与答题技巧的目的。

同时,透过测试演练,以便查缺补漏,为初试高分奠定坚实基础。

适用院系:统计系:071400统计学(理学)王亚南经济研究院:统计学(理学)适用科目:868概率论与数理统计内容详情本书包括以下几个部分内容:Part 1 - 考试重难点与笔记:通过总结和梳理《概率论与数理统计教程》(茆诗松第二版)各章节复习和考试的重难点,建构教材宏观思维及核心知识框架,浓缩精华内容,令考生对各章节内容考察情况一目了然,从而明确复习方向,提高复习效率。

该部分通过归纳各章节要点及复习注意事项,令考生提前预知章节内容,并指导考生把握各章节复习的侧重点。

Part 2 - 教材配套课后/经典习题与解答针对教材《概率论与数理统计教程》(茆诗松第二版)课后/经典习题配备详细解读,以供考生加深对教材基本知识点的理解掌握,做到对厦大考研核心考点及参考书目内在重难点内容的深度领会与运用。

Part 3 - 名校考研真题详解汇编:根据教材内容和考试重难点,精选本专业课考试科目相关的名校考研真题,通过研读参考配套详细答案检测自身水平,加深知识点的理解深度,并更好地掌握考试基本规律,全面了解考试题型及难度。

概率论与数理统计考核试卷

概率论与数理统计考核试卷
一、单项选择题(20×1分)
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以下解题过程可能需要用到以下数据:
(1)0.8413,(1.28)0.9000,(1.65)0.9500,(2)0.9772,(2.33)0.9900Φ=Φ=Φ=Φ=Φ=计算(总分100,要求写出解题步骤)
1.(8分)已知事件A 与B 相互独立,P(A)=0.3,P(B)=0.4。

求()P AB 和()P A B ∪。

2.(10分)一个坛中有4个黑球2个白球,先后取球两次。

第一次从该坛中任取一只球,察看其颜色后放回,同时放入与之颜色相同的2个球,然后第二次再从该坛中任取一只球。

(1).问第二次取出的是白球的概率为多少?
(2).若已知第二次取出的是白球,问第一次所取为白球的概率是多少?
3.(10分)设随机变量X 的概率密度函数为
,12,(),
01,0,c x x f x x x −<≤⎧⎪=<≤⎨⎪⎩
其它
,其中c 为未知常数.
(1).求c 的值.(2).求()1/23/2P X <<.4.(10分)设某厂生产的灯泡寿命服从正态分布2(1200,50)N (单位:小时)。

(1)求该厂灯泡寿命超过1136小时的概率;
(2)若购买该厂灯泡5只,则其中至少2只灯泡寿命超过1136小时的概率是多少?
5.(18分)设随机变量X,Y 相互独立同分布,其概率密度函数均为
1,03,()30,x f x ⎧<<⎪=⎨⎪⎩其它
(1)求(,)X Y 的联合概率密度函数(,)f x y ;
(2)求{/2}P Y X ≤;
(3)求Z=max{,}X Y 的概率密度函数()Z f z 。

厦门大学《概率统计》课程试卷
____学院____系____年级____专业
主考教师:____试卷类型主考教师:____试卷类型::(A 卷/B 卷)
6.(18分)设随机向量(X,Y )的概率密度函数为
,01,0 1.(,)0,x y x y f x y +<<<<⎧=⎨⎩其它
(1)分别求关于X 与Y 的边缘概率密度;
(2)问X 与Y 是否相互独立?请说明理由;
(3)求条件概率密度|1()2
Y X f y ;(4)求条件概率11(42
P Y X >=。

7.(10分)设离散型随机向量(X ,Y)的分布律如下:X
Y
-1010
1/91/1801
2/901/182
1/31/91/9
(1)求()P X Y <;
(2)令2()Z X Y =−,求随机变量Z 的分布律;
8.(8分)设随机变量X 的概率密度函数为
2,01,()0,x x f x <<⎧=⎨⎩其它令1/Y X =,求随机变量Y 的概率密度函数;9.(8分)设随机变量X,Y 相互独立而且具有相同的分布,其概率密度函数均为
,0,()0,x e x f x −⎧>=⎨⎩其它
求随机变量Z X Y =+的概率密度函数。

相关文档
最新文档