铁电陶瓷材料的研究现状和应用
铁电材料的特性及应用综述
铁电材料的特性及应用综述孙敬芝(河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。
关键词:铁电材料;铁电性;应用前景C haracteristics and Application of FerroelectricmaterialSun Jingzhi( Materials Science and Engineering college, Hebei United University Tangshan 063009,China )Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market.Keywords: ferroelect ric materials Iron electrical development trend0前言晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。
高介高稳定性BaTiO3 基铁电陶瓷研究进展
第27卷第11期电子元件与材料V ol.27 No.11 2008年11月ELECTRONIC COMPONENTS AND MATERIALS Nov. 2008高介高稳定性BaTiO3基铁电陶瓷研究进展蒲永平,杨公安,王瑾菲,庄永勇(陕西科技大学 材料科学与工程学院,陕西 西安 710021)摘要: 针对BaTiO3基铁电陶瓷材料的特点,介绍了提高其介电常数和温度稳定性的途径,综述了高介高稳定性BaTiO3基铁电陶瓷材料的研究现状。
指出随着电子整机向着微型化的方向发展,介电瓷粉材料也向着高介电常数、高稳定性的方向发展,并提出了解决此问题的思路。
关键词:无机非金属材料;BaTiO3;综述;稳定性;介电常数中图分类号: TM28 文献标识码:A 文章编号:1001-2028(2008)11-0001-03Research progress of BaTiO3-based ferroelectric ceramic materialswith high permittivity and high stabilityPU Yong-ping, YANG Gong-an, WANG Jin-fei, ZHUANG Yong-yong(School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)Abstract: According to the characteristics of BaTiO3-based ferroelectric ceramic materials, the ways to improve their permittivity and temperature stability were introduced, and the current research status of BaTiO3-based ferroelectric ceramic materials with high permittivity and high stability were reviewed. It is pointed out that dielectric ceramic powder materials would develop towards high permittivity and high stability with the miniaturization trend of electronic equipment. Moreover, the ways to solve these problems were put forward.Key words: non-metallic inorganic material; BaTiO3; review; stability; permittivity铁电陶瓷又称为II类低频电容器陶瓷,这类电容器多用于滤波、旁路和耦合等电子电路中,一般要求有极大的电容量,因此要求用介电常数很高的瓷料来制备。
2024年钛酸钡铁电陶瓷市场发展现状
钛酸钡铁电陶瓷市场发展现状引言钛酸钡铁电陶瓷是一种重要的电子陶瓷材料,具有优异的电学性能和优越的热稳定性,广泛应用于电子器件和无线通信领域。
本文将对钛酸钡铁电陶瓷市场的发展现状进行综述,并分析其市场前景。
钛酸钡铁电陶瓷的特点钛酸钡铁电陶瓷具有以下几个重要的特点: - 高介电常数和低介电损耗,使其在高频率电子器件中具有应用潜力; - 温度稳定性好,能够适应复杂的工作环境; - 高压驱动性能,适用于电荷存储器和压电传感器等领域; - 高饱和极化电压,使其在无线通信设备中具备优势。
钛酸钡铁电陶瓷市场规模及发展趋势根据市场研究报告,钛酸钡铁电陶瓷市场规模逐年扩大,并呈现出以下几个发展趋势:1. 电子器件领域的应用增加随着电子器件市场的不断扩大,对高性能电子陶瓷材料的需求逐渐增加。
钛酸钡铁电陶瓷以其出色的电学性能和稳定性,被广泛应用于电容器、滤波器、谐振器等电子器件中。
2. 无线通信设备市场的快速发展无线通信设备市场的快速发展带动了对钛酸钡铁电陶瓷的需求增长。
钛酸钡铁电陶瓷在射频滤波器、天线、谐振器等无线通信设备中具有重要的应用,如5G技术的普及将进一步推动钛酸钡铁电陶瓷市场的增长。
3. 新兴应用领域的开拓随着科技的进步和新兴应用的不断涌现,钛酸钡铁电陶瓷在医疗设备、汽车电子、航空航天等领域也开始得到关注和应用。
这些新兴应用领域的开拓将进一步推动钛酸钡铁电陶瓷市场的发展。
钛酸钡铁电陶瓷市场面临的挑战虽然钛酸钡铁电陶瓷市场发展势头良好,但仍面临一些挑战:1. 生产成本高钛酸钡铁电陶瓷的生产工艺复杂,所需原材料价格昂贵,导致生产成本较高。
这给陶瓷生产企业带来一定的压力,并限制了市场的进一步扩大。
2. 技术创新与研发投入不足目前,一些先进的钛酸钡铁电陶瓷材料制备技术尚未得到广泛采用,存在一定的技术创新和研发投入不足的问题。
这限制了钛酸钡铁电陶瓷市场的进一步发展。
3. 市场竞争激烈随着钛酸钡铁电陶瓷市场的规模不断扩大,竞争也越来越激烈。
PLZT透明铁电陶瓷简介--欢迎报考中国科学院上海硅酸盐研究所
电畴随 机无序 PLZT铁电透明陶瓷中电畴的形态 (a)未极化 (b)已极化
电畴有序排列; 随外电场转向 而转向。
关键区域:不同方向电畴之间的过渡区域 畴壁—光学折 射率不连续的区域当光入射到这里时,将发生折返;光 被散射,畴壁成为无数的散射中心,使原本透明陶瓷呈现 磨砂玻璃的性状入射光被衰减、屏蔽
PLZT透明陶瓷的电光应用——高速光开关
Collimator +
3 1 Input 3 Output I
OC
4
Coupler 2
PLZT晶 体
2
1
Output II
环形镜结构
由耦合器的同侧两臂连接构成。进入耦合器的光被分为两束,分别沿 顺时针和逆时针方向在环中传播,当两束光再次在耦合器中相遇时, 由其干涉决定光纤环形镜的输出特性,实现对光的调制。
PLZT透明陶瓷的电控光散射效应
最大透过率与 最小透过率之 比:100:1
利用电控光散射的光阀示意图
PLZT透明铁电陶瓷的其它效应
除了电控双折射以及电控光散射效应之外, 不同组成的 PLZT 材料还具有电致伸缩效应、 光致伏特效应、光致伸缩效应等,可根据不 同的效应实现材料的应用。
二、PLZT透明铁电陶瓷的发展和主要应用
PLZT透明铁电陶瓷的电控双折射效应
给各向异性的电介质施加外电场 E后,由于压电效应使晶 格产生畸变,介质的折射率n也随之变化,这种由于外电 场引起的晶体折射率的变化现象称为电控双折射效应。 n与E的关系:n=no+aE+bE2 +
电介质的折射率随外电场成线性变化的(由一次项 aE引起)称为一次电光效应; 折射率与电场成平方关系的(由bE2 项引起)称为二 次电光效应。
铁电陶瓷改性方案
铁电陶瓷改性方案引言铁电陶瓷是一类具有铁电性质的陶瓷材料,具有优异的电学性能和机械性能,被广泛应用于电子器件、传感器和储能装置等领域。
然而,传统的铁电陶瓷在一些方面存在局限性,比如其电学性能受温度和应力的影响较大、机械性能较差等。
为了克服这些问题,研究人员提出了一系列的铁电陶瓷改性方案,以改善其性能并拓宽其应用范围。
本文将介绍几种常见的铁电陶瓷改性方案,包括添加掺杂物、改变工艺和设计新型结构等。
通过这些改性方案,可以获得具有更好性能的铁电陶瓷材料,为相关领域的应用提供更好的支持。
添加掺杂物添加掺杂物是一种常见的铁电陶瓷改性方案,通过在陶瓷材料中引入其他元素,可以改变材料的结构和性质,提高其性能表现。
以下是几种常见的添加掺杂物的方案:1. 离子掺杂通过引入离子掺杂,可以改变铁电陶瓷的晶格结构和电荷分布,从而改变其电学性能。
例如,在铁酸钡(BaTiO3)中引入掺杂离子,可以减小晶格畸变,提高材料的铁电相变温度和极化强度。
2. 部分取代掺杂部分取代掺杂是指将一部分陶瓷材料的原子取代为其他元素或离子。
这种掺杂方式可以改变材料的组成和结构,从而调节其性能。
以钛酸铋(BiFeO3)为例,通过部分取代铁原子的方式,可以改善其畸变结构,提高其极化强度和压电性能。
3. 氧化物掺杂在铁电陶瓷中添加一定比例的氧化物掺杂物,可以改变材料的晶格缺陷和电子结构,从而影响材料的性能。
例如,在钛酸锆(PZT)陶瓷中添加微量的氧化铁(Fe2O3),可以改善其耐疲劳性能和压电性能。
改变工艺改变工艺是另一种常见的铁电陶瓷改性方案,通过改变陶瓷材料的制备过程和烧结工艺,可以调节其晶体结构和物理性能,从而达到改善材料性能的目的。
以下是几种常见的改变工艺的方案:1. 控制烧结条件烧结是陶瓷制备的关键步骤之一,通过控制烧结条件,可以影响陶瓷材料的致密度、晶体生长和相变行为。
例如,在铁酸钡陶瓷的制备过程中,控制烧结温度和时间,可以得到致密度较高且相变温度较稳定的材料。
铁电陶瓷材料的应用
4 欧阳伟 黄尚宇 ,电磁成形技术及其在功能陶瓷行业,Vol,NO.27,2006,237242
2铁电陶瓷及薄膜的制备
3 铁电陶瓷平板显示技术的特点
2 铁电陶瓷及铁电发射
用于铁电发射的铁电陶瓷材料主要是一些锆 钛酸铅透明陶瓷(PZT)和掺镧的锆钛酸铅透明陶瓷 (PLZT)等,这类陶瓷内部的电畴(即极性分子)经极 化后趋向一致,表现出铁电性能。
铁电发射平板显示器由铁电陶瓷板(膜)、背 电极、栅电极、荧光粉层和电路控制系统等组成 (图1)。铁电陶瓷(膜)可以是经预先极化的铁电陶 瓷,也可以是未经极化的PZT、PLZT陶瓷[2]。
电磁成形技术作为高能、高效率技术用在粉末近终成形方面有着传统成形方法 不能比拟的优越性,在功能陶瓷行业有巨大的
应用价值。本文阐述了电磁成形的基本原理和电磁粉末压制,介绍了电磁成形 技术在功能陶瓷行业的应用及前景。
近年来, 欧美及日本等国科学界都在日益关注和 研究一种新型的平板显示技术——铁电陶瓷平板显示 器。它较好地解决了(FED)技术中的阴极制作工艺复 杂的问题, 同时, 在许多性能上也有所改善。
摘要
1 铁电陶瓷平板显示技术就是利用一些铁电陶 瓷材料所拥有的铁电发射性能制成电子发射 阴极, 代替场致发射平板显示器中的微尖端 场发射阵列, 较好地解决了(FED)技术中的阴 极制作工艺复杂的问题.
摘 要 本文评述了各类显示器件的现的发展作了预测。
铁电材料的性质和应用研究
铁电材料的性质和应用研究铁电材料自引起学界和工业界广泛关注以来,一直是材料科学领域的研究热点之一。
铁电材料的特殊性质和广泛的应用潜力使其成为科学家们探索的焦点。
本文将探讨铁电材料的性质以及其在电子学、储能和传感器等领域的应用。
首先,我们来了解一下铁电材料的性质。
铁电材料是一种具有自发极化性质的晶体材料。
它们能够在外电场的作用下发生自发电极化,而且在去除电场后,仍能保持残余极化。
世界上大部分铁电材料都是复合氧化物,例如铁电陶瓷PZT(锆钛酸铅),以及铁电聚合物PVDF(聚偏氟乙烯)。
铁电材料的晶格结构对其性质具有重要影响。
它们通常具有非中心对称结构,该结构使得材料内部的正负电荷错位,从而实现自发极化。
铁电材料的性质使其在电子学领域具有重要的应用价值。
由于铁电材料的电极化可通过外电场控制,因此它们被广泛用于电子存储器,例如闪存和随机存取存储器(RAM)。
铁电材料还可用于开关、传感器和振荡器等电子元件的制造。
此外,铁电材料还具有非线性光学效应,这使得它们在光通信和光存储等领域具有广泛应用。
除了电子学,铁电材料还在储能领域发挥着重要作用。
由于铁电材料在外电场下的电极化行为,它们被用来制造电容器和电阻随温度变化的元件。
铁电陶瓷材料的能量密度较高,因此被广泛应用于能量储存和转换设备,例如电池、超级电容器和电动汽车。
此外,铁电材料的高压电介质特性也使其成为高压电缆领域的理想材料。
铁电材料的独特性质还使其在传感器领域具有重要意义。
铁电材料的极化状态对应着材料的机械应变,这使得它们在压力传感器、加速度计、压力开关和声波传感器等方面有着广泛应用。
人们利用铁电陶瓷的感应电荷效应,开发出了高灵敏度的传感器,用于检测压力、温度和振动等物理量。
综上所述,铁电材料以其独特的性质和广泛的应用潜力成为材料科学研究的热点。
从电子学到储能,再到传感器领域,铁电材料都有着重要的应用。
随着科技的不断发展,人们对铁电材料的研究也将不断深入,有望推动其在更多领域的应用。
铁电材料的研究和应用
铁电材料的研究和应用铁电材料是一种重要的功能性材料,它具有独特的电学和物理性能,因此在许多领域都有广泛应用。
近年来,随着材料科学和纳米技术的发展,铁电材料的研究和应用已经变得越来越重要。
一、铁电材料的基本概念和性质铁电材料是一种具有铁电性质的材料,这种性质类似于磁铁。
铁电材料在无外场的情况下,表现出极化,具有电荷分离的性质,从而形成电场。
同时,当电场加入时,铁电材料还会表现出反向的极化。
这种性质使得铁电材料在电学和电子学领域有了广泛应用。
铁电材料不仅具有极化的特点,还具有一些其他的独特性质,如压电效应、自发偏振和非线性光学等。
这些特性使得铁电材料在机电一体化、通讯和照明等领域有了广泛的应用。
二、铁电材料的研究现状目前,铁电材料的研究主要包括材料的合成、物理性质的研究和材料加工等方面。
材料的合成是铁电材料研究的基础,目前主要有几种方法,如固相反应法、高温固相法、溶胶-凝胶法等。
这些方法可以制备出高质量、纯度高的铁电材料。
物理性质的研究是铁电材料研究的中心内容之一,主要包括铁电性质、压电性质和自发偏振等方面。
这些性质的研究不仅可以深入了解铁电材料的本质特性,还能够为实际应用提供指导和支持。
材料加工是铁电材料研究的另一个重要方面。
目前,铁电材料的加工技术已经相当成熟,主要包括晶体生长、薄膜制备等。
这些技术可以大大提高铁电材料的性能和应用水平。
三、铁电材料的应用铁电材料有广泛的应用前景,主要可以分为以下几个方面。
1. 电子学领域。
铁电材料可以用于制备电子器件,如电容器、振荡器和滤波器等。
此外,铁电材料还可以作为传感器和存储器使用。
2. 光电子学和非线性光学。
铁电材料具有非线性光学效应,因此可以用于制备光学器件,如调制器、波长转换器和光学纤维信号处理器等。
3. 照明和显示。
铁电材料可以用于制备高性能显示器,如液晶显示器、有机发光二极管等。
此外,铁电材料还可以用于制备高效、稳定的LED照明灯。
4. 机电一体化和无线通讯。
工业电子陶瓷材料的分类、应用及发展趋势
工业电子陶瓷材料的分类、应用及发展趋势摘要:本文针对工业用电子陶瓷材料的性能特点,研究了工业用电子陶瓷材料的应用领域,分析了工业用电子陶瓷材料的分类,并介绍了电子陶瓷产业加速研发新材料态势。
同时,指出了工业用电子陶瓷技术的发展趋势。
关键词:电子陶瓷材料;分类;应用;发展趋势1 前言材料是人类生产和生活的物质基础,是人类进步与人类文明的标志。
随着空间技术、光电技术、红外技术、传感技术、能源技术等新技术的出现、发展,要求材料必须具有耐高温、抗腐蚀、耐磨等优越的性能,才能在比较苛刻的环境中使用。
传统材料难以满足目前的要求,因此,开发和有效利用高性能材料已经成为材料科学发展的必然趋势。
2 工业用电子陶瓷材料的分类电子陶瓷按功能和用途可以分为五类:绝缘装置瓷、电容器瓷、铁电陶瓷、半导体陶瓷和离子陶瓷。
绝缘装置瓷简称装置瓷,具有优良的电绝缘性能,用作电子设备和器件中的结构件、基片和外壳等的电子陶瓷。
电子陶瓷按特性可分为高频和超高频绝缘陶瓷、高频高介陶瓷、压电陶瓷、半导体陶瓷、光电陶瓷、电阻陶瓷等。
按应用范围可分为固定用陶瓷、电真空陶瓷、电容器陶瓷和电阻陶瓷。
按微观结构可分多晶、单晶、多晶与玻璃相、单晶与玻璃相。
(1)陶瓷基片材料陶瓷基片材料在电子陶瓷中,占有最重要位置的是绝缘体。
特别是高级集成电路用绝缘基片或封装材料,可以采用尺寸精度为微米或微米以下的高纯度致密氧化铝烧结体。
高纯度致密氧化铝具有金属材料所不具备的绝缘性和高分子材料所不具备的导热性。
(2)压电陶瓷压电陶瓷由于是多晶材料,所以使用频率受到限制。
压电元件可使电信号和机械信号相互转换。
一定形状的压电陶瓷元件主要由PbTiO3-PbZrO3系烧结而制成,即使是烧结体,通过极化也可获得单晶所具有的压电性。
压电元件的主要用途有火花塞和谐振器。
谐振器起选择性通过特定频率电波滤器的作用,是电视(TV)、无线电等调谐电路不可缺少的元件。
(3)铁电陶瓷铁电陶瓷以铁电性晶体为主晶相的电子陶瓷。
铌酸钾钠基弛豫铁电陶瓷的组成设计及储能性能研究
铌酸钾钠基弛豫铁电陶瓷的组成设计及储能性能研究铌酸钾钠基弛豫铁电陶瓷的组成设计及储能性能研究摘要:铌酸钾钠基弛豫铁电陶瓷是一种具有优秀储能性能的材料,本文通过对材料的组成设计及储能性能的研究,探索了铌酸钾钠基弛豫铁电陶瓷的潜力和应用前景。
首先,我们对铌酸钾钠基弛豫铁电陶瓷的组成进行设计,选择了适当的基础成分和添加剂,以提高材料的储能性能。
然后,通过一系列实验,研究了材料的结构、电特性和储能性能等方面的变化,分析了组成对材料性能的影响,为优化材料设计提供了实验依据。
最后,我们将研究结果与已有的储能材料进行比较,发现铌酸钾钠基弛豫铁电陶瓷具有较高的储能密度和效率,表明其在储能领域具有重要的应用潜力。
关键词:铌酸钾钠基弛豫铁电陶瓷;组成设计;储能性能;实验研究;优化设计1. 引言储能材料在现代社会的能源需求中起着至关重要的作用。
铌酸钾钠基弛豫铁电陶瓷作为一种新型的储能材料,因其较高的储能密度和效率,在储能领域备受关注。
然而,要实现优秀的储能性能,必须进行合理的组成设计。
本文将对铌酸钾钠基弛豫铁电陶瓷的组成设计及储能性能进行详细研究,以期挖掘和发展这一材料的潜力。
2. 材料与方法2.1 材料选择铌酸钾钠基弛豫铁电陶瓷的组成设计是实现其储能性能提升的关键因素。
在本研究中,我们选择了适当的基础成分和添加剂来调整材料的组成并提高其储能性能,包括铌酸钾钠、铁氧化物等。
2.2 实验方法我们采用了一系列实验方法来研究材料的组成设计及储能性能。
首先,通过X射线衍射仪(XRD)对样品的结构进行分析,了解材料的晶体结构和纯度。
然后,通过扫描电子显微镜(SEM)观察样品的表面形貌,探究材料的微观结构和形貌特征。
接下来,我们采用交流阻抗谱(EIS)测量材料的电学性能,包括电导率和介电常数等。
最后,我们进行了储能性能测试,通过电压-电荷曲线来评估材料的储能性能。
3. 结果与讨论3.1 结构与形貌分析通过XRD分析,我们发现铌酸钾钠基弛豫铁电陶瓷具有较高的晶体纯度和相对结构稳定性。
几种电子陶瓷材料的研究进展与应用前景
出了在不同的频段下 , 介 电常数的范围 , 温度系数的 调整等更加细致的要求 。
引了材料科学家的兴趣。 已研究出了不同系列微波介 质材料体系。 例如 : B a O - T i O 系统 , A ( B B ’ _ J O 。 体系 ( 其 中A为 c a 、 s r 等元素 ; B为 z r 、 s n等元素) , ( A A’
智能与环保等特点n 一 回 。 电子元器件最为重要的技术核 心就是介质材料的制备( 具有电 、 磁、 声、 光、 力、 热等 特 陛) 【 l 2 】 。 另外电子陶瓷在微 电子、 光纤传导、 传感器
以及空间技术等高级技术领域中发挥 出重要作用, 同
时也在 电子通信、 控制 、 超大规模 电路 、 信息处理 中也 发挥着重要支撑作用 , 为科学技术的进步夯下坚实的
0 引 言
随着电子科学与技术 , 计算机 , 光纤通信 , 信号与
征技术 。功能材料之所 以性能独特, 这完全依靠材料
的化学组成, 而且也与制备合成 、 工艺条件、 微观结构
有着密切的关联 , 新体系的发现和人工配方的研发也 有助于功能材料的开发[ 1 。传统功能陶瓷早已市场 化, 价格也相对低廉 , 在工业应用方面也获得足够的 实践经验和数据积累 。然而先进 的功能陶瓷性能特
收稿 日 期: 2 0 1 2 — 1 2 — 0 7
声技术 、 表面波技术 , 反之也对压 电陶瓷材料提 出了
更高的性能要求 ; 微波介电陶瓷的使用促使了无线通
讯技术的迅猛发展 , 反之也对微波介电材料的特性提
基金 项目: 江西省 自然科 学基金项 目( 编号 : 2 0 1 2 2 B A 2 1 2 0 0 1 ) ; 江西省重点科技计划指导性项 目( 编号 : 2 O l l 2 B B H 踟O o 9 ) ; 江西省高等学校科技落
铁电材料概述
(3)钙钛矿型材料—ABO3
钛酸钡(BaTiO3)钛酸钡陶瓷是目前应用最广
泛和研究较透彻旳一种铁电材料。钛酸钡是第一种不 含氢旳氧化物铁电体,因为其性能优良,化学上,热 学上旳稳定性好,工艺简便,不久被用作介电和压电 元件。
钙钛矿构造:有BaTiO3 ( 钛酸钡) 、 KNbO3 、KTaO3 、LiNbO3 PZT(Pb(Zr Ti )03) 、 PLZT(铅、镧、锆、钛), 至 20 世纪 50 年代末, 大约有 100 种化合物被 发觉具有铁电性。截至1990 年,已知旳铁电约为 250 种.通式
非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽)
以及与它们具有相同类型旳晶体。
(4)按相转变旳微观机构分类
(5)“维度模型”分类法
铁电材料旳制备措施
1 固相反应法 2 溶胶一 凝胶法 3 熔盐法 4 喷雾分解法 5 柠檬酸前驱法 6 水热法 7 无卤素法 8 低温液相法 9……
薄膜—主要材料以及其优缺陷
目前主流旳铁电材料主要有下列两种:PZT、SBT。
PZT是锆钛酸铅(PbZrxTi1-xO3)。PZT是研究最多、使用最广泛 旳,它旳优点是能够在较低旳温度下制备,能够用溅射和 MOCVD旳措施来制备,具有剩余极化较大、原材料便宜、晶化 温度较低旳优点;缺陷是有疲劳退化问题,还有含铅会对环境造 成污染。
铁电材料旳应用
可作信息存储、图象显示
像BaTiO3一类旳钙钛矿型铁电体具有很高旳介电常数能够 做成小体积大容量旳陶瓷电容器。
铁电薄膜能用于不挥发存贮器外,还可利用其压电特征, 用于制作压力传感器,声学共振器,还可利用铁电薄膜热 释电非致冷红外传感器研究
铁电材料:在具有压电效应旳材料中 ,具有自发极化 ,(自发极化
铁电陶瓷的特性,介绍其潜在应用
多层电容 压电变换器
压电马达 压电驱动器 电致伸缩驱
动器
块材
介电电容器 红外探测器
压电传感和 驱动器 电光快门
电光显示器
膜材
非易失随 机存储器
阻挡层 集成光学 抗反射膜
14
非易失随机存储器
普及型室内幕帘式被动红 外线移动探测器,尤其适 合于小区防盗使用,外形 时尚精致,线条流畅
压电陶瓷马达
高介电型陶瓷 电容器常数
图4 不同应力下的电滞回线
12
2.4 软硬性铁电陶瓷的比较
比较两条曲线[2]
相同点:包括初始近似线性段,曲
线斜率先从递减向递增转化的非线 性段,以及在应力增加到一定值时, 又变成曲线斜率较大的近似线性段. 并且,非线性曲线上从斜率递减向 递增转化的拐点G处应力值. 不同点:对于硬PZT4大约为 125MPa,软PZT4在70MPa左右.这 表明PZT铁电陶瓷在载荷作用下的
4
1、铁电陶瓷的电畴理论 900
↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ →→→
图中 小方格代表晶胞 箭头代表电矩方向
↑ ↑ ↑ ↓ ↓ ↓ ↓ → →→→ ↑ ↑ ↑ ↓ ↓ ↓ →→ →→→ ↑ ↑ ↑ ↓ ↓ →→→ →→→
↑ ↑ ↑ ↓ →→→→ →→→
1800 图1 BaTiO3电畴结构示意图
5
在同一晶粒内具有相同取向的自发极化和自发 应变的晶胞团称为电畴[4].
应力应变非线性响应与压电材料微 观电畴偏转密切相关.
图5 软硬铁电陶瓷的应力-电位移曲线
根据两者对应力的敏感性不同,可以在应用在不同的领域.
13
ห้องสมุดไป่ตู้
3、铁电陶瓷的特性及其应用
以上介绍了电滞回线的变化规律及其原因,我们深刻的认识到 电畴翻转是铁电陶瓷产生非线性曲线的原因,也正是有了这一 理论,使我们对铁电陶瓷产生了浓厚的兴趣,在对它的认识过 程中挖掘出了许多有利于人们生活的应用[3]。
铁电材料的功能及应用前景
铁电材料的功能及应用前景随着科技的迅猛发展,新型材料的研究成为当前热点领域。
铁电材料是其中之一,它具有独特的电学、光学、磁学等性质,并且具有广泛的应用前景。
本文旨在探讨铁电材料的功能及应用前景。
一、铁电材料的基本性质铁电材料是指在无外界电场作用下具有极化性的材料。
它们具有如下特性:1. 巨电介电常数:铁电材料在外电场作用下能产生极化,极化电荷密度可高达$10^{12}$C/m²,极化状态下介电常数会增加几百倍。
2. 非线性光学效应:铁电材料呈现非线性光学效应,如二倍频、三倍频、四倍频等。
3. 逆铁电效应:铁电材料在电场作用下能发生极性倒转,这一性质称为逆铁电效应。
4. 压电效应:铁电材料在外力作用下会发生形变,并产生极化,这一性质称为压电效应。
铁电材料具有这些独特的性质,因此被广泛地研究和应用。
二、铁电材料的应用前景1. 铁电存储器铁电存储器是一种新型非挥发性存储器,它可以在断电的情况下保持存储信息。
铁电存储器具有速度快、容量大、数据稳定等优点,可以替代掉传统的闪存存储器。
目前,铁电存储器已经在智能手机、平板电脑等消费电子产品上得到了广泛的应用。
2. 铁电陶瓷铁电陶瓷具有良好的压电性能和介电性能,可以广泛应用于传感器、滤波器、调谐器等电子领域。
此外,铁电陶瓷的压电效应还可以应用于医疗领域,如超声波治疗、成像等。
3. 铁电液晶铁电液晶具有特殊的光学性能,它可以将光线分成两个波,这一特性被广泛应用于显示器、多媒体终端等领域。
4. 铁电玻璃铁电玻璃具有独特的光学、磁学性能,可以应用于光学信息存储、电磁屏蔽、光纤通信等领域。
5. 铁电探测器铁电探测器由于其灵敏度高、稳定性好等优点,可以广泛应用于安全监控、卫星通信等领域。
三、铁电材料的研究进展目前,铁电材料的研究已经进入到了新时代。
一方面,这一领域的学术研究十分活跃,研究人员们致力于发现新型铁电材料,探索铁电材料的新性质;另一方面,铁电材料的工业生产也在逐步扩大。
功能性陶瓷材料在能源转换中的应用
功能性陶瓷材料在能源转换中的应用功能性陶瓷材料是一类具有特殊功能的陶瓷材料,广泛应用于能源转换领域。
它们以其优异的性能和稳定性,为能源转换提供了可靠的支持。
本文将从多个角度探讨功能性陶瓷材料在能源转换中的应用,并重点介绍太阳能电池、燃料电池和储能器件等方面的应用。
一、太阳能电池太阳能电池是目前最常见的功能性陶瓷材料在能源转换领域的应用之一。
利用光电效应,将太阳能转化为电能,为人类生活提供清洁的电力。
在太阳能电池中,功能性陶瓷材料主要用于制备电池的电极材料和电解质。
其中,铁电陶瓷材料被广泛应用于柔性太阳能电池,其具有优异的光电性能和稳定性,能够提高电池的转换效率和使用寿命。
二、燃料电池燃料电池是一种利用化学能转化为电能的装置,也是功能性陶瓷材料在能源转换中的重要应用之一。
燃料电池的核心是电解质膜,功能性陶瓷材料在其中扮演着重要的角色。
以氢氧化物导电陶瓷材料为基础,可以构建高效、稳定的燃料电池系统,实现高能量转换效率和长时间的稳定运行。
三、储能器件功能性陶瓷材料还被广泛应用于各种储能器件中,使得能源可以高效地储存和释放。
以钙钛矿陶瓷材料为例,它具有优异的离子传输性能和电化学稳定性,被用作锂离子电池的正极材料,提高了电池的充放电效率和循环寿命。
此外,功能性陶瓷材料还可以应用于超级电容器等器件中,实现高能量密度和长循环寿命。
在能源转换领域中,功能性陶瓷材料的研究和应用不断拓展。
随着科技的进步,人们对能源转化效率和可再生能源的需求不断增加,功能性陶瓷材料将扮演越来越重要的角色。
未来,我们可以期待更多新型的功能性陶瓷材料被开发出来,为能源转换带来更多创新和突破。
总结起来,功能性陶瓷材料在能源转换中的应用涵盖了太阳能电池、燃料电池和储能器件等多个方面。
这些材料以其优异的性能和稳定性,为能源转换提供了可靠的支持。
未来,随着科技的发展和创新,功能性陶瓷材料在能源转换中的应用前景将更加广阔。
共焦显微拉曼光谱技术在铁电陶瓷材料中的应用研究
共焦显微拉曼光谱技术在铁电陶瓷材料中的应用研究摘要:本文介绍了拉曼光谱技术的发展和共焦显微拉曼光谱技术特点,就厦门大学材料学院购置的美国普林斯顿仪器公司生产的TriVista CRS557型三级共焦显微拉曼光谱仪使用的情况,简单概述共焦显微拉曼光谱技术在铁电陶瓷的应用研究,尤其是材料在外场作用下的原位拉曼观测方面的创新技术。
关键词:共焦拉曼光谱技术外场作用原位观测铁电陶瓷1、拉曼光谱技术的发展及共焦显微拉曼光谱的特点拉曼光谱是研究分子振动、转动的一种光谱方法[1]。
自1928年拉曼效应被印度物理学家C.V.Raman发现之后,拉曼光谱作为一种物质结构的分析测试手段而被广泛应用。
拉曼光谱技术可以分几类:傅立叶变换拉曼光谱技术、表面增强拉曼光谱技术、激光共振拉曼光谱技术、共焦显微拉曼光谱技术、拉曼光谱与其他技术的联用等,其中共焦显微拉曼光谱技术以其具备独特的优势而应用于各类领域。
在光谱本质上,共焦显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种应用技术。
共焦显微拉曼光谱技术与其他传统拉曼技术相比,在光路中装备引进了共焦显微镜系统,并采用了低功率激光器和高转换效率的CCD 技术,不仅具备常规拉曼光谱的特点,还同时具备独特的微区、原位、多相态、稳定性好、空间分辨率高等特点,可以实现逐点扫描,获得高分辨率的拉曼三维图像,近年来在材料科学[2]、医药学[3]等领域有广泛的应用。
2、共焦显微拉曼光谱技术在铁电陶瓷材料的应用研究和创新共焦显微拉曼光谱技术在材料领域被广泛应用研究于材料的微结构变化,而材料在外场下的疲劳失效机理和微结构之间的关系,是材料学科前沿研究领域的热点。
对于材料在外场(包括偏振方向、电场、力场、温度场等)变化下微结构变化的拉曼光谱观测,很多学者进行大量的研究工作,发展了各种理论和实验方法,但都因为在拉曼测试中难以配合安装外场加载装置,而不能实现材料在外场场作用下的原位拉曼测试。
电子陶瓷材料的介电性能研究
电子陶瓷材料的介电性能研究在当今科技发展的时代,电子陶瓷材料作为一种重要的功能材料,扮演着不可或缺的角色。
电子陶瓷材料的介电性能研究,是科学家们长期以来关注的焦点之一。
本文将探讨电子陶瓷材料的介电性能及其研究现状,并讨论其在现实生活中的应用。
首先,介电性能是电子陶瓷材料的重要性能之一。
介电性能主要包括介电常数、介质损耗和介质极化等方面。
介电常数是描述介质对电场响应的能力的物理量,通常用ε 来表示。
在电场作用下,材料内部的极化会导致电荷的移动,而介电常数则是电极化程度的衡量。
介质损耗是指电场作用下材料本身发生的能量损耗,通常以介质损耗因子(tanδ)来表示。
介质极化则是指材料中电偶极子的取向随电场变化而发生的过程。
电子陶瓷材料的介电性能对其在电子器件、无线通信、传感器等领域的应用具有重要影响。
目前,研究人员对电子陶瓷材料的介电性能进行了广泛的研究。
其中,一些常见的电子陶瓷材料包括铁电材料、铁磁材料、介电常数高的陶瓷材料等。
铁电材料是具有自发电偶极矩的材料,而铁磁材料则是具有自发磁化的材料。
介电常数高的陶瓷材料,则通常是具有高介电常数的绝缘材料。
在铁电材料的研究中,工艺制备和表征技术是关键。
通过不同的制备方法,可以得到具有不同微观结构和性能的铁电材料。
例如,溶胶-凝胶法、固相反应法等方法可以制备出纳米级的铁电材料,从而提高其热稳定性和介电性能。
而电子显微镜、X射线衍射等表征手段可以对材料的结构和相变行为进行研究。
通过这些研究手段的应用,科学家们可以深入了解铁电材料的介电性能,为其应用提供指导。
在介电常数高的陶瓷材料研究中,材料的组成和工艺控制是关键。
通过合理选择材料的成分和工艺参数,可以获得高介电常数的陶瓷材料。
同时,通过控制材料微观结构,可以优化材料的介电性能。
例如,调控陶瓷材料中晶粒尺寸和界面能量等因素,可以提高其介电常数和抗电荷迁移性能。
电子陶瓷材料的介电性能在现实生活中有广泛的应用。
其中,铁电材料常被用于电极材料、传感器、随行波装置等领域。
铁电陶瓷
铁电陶瓷材料的研究现状尤欣欣(渭南师范学院化学与生命科学学院,08级材料化学1班)摘要:本文论述了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。
这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。
最后,对未来的研究与应用前景进行了展望。
关键词:铁电陶瓷;铁电性;钙钛矿;研究0前言铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。
铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。
其电性能:高的抗电压强度和介电常数。
在一定温度范围内(-55~+85℃)介电常数变化率较小。
介电常数或介质的电容量随交流电场或直流电场的变化率小。
铁电陶瓷的特性决定了它的用途。
利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。
利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。
利用其热释电性,可以制作红外探测器等。
利用其压电性可制作各种压电器件。
此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。
目前,全球铁电元件的年产值己达数百亿美元。
铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。
但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。
因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁电陶瓷材料的研究现状和应用
1、层状铁电陶瓷
(1)Bi系
目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。
此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。
但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。
因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。
而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。
(2)(Pb,Ba)(Zr,Ti)O3系
(Pb,Ba)(Zr,Ti)O3(简称PBZT)系陶瓷与Pb(Zr,Ti)O3(PZT)同属于ABO3型钙钛矿结构,具有较大的电致伸缩应变,在电子微位移动领域已得到广泛应用。
但在使用过程中发现这类铁电陶瓷因其脆性和较低的强度影响了其产品的耐久性和使用寿命,因此改善其机械性能已引起人们的重视。
2、弛豫型铁电陶瓷
弛豫型铁电体(relaxation ferroelectrics,简称RF)是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。
与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数(ε*(ω) =ε'(ω) −ε"(ω),ω为角频率)的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε'(ω)值对应的温度Tm随ω的增加而向高温移动。
该特征与结构玻璃(structureglass)化转变、自旋玻璃(spin glass)化转变的特征极为相似。
所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。
迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。
另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。
3、含铅型铁电陶瓷
铌镁酸铅Pb(Mg1.3Nb2.3)O3(简称PMN)铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。
4、无铅型铁电陶瓷
BaTi2O5(简称BT2)粉体不含铅,是一种新型绿色环保的铁电材料,近几十年来,人们一直认为BT2 是一种顺电材料,其热稳定性差,高温易分解,当温度高于1150℃时分解为BaTiO3(BT)和Ba6Ti17O40(B6T17)。
直到2003年人们才发现了合成的BT2单晶具有优异的铁电性。
而采用浮区- 熔融法和淬火法合成的多晶体在475℃时,沿b 轴方向也显示出较高的介电性能。
但利用这些方法难以获得大尺寸的晶体,故很难在实际中应用。
因而,有必要采用常规的烧结方法来制备多晶BT2。
由于BT 2的热稳定性差,所以不能采用固相合成法获得单相的BT2粉体,只能采用液相合成法合成单相BT2 粉体。
5、反铁电陶瓷
锆锡钛酸铅Pb(Zr,Sn,Ti)O3(简称PZST)是一种反铁电陶瓷。
上世纪60年代末,美国Clevite 实验室在其开发的具有高压电性能的锆钛酸铅Pb(Zr,Ti)O3(简称PZT)压电材料基础上,针对PZT压电陶瓷机电转换能力不足的问题,研制出了一种具有大机电转换能力的新型有源材料—PZST 反铁电相变陶瓷,即通过对PZT基铁电材料掺杂改性得到能够在室温条件下由反铁电相被电场诱导转变成铁电相的PZST反铁电陶瓷,相变过程会产生大的体积应变量。
上世纪80 年代后期,具有大电致应变和大机电转换能力的PZST 反铁电陶瓷作为换能器或大位移致动器有源材料方面的研究工作逐步出现。
美国Pennsylvania 大学材料研究所开展了PZST反铁电陶瓷作为大位移致动器有源材料应用的可行性研究工作,针对“方宽”型电滞回线的PZST 反铁电陶瓷进行了一系列改性优化,降低相变场强,增大纵向应变量,最大纵向应变量达到0.85%(相变场强为48 kV/cm,电滞宽度为20 kV/cm),指出“方宽”型电滞回线的反铁电陶瓷在交变电场下表现出严重的电滞损耗,因而不适于交变状态下应用。