聚丙烯增韧改性

合集下载

聚丙烯化学改性方法

聚丙烯化学改性方法

聚丙烯化学改性方法
聚丙烯化学改性是一种通过化学方法,使聚丙烯改性,其性能大幅改变的工艺。

改性后的聚丙烯具有更优异的力学性能,耐热性和耐化学性,并可以提高材料的分散稳定性、外观质量和耐候性等,在21世纪以来,聚丙烯改性受到越来越多的关注。

1、聚丙烯改性原理
聚丙烯是一种特殊的增韧塑料,改性原理是为了改变原材料的力学性能而引入有机活性基团。

当把有机活性基团嵌入聚丙烯链条中后,能使聚丙烯的玻璃转变温度,拉伸率,弯曲弹性模量和动态力学特性,耐化学性能以及热稳定性得到极大改善。

2、聚丙烯改性方法
(1)物化改性。

物化改性通常将无机物引入聚丙烯材料,进而改善其力学性能和
动态力学特性。

目前常用的物化改性方法有热变形、拉伸处理和磷化、氯化等。

3、聚丙烯改性应用
由于聚丙烯改性材料具有更加优异的力学和高温性能,因此它得到了广泛的应用。

如用来改性汽车部件,能使汽车耐磨性提高,使汽车更耐久;也可以用来生产建筑材料,使墙壁更耐火,更不易发霉;还可以用来生产电线电缆,使电缆更耐火、抗拉性更加优异。

同时,改性的聚丙烯还可以用于工业制品的生产,比如汽车零件、电子元器件等,而且具有耐泡和耐开裂性能。

总之,聚丙烯改性手段多样、性能优异,它的应用非常广泛,可以改变很多建筑、工业制品、汽车零部件等材料的物理性能,使其具备更优异的力学性能,耐热性和耐化学性能,有助于提高现代工业产品的性能和使用寿命,是可持续发展的重要手段。

PP改性工艺全解析(含配方)

PP改性工艺全解析(含配方)

PP改性工艺全解析(含配方)
本文档旨在解析聚丙烯(PP)改性工艺的全过程,并提供相关配方。

以下是详细内容:
1. 聚丙烯(PP)改性概述
聚丙烯是一种常用的高分子材料,具有良好的物理和化学性能。

为了进一步改善其性能,人们开发了多种改性工艺。

2. 常见的聚丙烯改性方式
以下是常见的聚丙烯改性方式:
2.1 增韧改性
增韧改性是指通过添加韧性剂或填充剂来提高聚丙烯的韧性。

常用的增韧剂包括乙烯丙烯橡胶(EPR)、塑料增韧剂等。

填充剂可
以选择碳酸钙、碳酸镁等。

2.2 抗静电改性
抗静电改性主要是为了改善聚丙烯的导电性能,以防止静电积聚。

常用的抗静电剂包括导电纤维、导电粉末等。

2.3 耐热改性
耐热改性是指通过添加耐热剂来提高聚丙烯的耐高温性能。

耐热剂可以选择氧化镁、氧化铝等。

3. 示例配方
以下是一种常见的聚丙烯改性配方示例:
- 聚丙烯:80%
- 乙烯丙烯橡胶(EPR):15%
- 碳酸钙:5%
4. 结论
通过上述分析,我们了解了聚丙烯改性的概述、常见方式及示例配方。

这可以帮助我们在聚丙烯的改性过程中做出正确的决策。

以上是对PP改性工艺的全解析,内容简洁明了。

PP增韧改性研究

PP增韧改性研究

一 PP增韧改性配方及成本
树 脂:PP(T30S) 增 韧 剂:POE(8200) 填 料:碳酸钙 抗 氧 剂:抗氧剂1010 100 20 12 1.3
பைடு நூலகம்
树脂:
PP(T30S)
成本大约为:12150元/t 厂家:南京春开塑胶制品有限公司
增韧剂: POE(8200) 成本大约为:17100元/t
填料:
碳酸钙 成本大约为:560元 /t 厂家:萍乡市赣碱龙轻质碳酸钙有限公司
抗氧化剂:
抗氧剂1010 成本大约为:44800元/t 厂家:上海惠今化工贸易有限公司
参考配方报价表
品种 PP(T30s)
POE (8200) 碳酸钙 抗氧剂 1010 总计
加入量 100
20
单价 本次估价 12150元/t 9113元
四 . 结束语
POE具有较小的内聚能,较高的剪切敏感性, 加工时与聚丙烯的相容性好,其表观切变粘度对温 度的依赖性与PP接近,对PP增韧效果显著。另外 POE在原料采集方面的优势,使其成为近年来比 EPDM、SBS、BR等更具发展潜力的增韧剂。 近年来,PP的增韧改性,已成为其工程化的重 要手段。PP的原材料优势,使其在塑料的开发与应 用中,始终占有相当重要的地位。可见,未来的PP 改性材料,将会得到更加广泛的应用。
厂家:上海千峰化工有限公司
POE与PP的相容性非常好,增韧效果尤其是 低温增韧效果十分明显,优于EPDM,且弯 曲模量和拉伸强度下降幅度小。POE在PP 中加入量超过15%时,增韧效果迅速提高。 POE中长支链的引入大大提高了其在PP母 体中的分散性,从而具有有利于冲击韧性的 理想形态和黏弹性。与其他弹性体相比,较 少的POE就可以使PP获得高的低温冲击强 度,减少了加入弹性体而引起的刚性和强度 的损失。

改性pp材料

改性pp材料

改性pp材料改性PP材料。

改性PP材料是指通过在聚丙烯(PP)基础材料中添加一定比例的改性剂,以改善PP材料的性能和加工工艺。

改性PP材料具有优异的物理性能、化学稳定性和加工性能,被广泛应用于汽车、家电、电子、建筑等领域。

本文将从改性PP材料的种类、性能及应用领域等方面进行介绍。

一、改性PP材料的种类。

1.增韧改性PP材料。

增韧改性PP材料是通过在PP基础材料中添加增韧剂,如SEBS、EPDM等,以提高PP材料的韧性和抗冲击性能。

这种改性PP材料不仅具有优异的力学性能,还具有良好的耐热性和耐候性,适用于汽车保险杠、家电外壳等领域。

2.增强改性PP材料。

增强改性PP材料是在PP基础材料中添加增强剂,如玻璃纤维、碳纤维等,以提高PP材料的强度和刚性。

这种改性PP材料具有优异的机械性能和热稳定性,适用于汽车零部件、工业零配件等领域。

3.耐热改性PP材料。

耐热改性PP材料是通过在PP基础材料中添加耐热剂,如热稳定剂、阻燃剂等,以提高PP材料的耐高温性能。

这种改性PP材料具有优异的耐热性和阻燃性能,适用于电子电器、建筑材料等领域。

二、改性PP材料的性能。

1.力学性能。

改性PP材料具有优异的力学性能,包括抗拉强度、弯曲强度、冲击强度等,能够满足不同领域的工程要求。

2.热稳定性。

改性PP材料具有良好的热稳定性,能够在高温环境下保持稳定的物理性能,适用于高温工艺加工。

3.耐候性。

改性PP材料具有良好的耐候性,能够在户外环境中长期使用而不发生老化、变色等现象。

4.加工性能。

改性PP材料具有良好的加工性能,能够通过注塑、挤出、吹塑等工艺加工成型,适用于各种复杂形状的制品生产。

三、改性PP材料的应用领域。

1.汽车领域。

改性PP材料在汽车外饰件、内饰件、发动机舱件等领域有着广泛的应用,如汽车保险杠、车灯支架、仪表盘等。

2.家电领域。

改性PP材料在家电外壳、零部件等领域有着广泛的应用,如洗衣机外壳、冰箱把手、空调面板等。

POE与EPDM对聚丙烯增韧改性研究

POE与EPDM对聚丙烯增韧改性研究

POE与EPDM对聚丙烯增韧改性研究聚丙烯 (Polypropylene, PP) 是一种常见的热塑性聚合物,具有良好的力学性能和化学稳定性。

然而,其脆性和低冲击强度限制了其在一些应用领域的使用。

因此,为了提高聚丙烯的韧性和抗冲击性能,需要进行增韧改性。

本文将探讨聚丙烯增韧改性的两种常用方法:POE (Polyolefin elastomer) 和 EPDM (Ethylene-propylene-diene terpolymer)。

POE是一种弹性体,其结构中含有少量的丙烯,在聚丙烯中以分散相形式存在。

POE与聚丙烯之间的相容性较好,可以有效提高聚丙烯的抗冲击性能。

研究表明,随着聚丙烯中POE含量的增加,聚丙烯的拉伸韧性和冲击强度都会显著提高。

这是因为POE的弹性性质可以吸收冲击能量,从而有效减少聚丙烯的脆性。

EPDM 是一种橡胶弹性体,其结构中含有乙烯 (Ethylene)、丙烯(Propylene) 和二烯 (Diene)。

EPDM 能够与聚丙烯形成良好的相容性,并且可以在聚丙烯中有效分散。

EPDM 可以提高聚丙烯的拉伸韧性、冲击强度和耐热性。

研究表明,聚丙烯中 EPDM 的含量增加,可以显著提高聚丙烯的冲击强度和抗拉伸性能。

这是因为 EPDM 的弹性性能可以增加聚丙烯的延展性,从而提高聚丙烯的韧性。

POE和EPDM的增韧效果取决于它们与聚丙烯的相容性和分散性。

实验研究发现,聚丙烯中POE和EPDM的颗粒分散均匀,并且与聚丙烯形成良好的相容性,可以显著提高聚丙烯的韧性和抗冲击性能。

此外,研究还发现,POE和EPDM的分子量对聚丙烯的增韧效果也有一定影响。

较低分子量的POE和EPDM往往能够更好地分散在聚丙烯中,并且可以提供更好的增韧效果。

总之,POE和EPDM都是常用的聚丙烯增韧材料。

它们能够与聚丙烯形成良好的相容性,提高聚丙烯的韧性和抗冲击性能。

选择适当的POE或EPDM材料,并控制其含量和分子量,可以获得理想的聚丙烯增韧改性效果。

聚丙烯增韧改性研究进展

聚丙烯增韧改性研究进展
Zho u M a n Du Ha i na n Zh a ng J i e
( Co l l e g e o f Po l y me t Sc i e nc e a nd Eng m e er l ng ’
Si c hua n U ni ve r s i t y , Ch e n g d u, S i c h u a n, 6 1 0 0 6 5 ) Abs t r a c t : The n ov e l a nd e f f e c t i v e t o ug he n i ng m o d i f i c a t i ons of po l y pr o py l e ne i n r e c e n t ye a r s a r e s y s t e ma t i c a l l y r e v i e we d . Di f f e r e nt t ou gh e ni ng s y s t e ms ha v e b e e n s u mma r i z e d f r om f o ur a s p e c t s s uc h a s t he c r y s t a l m o r ph ol o gy, t h e c r y s t a l s t r uc t ur e,t he wa y o f e x t e r — na l f o r c e d i s s i p a t i o n a nd t he a mor ph ou s s t r u c t ur e . Ba s e d o n t he c l a s s i c a l t o u ghe ni n g me c ha ni s m s,t he i n t e r na l me c ha n i s ms o f t he s e f o ur t o ug he n i n g m e t ho ds ha v e b e e n de e pl y i n v e s t i g a t e d a nd a na l y z e d. I t i s e mp ha s i z e d t ha t t he e nh a nc e me nt o f t he di s s i pa t i o n o f e x — t e r n a l f o r c e i n t h e m a t r i x i s t he ke y p oi nt o f t ou gh e ni n g po l yp r o p yl e ne, o n wh i c h f ur t he r r e s e a r c h pr o s p e c t s a r e a l s o p r op os e d . Ke y wo r d s: i s o t a c t i c po l yp r op y 1 e ne; i mp a c t t ou g hne s s; c r y s t a l s t r uc t u r e; e l a s t o me r

pp的增韧改性-成型加工实验设计

pp的增韧改性-成型加工实验设计

实验设计方案一:PP的改性
一.实验目的
1.学习和掌握双螺杆挤出机的操作。

2.了解PP的共混增韧方法
二.实验原理
聚丙烯是由丙烯单体聚合而得到的热塑性加聚物,具有优良的抗冲击性、耐化学药品性、透明性、电绝缘性及加工性等性能,但是其均聚物的低温性能和耐老化性能较差,成型收缩率大,共混改性可以作为提高聚丙烯力学性能和扩大其应用的一条比较实用的途径。

利用橡胶类聚合物进行聚丙烯改性,在韧性提高的同时也可以使刚性降低、脆性增大。

采用EVA(乙烯-醋酸乙烯共聚物)改性填充聚丙烯,其共混物能够有效提高冲击性能、断裂伸长率和熔体流动速率,制品表面光泽也有所提高。

改性聚丙烯采用EVAD的VAc(乙酸乙烯)含量为14%~18%,此时EVA 为极性较低的非晶性材料,加入聚丙烯共混体系后有明显的增韧作用。

随着EVA 用量的增加,其缺口冲击性强度也提高,断裂伸长率显著增大,而弯曲强度、拉伸强度、热变形温度有所下降。

EVA的加入使共混体系中各组分的均匀分散达到较好的分散效果。

采用EVA改性聚丙烯较EPDM、SBS等改性剂的成本低。

华北工学院用EVA-15对聚丙烯增韧,使材料韧性最高值比纯聚丙烯提高12倍,而成本低于聚丙烯与弹性体或橡胶的改性材料。

调节共混物比例及加工工艺条件可制得具有不同性能特点的共混材料。

PP的加入也可以改善PP的韧性,并提高低温落球冲击强度。

PP与高密度聚乙烯共混,可改善PP的拉伸性能和韧性。

三.实验设备和原料
1.主要设备:双螺杆挤出机
2.PP/EVA/LDPE增韧体系配方:。

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。

1 无规共聚改性采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。

共聚物中乙烯的质量分数一般为1%~7%。

乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。

与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。

无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。

其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用2 嵌段共聚改性乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。

美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。

(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。

(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。

共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。

目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。

通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。

(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。

其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品3 接枝共聚改性PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。

POE与EPDM对聚丙烯增韧改性研究

POE与EPDM对聚丙烯增韧改性研究

POE与EPDM对聚丙烯增韧改性研究聚丙烯(Polypropylene,PP)是一种重要的塑料材料,具有优异的机械性能和化学稳定性,广泛应用于自动化设备、日用品、医疗器械等领域。

然而,由于其韧性较低,很难满足一些特殊应用的要求。

因此,研究如何增强聚丙烯的韧性成为了近年来的研究热点之一聚丙烯的增韧改性技术主要包括添加增韧剂和改变聚合条件两种方法。

其中,添加增韧剂是最常用的方法。

聚丙烯增韧剂主要有弹性体增韧剂、碎片增韧剂和亲水性增韧剂等。

POE(聚乙烯/聚丙烯酸酯嵌段共聚物)和EPDM(乙烯/丙烯橡胶)是两种常用的弹性体增韧剂,其主要特点是具有良好的柔韧性、高韧性和低温性能。

POE与EPDM作为增韧剂改性聚丙烯的研究表明,它们能够有效提高聚丙烯的韧性和冲击强度。

研究发现,由于POE和EPDM的高柔韧性和高断裂韧性,其加入聚丙烯基体后能够有效吸收冲击能量,从而增加了聚丙烯的冲击强度。

同时,POE和EPDM的弹性能够减弱聚丙烯的刚性,使其具有更好的弯曲性和可塑性。

因此,POE和EPDM能够显著改善聚丙烯的韧性,使其更适合一些要求高韧性的应用领域。

此外,POE和EPDM还可以通过相容性改善聚丙烯的加工性能。

研究发现,POE和EPDM与聚丙烯的相容性较好,能够提高聚丙烯的熔融流动性。

这是因为POE和EPDM分子链中的醋酸酯基团和丙烯基团与聚丙烯基体具有一定的相互作用力,从而提高了聚丙烯的熔融温度和熔融流动性。

因此,在添加POE和EPDM增韧剂的情况下,聚丙烯可以更容易地加工成型,并且具有更好的表面质量。

综上所述,POE与EPDM作为聚丙烯的增韧剂能够显著提高聚丙烯的韧性和冲击强度,并改善其加工性能。

因此,在聚丙烯材料的应用中,POE和EPDM的使用具有重要的意义。

未来的研究可以进一步探索POE和EPDM增韧聚丙烯的工艺条件优化、界面结构调控等方面的内容,以实现更好的改性效果。

聚丙烯共混改性-增韧

聚丙烯共混改性-增韧

共混改性是一种简单而有效的改性方法,将其它塑料,橡胶或热塑性弹性体与PP共混可制被兼具这些聚合物性质的高分子合金。

聚丙烯的共混改性可以改进聚合物的耐低温冲击性、透明度、着色性、抗静电性等。

由于共混改性具有操作简单、生产周期短、适合批量生产等优点,使其发展十分迅速。

常用于聚丙烯共混改性的高聚物有聚乙烯(PE)、聚酰胺(PA)、乙丙橡胶(EPR)、三元乙丙橡胶(EPDM)、顺丁橡胶(ER)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、乙烯-醋酸乙烯共聚物(EVA)等。

EPDM、SBS、EVA等弹性体与PP共混后,材料中的弹性体微粒能够吸收部分冲击能量,并作为应力集中剂来诱发和抑制裂纹增长,使PP由脆性断裂转变为延性断裂,使其冲击强度大幅度提升,有效改善PP的韧性。

PA、ABS等刚性聚合物与PP共混则可以在增韧的同时保证材料的强度和刚性。

但是由于这类刚性聚合物都是极性聚合物,与PP的相容性较差,在改性时必须加入合适的增容体系,也就是相容剂,南京塑泰有十多种相容剂,可根据不同的共混体系来选择。

采用相容剂技术和反应性共混技术对PP进行共混改性是当前PP共混改性发展的主要特点。

它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP耐冲击性。

相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。

反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。

PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。

在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。

为了提高增韧PP的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。

例如采用弹性体/无机刚性粒子/PP三元复合增韧体系实现PP的增韧增强(南京塑泰有此增韧增强母粒ST-12),提高材料的综合性能,并且具有较低的成本。

聚丙烯增韧改性技术综述

聚丙烯增韧改性技术综述

0引言聚丙烯是产量仅次于聚乙烯、聚氯乙烯的通用塑料. 由于其原料丰富, 与其它通用热塑性塑料相比,聚丙烯具有相对密度小、价格低、加工性好以及综合性能较好等特点, 并有突出的耐应力开裂性和耐磨性. 近年来发展迅速, 成为塑料中产量增长最快的品种. 但聚丙烯还存在低温脆性、韧性差等缺点, 因此在作为结构材料和工程材料应用时受到了很大的限制. 为了扩大聚丙烯的使用范围, 国内外开始重视改性技术, 使聚丙烯塑料向工程化方向发展. 作者就聚丙烯提高韧性的机理与影响改性产物性能的因素进行了探讨.1技术途径1聚丙烯改性技术可分为化学改性和物理改性两种. 化学改性是指通过接枝、嵌段共聚, 在聚丙烯大分子链中引入其它组分, 或是通过交联剂等进行交联, 或是通过成核剂、发泡剂进行改性. 物理改性是在聚丙烯基体中加入其它的材料或有特殊功能的添加剂, 经过混合、混炼而制成具有优异性能的聚丙烯复合材料. 物理改性大致可分为填充改性、共混改性、增强改性和功能性改性等.填充改性是指在聚丙烯树脂中加入一定量的无机或有机填料来提高制品的性能, 主要在模量方面有较大提高. 填充改性能降低材料的成本, 但有时它在提高一种性能的同时会降低其它的性能. 增强改性通常选用玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等增强材料使聚丙烯强度提高. 增强改性是复合材料发展的一个方向. 共混改性是指用其它塑料、橡胶或热塑性弹性体与聚丙烯共混, 填入聚丙烯中较大的球晶内, 由此改善聚丙烯的韧性和低温脆性. 常用的改性材料有聚乙烯、顺丁橡胶、乙丙橡胶、丁苯橡胶和乙烯2醋酸乙烯共聚物. 功能性改性是根据使用的材料所要求具有的功能性如抗静电、阻燃、透明性等加入特定试剂使聚丙烯改性.物理改性比化学改性容易进行, 使聚丙烯性能改善也较显著, 推广容易, 经济效益明显; 特别是共混改性技术开发周期短、耗费少、制品的物理性能同样能达到应用要求. 因此, 共混改性是利用现有高分子材料开发新型材料的简便而有效的方法.2增韧机理共混改性聚丙烯的主要目的是增加其韧性, 弹性体在其中起非常重要的作用. 有关机理的研究很多, 大多研究者引用DrW u 的剪切带屈服理论.在拉伸应力作用下, 高聚物中某些薄弱部位由于应力集中而产生空化条纹状形变区, 即材料产生了银纹, 它可以进一步发展成为裂纹, 所以它常是聚合物破裂的开端. 但是, 形成银纹要消耗大量的热量, 因此若银纹能被适当地终止而不致发展成裂纹, 那么它反而可延迟聚合物的破裂, 提高聚合物的韧性.采用橡胶类聚合物与聚丙烯共混改性时, 材料性能不仅与橡胶类聚合物分散相有关, 而且也与聚丙烯树脂连续相的特性有关. 如果橡胶相和聚丙烯相形成均相体系, 就不能起到增韧效果. 相反, 如果橡胶类聚合物和聚丙烯完全不相容, 胶粒尺寸必然很大, 外形也不规则, 局部应力将过于集中, 直接导致裂纹和裂缝的生成; 而且, 不相容体系的两相界面处会发生分离, 产生空隙, 与橡胶类聚合物大小相当的空隙会使应力集中增加, 使聚丙烯产生开裂而造成材料破坏. 只有当橡胶类聚合物与聚丙烯具有好的相容性时, 橡胶类聚合物以一定的粒径分布在聚丙烯连续相中, 使橡胶类聚合物与聚丙烯组成一种良好界面相互作用的两相或多相形态结构体系. 即在共混体系中, 橡胶类聚合物呈细微化颗粒分散相(俗称“岛”), 随机分布在聚丙烯连续相(俗称“海”)的聚丙烯球晶中或球晶之间, 使聚丙烯大而脆的球晶成为细而密集的球晶, 形成具有良好相界面作用的“海2岛”结构. 当具有这种结构体系的增韧聚丙烯在受到外力作用时, 银纹、裂纹和裂缝首先产生在聚丙烯连续相中, 处于聚丙烯裂纹和裂缝上的橡胶类聚合物粒子首先是充当应力集中的中心, 诱发大量银纹和剪切带的产生, 大量银纹和剪切带的产生吸收大量的能量, 从而阻止裂纹和裂缝的穿过. 另外, 橡胶颗粒还可以阻滞、转向并终止小裂纹的发展, 使之不致发展成破坏性的裂纹, 产生在聚丙烯相中的银纹可以穿过小于其宽度的橡胶类聚合物粒子而生长. 在弹性体颗粒的影响下, 当材料受到外力时, 高聚物中生长的银纹遇到橡胶类聚合物大粒子时能分裂成许多方向各异的小银纹. 即银纹可在橡胶类聚合物粒子表面支化, 银纹的分裂和支化能控制银纹的发展, 阻止大银纹变成有破坏性的大裂纹和大裂缝; 同时, 银纹的增长伴随着空化空间的发展, 空化空间的发展阻止了基体内部裂纹的产生, 延缓了材料的破坏, 从而达到提高聚丙烯韧性的目的.3影响因素通常将高分子的共混改性技术称为ABC 技术, 即合金(A lloy)、共混(Blend) 和复合化(Composite) 技术. 高分子共混改性是利用溶度参数相近和反应共混的原理在反应器或螺杆挤出机中将两种或两种以上的聚合物材料及助剂在一定温度下进行机械掺混, 最终形成一种宏观上均相, 微观上分相的新材料的工艺方法. 聚丙烯共混改性的方法有: 相容体系的直接共混, 添加相容剂共混以及反应性共混等. 影响聚丙烯共混改性的因素有: 共混体系的结构形态、相容性、组成和共混工艺等.3. 1共混体系结构形态的影响高分子材料的宏观性能与其微观结构紧密相关. 高分子共混物是一种多相结构的材料, 其力学性能取决于共混物界面组分之间相互作用的强弱, 即两相之间结合力的大小以及分散相颗粒的大小和形状等. 高分子共混物的结构形态是影响其性能的决定性因素之一.作为结晶材料的聚丙烯与其它材料组成的共混体系主要有: 结晶2非结晶和结晶2结晶体系两种. 在前一种体系中, 影响形态结构的主要因素是共混体系的相容性. 有研究表明: 聚丙烯共混物的高冲击性与其结晶度无关, 而聚丙烯球晶较大, 球晶之间有较宽的缝隙是其产生裂纹发脆的原因. 在聚丙烯中加入一些非晶组分如癸基橡胶(DR) 树脂和酚醛树脂, 则对聚丙烯结晶有某种弱的成核作用, 导致聚丙烯晶体一定程度的微细化. 酚醛树脂使聚丙烯球晶变小, 球晶间的间隙变窄, 吸收冲击能, 使聚丙烯的冲击强度提高. 在酚醛树脂改性聚丙烯的基础上, 加入DR 树脂, 可进一步改变材料的结晶形态, 大球晶基本消失, 球晶间的间隙几乎没有, 两种树脂的界面变得较模糊, 因此材料的冲击性能得到改善.在结晶2结晶体系中, 影响形态结构的主要因素是高熔点组分的结晶性和组成比. 高熔点组分生成的结晶越大、越少时, 对低熔点组分的影响越小. 对于两组分晶态相容的共混体系, 有可能生成共晶或同晶; 对于晶态不相容但无定形态可相容的共混体系, 其结晶行为应遵循前一种体系同样的规律; 对于晶态和无定形态都不相容的共混体系, 如聚丙烯(PP)/聚乙烯(PE), 虽然两种高聚物分别结晶, 但球晶尺寸、结晶度都发生了变化. 如尼龙等极性结晶高聚物对聚丙烯结晶有成核作用, 这些成核高聚物对改善聚丙烯的低温脆性、抗静电性等都有一定效果.3. 2共混体系相容性的影响4共混聚丙烯物理机械性能的好坏主要取决于共混体系各组分之间的结合力, 而结合力的大小又与共混组分之间的相容性有密切的关系. 若组分间的相容性很差, 则混合困难, 分散不均, 分子链段活动性小, 分散相的尺寸大, 相畴粗大, 相界面的结合差, 界面很明显, 结合力小, 无法得到具有良好综合性能的高分子材料; 若共混体系半相容, 则相畴适中, 相界面模糊, 结合力大, 共混改性效果优良; 但如果两相体系完全相容, 共混物呈均相体系, 相畴很小, 共混改性效果反而不好. 所以, 对共混物来说, 微观均相并不一定有最理想的力学结果, 重要的是保证宏观相容. 因此, 在考虑分散相组分时, 热力学相容不是唯一条件, 只要有适当的混容性即可.目前, 提高共混物相容性的方法很多. 通过填加增容剂改善相容性的方法已得到广泛的应用. 选择增容剂最好使其中的两个链段与共混物的两个组分分别相同, 接枝、嵌段共聚物就具有这种性质. 相同的链段所形成的物理亲和力使接枝、嵌段共聚物分布在相的界面, 其共价键将两相连接起来, 降低了表面张力, 增进了相间的粘接力, 进而提高了力学性能. 溶解度参数是判断两种高聚物混合效果的重要条件.3. 3共混体系组成的影响共混体系中, 组分聚合物的种类、规格不同, 所得到的共混物性能各异. 不同的增韧剂在聚丙烯中的增韧效果不同, 如表1 所示. 由表1 可见, EPDM 增韧效果较好.2有资料报道, 与乙烯、Α2烯烃共聚的聚丙烯的冲击韧性明显高于均聚聚丙烯; 在相同橡胶含量下,增韧共聚聚丙烯的效果远远好于增韧均聚聚丙烯的效果; 而且, 选用乙丙橡胶为增韧剂时, 其结晶度越低, 增韧效果越好.共混体系组成中分散相的尺寸及其分布对材料的韧性都有影响, 它还与共混工艺条件密切相关.3. 4共混工艺条件的影响共混工艺条件变化引起共混体系的形态变化, 使得共混物的性能也发生相应的变化. 共混工艺条件。

增韧改性PP

增韧改性PP
增韧改性PP
前言
汽车保险杠是一种面积较大,形状复杂的薄壁大型结 构部件,各国对保险杠的要求较高,不仅要求具有优异的高 低温冲击韧性﹑刚性 ﹑ 耐老化性﹑耐热性 ﹑耐寒性﹑,还 要有耐油性﹑润滑性 ﹑油漆性 等性能。PP保险杠以其成本 低廉,易加工成型﹑构型自由灵活以及性能优异等特点,成 为车辆保险杠使用最广泛的专用材料。但是这些零件绝大多 数都不是纯PP制成的。因为纯PP虽然具有优良物理性能和 机械力学性能,但也同时存在耐候性差﹑低温性能差 ﹑热变 形温度低 ﹑制品易变形等缺陷。在汽车这样的工作环境复杂 ﹑多变的条件下是不能胜任的。只有将纯的PP改性,制成多 种牌号的改性材料,才能胜任各自工作环境部件。
增韧机理
POE对PP增韧改性符合银纹—剪切带机理: 脆性基体内加入弹性体后,在外来冲击力作 用下,弹性体可引发大量银纹,而基体则产 生剪切屈服,主要靠银纹﹑剪切带吸收能。
配方设计
树脂:PP(F401)﹑PP(1340)﹑PP(丙烯酸 接枝聚丙烯) PP(F401)具有优良的机械性能和耐热性能,使 用温度范围-30℃-140℃。同时具有优良的电绝缘 性能和化学稳定性,几乎不吸水,与绝大多数化学 品接触不发生作用。 PP(1340)的低温 冲击强度较高,具有良好 的耐低温性能。 PP(丙烯酸接枝聚丙烯)加入后提高增韧剂与 树脂间的相容性,降低了界面张力,起到很好的界 面增容作用,对共混体系韧性的提高非常
生产工艺流程
按配方称量 高速混合机初混 双螺杆挤出机共混造粒
PP增韧改性后的用途
POE有着良好的回弹性和柔韧性,且 其硬度很低,耐寒性极佳, POE增韧PP 后,提高PP的常温和低温下的冲击强度, 带给材料良好的综合性能,使其在汽车行 业、家电外壳、 汽车仪表盘,办公文具, 电瓶车和摩托车的塑料配件得到了普遍的 应用,汽车行业主要有汽车保险杠,汽车 门板等。

聚丙烯的增韧改性

聚丙烯的增韧改性

聚丙烯的增韧改性技术综述摘要:本文阐述了聚丙烯(PP)的增韧改性,重点介绍了聚丙烯增韧改性的方法和成果,并对聚丙烯增韧改性历史和聚丙烯其他改性做了简介,归纳总结了聚丙烯增韧改性的未来发展方向。

关键词:聚丙烯;增韧改性;改性方法;改性成果1引言聚丙烯(PP)具有比重小、耐热性好、耐腐蚀性好、成型加工容易、力学性能优异且原料来源丰富、价格低廉等优点,所以它在全世界范围内被大量生产和使用,成为仅次于聚乙烯的第二大塑料品种。

但同时聚丙烯的一些缺点也限制了其在各行各业中的应用。

强度不高、易老化、易燃、韧性差、耐寒性差、低温易脆断、成型收缩率大、抗蠕变性能差、制品尺寸稳定性差等缺陷降低了它在生产中的使用率【1】。

因此,对聚丙烯进行改性以期得到更好更适用于使用要求的改性聚丙烯成为了聚丙烯工业发展的重要领域;而在此篇文章中,主要阐述的是聚丙烯的增韧改性,这也是聚丙烯改性中十分重要的一个分支。

2发展历史1962年,美国开始工业规模化生产丙烯和乙烯的嵌段共聚物,即聚丙烯的共聚改性,这是聚丙烯增韧改性工业化生产的开始;20世纪70年代中期,乙丙共聚技术普遍推广,不再局限于个别工业发达国家;1992年,中国盘锦乙烯工业公司与中科院化学研究所合作成功生产出了高韧性共聚聚丙烯,是中国聚丙烯增韧改性的重大进步【2】;此后,聚丙烯增韧改性技术不断增多和优化,共聚改性、共混改性得到发展;而在最近,纳米粒子增韧改性是最新的研究发展方向。

3改性方法3.1PP韧性差的原因PP分子链中存在甲基,使分子链柔顺性下降,由此结晶度高、晶粒粗大,近而表现出成型收缩率大,脆性高,韧性差等缺陷。

3.2PP增韧机理目前大多研究者采用Dr Wu 的剪切带屈服理论。

即在拉伸应力作用下,高聚物中某些薄弱部位由于应力集中而产生空化条纹状形变区,材料由此产生了银纹,它可以进一步发展为裂纹,所以它常是聚合物破裂的开端。

但是形成银纹要消耗大量的热量,若银纹能被适当地终止而不致发展成裂纹,那么它反而可延迟聚合物的破裂,提高聚合物的韧性【3】。

聚丙烯(PP)材料在汽车上的应用(案例分享)

聚丙烯(PP)材料在汽车上的应用(案例分享)

言,4种增强改性聚丙烯材料在汽车上的应用案例。

汽车上除少量部件采用纯PP树脂加工外,大部分部件采用改性PP材料进行加工。

1、橡胶或弹性体增韧增强改性PP在PP中加入橡胶或弹性体是PP常用的增韧方法,加入适量的橡胶或弹性体后,PP的抗冲击性能能得到较大幅度的提高。

用于PP增韧的橡胶主要有:三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、顺丁橡胶、异丁橡胶等。

用于PP增韧的热塑性弹性体主要有聚烯烃弹性体(POE)、TPV、SBS等。

由于其溶解度参数以及粘度与PP相近,所以增韧PP的效果最好。

图:会通新材料PP+EPDM-T10应用于门板,实现减重25%,具有易成型,表面无缩痕特性。

图:会通新材料PP+EPDM-TD20应用于薄壁保险杆,具备高流动,低线性膨胀系数,高油漆附着力,良好尺寸稳定性特性。

图:PP+EPDM-TD20应用于保险杆下护板,具有免喷涂,良好外观,绿色环保特性。

图:博禄DAPLEN™EH126AEC:弹性体增强,13%矿物填充PP改性材料,应用于东风AX7前保险杆,具有低密度,高弹性模量和高流动性,在冲击与刚性间取得平衡,良好的喷血性能及尺寸稳定性,实现薄壁2.5mm设计。

2、无机矿物增强改性PP常用PP改性无机矿物填料主要有碳酸钙、云母、硅灰石、滑石、高岭土、二氧化硅、二氧化钛、硫酸钙等。

图:硅酸盐矿物在增强聚丙烯中的应用(聚石化学)目前,研究应用最为广泛的有滑石粉、蒙脱土、硅灰石等。

图:博禄DAPLEN™EF011AIC,5%矿物填充改性PP材料,应用于探歌低密度门板,具有低填充,零件重量降低,低气味,优良的表面质量特性。

图:普利特滑石粉填充改性微发泡PP材料,应用于门板,具有减轻重量,表面外观良好,材料力学性能损失较少的特性。

图:南京聚隆PP-TD20,20%滑石粉填充增强PP应用于尾门内饰板,减重35%,更具成本优势,强度与韧性平衡,尺寸稳定性良好。

3、长玻纤增强改性PP(LGFPP)玻纤增强改性PP材料尤其是长玻纤增强PP(LGFPP)材料在汽车部件上的应用(如在前端模块、仪表板骨架、车门模块、后车门挡板、底盘盖板、电池托架等)是多年来的研究热点之一长玻纤增强pp塑料是指含有玻璃纤维长度在10到25mm的改性聚丙烯复合材料,经过注塑等工艺形成三维结构,长玻纤增强PP在120℃时的高温疲劳强度是普通玻纤增强PP的2倍,具有更高的综合性能。

高分子聚丙烯(PP)增韧改性技术

高分子聚丙烯(PP)增韧改性技术
性能 的影 响而 限制 发展应 用…。
定可在很宽的温度( 2 5 — 1 3 2  ̄ C ) 和组分( E P D M质量分数为
高分 子 聚丙 烯( P P )ቤተ መጻሕፍቲ ባይዱ作 为一 种应 用 范 围极 广 的热 塑性 0 ~ 2 6 %) 中进行 ,提 高温度 和增加E P D M含量都 能使
1 . 3 P P / S B S 共混体系
S B S 是 由丁 二烯 、苯 乙 烯 组成 的 具有 三 维层 状 结 构
的嵌段共聚物 ,该弹性体兼具硫化橡胶 和热塑性塑料的 韧P P ,能在提高材料抗冲性能的同时 ,不降低其拉伸强 性能。S B S 与P P 共混能显著提高P P 高低温冲击强度。邬 度和刚性 。加工流动性和耐热性也会随刚性粒子的加入 润德【 8 】 用乳液聚合法制备了交联聚苯 乙烯刚性粒子X P S 而相应地有所提高。无机粒子的作用和橡胶增韧P P 的作
材料来提高P P 的冲击强度[ 3 】 。其增韧改性是扩大P P 使 的脆韧转变增韧剂临界质量分数低 ,扯断伸长率提高 ,
P / E P DM共 混物 。张 启霞 [ 5 】 用 用范围的重要方法。P P 增韧改性除了传统的橡胶或弹 其 脆 韧 转 变 区 间远 小 于 P
性体增韧 、热塑性塑料增韧外 ,还有最近研究较多的无 mE P D M作 增 韧剂 时 ,加 入 质量 分 数 约2 5 %l N可使 P P 冲
时尤为严重 ,由于存在这些显著的缺点 ,尤其是低温易 高 ,可大 幅 度提 高 塑料 的 冲击 性能 ,基体 的 剪切 屈服 是 光交联共混物的增韧机理。T a n g L o n g x i a n g 等人[ ] 于熔
径来改善P P 的韧性 ,即提高P P 的冲击性能成 为P P 改性 融状态且在光敏剂兼作交联剂情况下,将P P / E P D M 暴 研究的一个核心课题。一般情况下 ,可 以采用橡胶来提 露在U V 光下制得 光交联P P / E P D M弹性体 ,发现和未交 高树脂 的韧性,但是 由于在低温条件下 ,橡胶易发生脆 联的共混物相 比其缺 口冲击强度明显提升 ,与P P / E P D M 化 ,达不到改善P P I "  ̄ I 温脆性的 目的,于是就考虑换一种 共混物相 比P P / mE P D M( 茂金属催化聚合E P D M) 共混物

聚丙烯改性在保险杠材料中的应用

聚丙烯改性在保险杠材料中的应用

聚丙烯改性在汽车保险杠材料中的应用1108079马啸天1.1 改性原理及实施方法1.1.1汽车保险杠用PP增韧改性PP的增韧改性方法可分为物理改性法和化学改性法2大类。

并且这两种改性方法相辅相成的,不是完全分离的。

例如:.共混改性是属于物理改性法,然而改善共混物相容性的相容剂的制备又属于化学改性方法。

1.1.1.1化学改性所谓PP的化学增韧改性,是指利用化学反应在PP的主链上引入高弹性的链段以增加PP韧性的方法。

化学改性方法主要包括共聚改性、橡胶共混交联改性、接枝改性以及茂金属作聚合催化剂4种。

(1)共聚改性常用的共聚单体有乙烯、丁烯等。

丙烯和乙烯的嵌段共聚物,通过调节均聚物的相对分子质量、结晶度、改性剂添加量及其在基体中的微区尺寸和分布可获得综合性能很好的抗冲共聚聚丙烯。

(2)橡胶共混交联改性PP的交联改性可分为辐射交联和化学交联两种。

然而辐射交联的同时PP的降解十分严重,加上设备比较昂贵,所以对于PP一般采用化学交联法,通过交联可提高PP力学性能和耐热性能。

(3)接枝改性聚丙烯PP为非极性的聚合物,因此它与其他极性聚合物、无机填料等的相容性不好,从而影响共混改性的效果。

若在PP分子链上接枝适当的极性基团,如不饱和羧酸等,可以使PP分子带有一定的极性,从而提高其与其他极性聚合物的相容性。

1.1.1.2物理改性物理增韧改性PP的方法主要有共混增韧(1)共混增韧所谓共混增韧法,是将PP与增韧剂在熔融状态下进行共混,然后造粒得到宏观上均相、微观上分相的高分子合金,这种高分子合金与PP相比有着更好的冲击性能。

常用的共混增韧体系有:橡.塑共混、塑.塑共混以及三元共混。

橡.塑共混是最早使用的改性方法,此增韧方法简单有效,主要是利用具有柔性链的弹性体与PP共混,使弹性体插入PP大球晶内,减小球晶的尺寸,以达到改善PP冲击性能的目的,其增韧机理符合“银纹一剪切带"理论。

常用的橡胶增韧PP体系有PP/BR、PP/EPR、PP/EPDM、PP/POE、PP/SBS等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚丙烯增韧1.聚丙烯的发展历程自1957年意大利蒙科卡迪公司首次实现工业化以来,聚丙烯(PP)树脂及其制品发展速度一直位于各种塑料之首。

在1978年PP的世界产量超过了400万吨/年,仅次于聚乙烯、聚氯乙烯和聚苯乙烯,位居世界第四位;1995年PP的世界产量达1910万吨/年,超过聚苯乙烯位居第三;2000年PP的世界产量为2820万吨/年,超过聚氯乙烯的2600万吨/年上升为世界第二;目前聚丙烯的世界产量达到了3838万吨/年。

在此同时,我国聚丙烯工业发展迅猛,1995年产量为107.3万吨,2000年已经突破300万吨,2004年产量迅猛增至474.9万吨。

初步估计到2006年底,我国PP的年总生产能力已经超过650万吨,在一定程度上缓解我国PP的供需紧张。

聚丙烯由于其优异的使用潜能,广泛应用于注塑成型、薄膜薄片、单丝、纤维、中空成型、挤出成型等制品,普及及工农业及生活日用品的各个方面。

如此迅速的增长速度主要归因于其可以替代其它塑料树脂以及能够开发应用各种新型的塑料、橡胶和纤维的优异性能:原料来源丰富,价格低廉并且无毒无害;相对密度小,透光性好,有较好的耐热性等。

但是PP有个很明显的缺点就是韧性较差,对缺口十分敏感,这在很大程度上限制了其在工程领域的应用空间。

因此近些年来,国内外众多学者专家在PP改性的理论基础和应用研究中展开了众多的研究取得一定成效的工作,通过共混、填充和增强等方法改性之后的聚丙烯复合材料也已经成功地运用到了实际生产中,扩大了材料的使用范围,在家电、汽车、仪表等工业各领域占据了重要地位。

近十多年来,在我国经济高速增长的带动下,聚丙烯的应用技术不断进步。

但是我国的聚丙烯进展与国外相比,在聚合技术、工业化成本、产品数量、品种类别等方面都存在着很明显的差距。

根据我国发展中国家的国情,大力开展聚丙烯多元复合材料改性研究是解决上述问题最有效的途径。

采用塑料的高性能化合成本不断的降低来推动PP的发展,因此目前是聚丙烯快速发展的良好机会。

通过各种手段改善PP性能,最终使得PP几乎可以与某些工程塑料相媲美,从而增加PP 和其它热塑性塑料树脂甚至是某些工程塑料的竞争能力。

2. 聚丙烯的性能及其改性(1)聚丙烯优缺点聚丙烯结晶性好,具有质轻、价廉、无毒无害、无味等优点,而且还具有耐腐蚀、力学性能相对较高等优点,其分子式为:从分子结构单元来看,其侧链的-CH3基团是非极性的.位垒小,整条分子链和分子分子侧链均容易发生旋转:全同或间同的聚丙烯结构均比较规整,结晶倾向大,易拉丝制成纤维;无规聚丙烯结晶性差,有着橡胶状弹性体的特点。

PP的基本特性如下:(I)PP是结晶性高聚物,其结晶程度能够达到50%~70%,具有较为明显的熔点,熔融温度为164℃~170℃。

(2)热稳定性较好,初始热分解温度可以达到300℃以上,与氧接触的情况下,树脂在260℃左右开始发黄。

(3)PP的熔体流动性能好,成型性能良好。

并且成型制件的表面光泽、染色效果、外伤痕迹等方面都优于PE。

(4)PP是五大通用塑料中耐热性能最高的一种,制件可以在100℃的条件下煮沸消毒。

(5)熔体弹性较大,但冷却凝固速度很快快,同时成型收缩比较大(1%~2.5%),且结晶具有各向异性,在成型制品与模具设计时需要加以考虑。

(6)PP的成型能力比较强,能够适应常规通用塑料的加工工艺,如注射成型、挤出成型、吹塑成型、压延成型,旋转成型等。

(7)由于分子量较大,结晶结构等规度大而易结晶,其力学性能:包括了拉伸强度、弯曲强度、硬度等均优于低压聚乙烯,而且还有优异的刚性和耐折叠性。

(8)化学稳定性高,能耐80℃以下的酸、碱、盐溶液以及很多化学有机溶剂。

(9)聚丙烯的高频电性能优良,几乎不受环境湿度的影响。

其介电强度高且随着温度上升而增高,介电常数低(2.2~2.6),不受温度和频率影响,特别是适用于制作电绝缘元件。

尽管聚丙烯有以上众多的优点,但是,聚丙烯也有一些不足之处。

最大的缺点就是耐寒性差,低温易脆断;其次是成型收缩率大,抗蠕变性差,制品的尺寸稳定性差,容易发生翘曲变形。

这些主要缺点都限制了聚丙烯的广泛应用。

PP的其它缺点以及造成这些缺点的原因如下:(1)在低温和高应变速率的情况下,吸收的冲击能量来不及在分子链内传递,故表现出低温韧性差。

这主要是由于分子结构中的-CH3基团的存在,低温环境下链节移动困难,分子链弯曲性能下降所造成。

此外,PP为高结晶性聚合物,其生成的球晶尺寸较大,这是PP易产生裂纹,冲击性能差韧性低的主要原因。

(2)刚性不足,不适宜制作受力机械部件,特别是制件上存在缺口对外力作用十分敏感。

制品成型收缩大,产品精度低且容易变形。

(3)PP易受到紫外线影响而发生老化,所以造成户外使用寿命大幅度下降,这主要是由于-CH3基团的存在,导致在环境中分子结构中的α氢原子容易反应,发生氧化降解。

(4)PP由非极性分子组成,分子之间的排斥力非常强。

这导致了:其装饰性和装配性差;染色后的制件色泽曲于反光性差而降低了艳丽感觉;表面的涂漆、电镀、粘贴、蒸发加工亦相当的空摊;制件的热溶粘结和溶剂粘结性差。

(2)β晶型聚丙烯的特征及表征近些年来PP高性能化技术研究尤其活跃,如嵌段共聚、高结晶化、高分子量化、合会化、复合化、交联、形态控制等手段。

其中的通过结晶形态控制可改善PP树脂原有的结构和性能,提高它的耐冲击性和低温韧性。

PP是高结晶聚合物,在熔融冷却结晶的过程中会形成较大尺寸的球晶,球晶之间往往有比较明显的界面分界,当材料发生变形时,由于外力引发的裂纹很容易沿着这些界面向内扩展,使PP材料产生脆性断裂。

添加合适的成核剂可使PP形成β晶,晶粒细小化,减少内部的缺陷,使其缺口冲击强度得到明显提高。

β晶的主要表征手段有以下两种:(1)X射线衍射法β晶在X射线衍射图中有两个特征强衍射峰,分剐对应2 θ=16.1º(300)和21.2º(301),图1为不含α晶的β晶PP的X射线衍射图,从左至右各衍射峰出峰位置分别是α(110,14º)、α(040,16.6º)、α(130,18.5º)、α(111,21º)、α(1 3l,21.6º),图2为含β晶PP的X射线衍射图,在16.1º处有一β晶的特征衍射峰,根据衍射强度可计算出结晶物中β晶的含量(用Kx表示)。

公式中,Hα1 Hα2 Hα3为β晶各个晶面的衍射强度(用峰高表示),Hβ为β晶的衍射强度。

(2)差示扫批量热(DSC)法应用DSC可检测是否有β晶存在于样品中。

由图3和图4,可以看出只含α结晶的PP的熔融曲线仅在167℃有一个熔融吸热峰。

含β晶型PP则分别在166℃和149℃有两个熔融吸热峰,分别为α晶和β晶的熔融吸热峰,可以验证β晶的存在,从熔融曲线中β峰的高度和α峰高度的比值,可考察样品在热处理条件产生的β晶的含量,以K DSC表示,K DSC=Kβ/Kα,但是出于这是一熔融过程,在测量时会有部分的晶体熔融,导致测量的结果会有一定的偏差。

2. 聚丙烯的改性针对PP的上述的一系列缺点,其改性方法也是多种多样,总体上可以划分为两类:化学改性和物理改性。

化学改性主要是通过改变聚丙烯的分子链结构,从而改进PP材料性能。

化学改性的方法主要包括:接枝、共聚、交联、氯化、氯磺化等。

物理改性的方法是通过改变聚丙烯材料的高次结构,最终以达到改善材料性能的目的。

物理改性方法主要包括:表面改性、共混改性、填充改性、复合增强等。

在其中共混改性是PP聚合物改性最为简便并且卓有成效的方法之一。

共混改性可以通过密炼机、挤出机等聚合物成型加工设备中完成,工艺过程便于实现及控制。

传统的增韧材料一直都是以有机弹性体化学材料为主,例如EPR(--元乙丙橡胶)、EPDM(三元乙丙橡胶)、POE(聚烯烃热塑性弹性体)、EVA(乙烯--醋酸乙烯共聚物),SBS(苯乙烯--丁二烯弹性体)、MBS(甲基丙烯酸甲酯丁二烯苯乙烯)、ACR、NBR等。

弹性体类增韧材料的抗冲击改性效果十分好,但是弹性体在增韧的同时,往往以牺牲材料宝贵的力学强度、刚度、制品尺寸稳定性、耐热稳定性及可加工成型性为代价。

而近年来发展起来的无机刚性粒子改性可以克服这些缺点,能同时达到增韧和增强改性的目的,是一两全其美的改性方法。

对其开发和研究在目前都十分活跃,无论是其机理、种类,还是改性效果,都已经取得了十分迅速的进展。

聚丙烯改性技术的化学改性是指通过接枝、嵌段共聚,在聚丙烯大分子链中引入其它组分,或是通过交联剂等进行交联,或是通过成核剂、发泡剂进行改性。

物理改性是在聚丙烯基体中加入其它的材料或有特殊功能的添加剂,经过混合、混炼而制成具有优异性能的聚丙烯复合材料。

物理改性大致可分为填充改性、共混改性、增强改性和功能性改性等。

填充改性是指在聚丙烯树脂中加入一定量无机或有机填料来提高制品的性能[1,2 ] ,主要表现在在模量方面有较大提高。

填充改性能降低塑料树脂材料的成本,但有时它在提高某些性能的同时会降低其它的性能。

增强改性通常选用玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等增强材料使聚丙烯制品的强度提高。

增强改性是复合材料发展的一个方向。

共混改性是指用其它塑料、橡胶或热塑性弹性体与聚丙烯树脂共混,填入聚丙烯中较大的球晶内,由此改善聚丙烯的韧性和低温脆性。

常用的改性材料有聚乙烯、乙丙橡胶、乙烯-醋酸乙烯共聚物、丁苯橡胶和顺丁橡胶。

功能性改性是根据要使用的材料所要求所具有的功能,如抗静电、阻燃、透明性等,加入特定试剂使聚丙烯性能改善。

物理改性比化学改性更容易进行,使聚丙烯性能改善也比较显著,推广容易,经济效益相对明显;特别是共混改性技术开发周期短、耗费低、制品的物理性能同样可以达到应用要求。

因此,共混改性是使用现有高分子材料开发新型材料的简捷而高效的方法。

(1)无机刚性粒子表面改性由于无机粒子均表现为表面能较高的高极性物质,而聚合物则多为低表面能的非极性物质,无机粒子与PP基础树脂之间的相容性一般较差,通常对无机粒子进行表面处理。

处理无机粒子的方法有很多,如氧化处理、共热处理、等离子体处理以及用表面改性剂涂覆处理等,其中最有效、便于操作,同时也是最广为应用的是通过表面改性剂涂覆技术。

目前报道的表面处理剂很多,如价格低廉的硬脂肪酸及其衍生物等表面活性剂,硅烷类、钛酸酯类和铝钛酸酯类偶联剂,以及近来出现的锆酸酯类、锡酸酯类、硼酸酯类、磷酸酯类、异氰酸酯类偶联剂等。

表面处理对增韧效果的影响采用各种方法进行表面处理的效果各不相同,但是基本上表面改性的主要作用包括以下几点:(1)降低表面能,有利于解聚和防止团聚现象。

纳米颗粒表面多呈亲水性,其表面能高。

而且颗粒粒径越小,表面能就越高,颗粒之间越易相互吸引而产生团聚现象。

相关文档
最新文档