基于matlab的图像增强方法研究 开题报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)开题报告

学生姓名:学号:

专业:

设计(论文)题目:基于matlab的图像增强方法研究

指导教师:

年月日

开题报告填写要求

1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在系审查后生效;

2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;

3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册);

4.有关年月日等日期的填写,应当按照国标GB/T7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2002年4月26日”或“2002-04-26”。

毕业设计(论文)开题报告

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:

文献综述

1.1课题研究的目的和意义

图像作为自然界景物的客观反映,是人类感知世界的视觉基础,也是人类获取信息、表达信息和传递信息的重要手段。据统计,人类获得的信息大约75%是以图像的形式,通过视觉系统获得的。图像时人类重要的信息源,“百闻不如一见”、“眼见为实”即时图像对于人类重要性的简明概括。[1]

图像是物体透射或反射的光信息,通过人的视觉系统接受后,在大脑中形成的印象或认识,是自然景物的客观反映。一般来说,凡是能为人类视觉系统所感知的有形信息,或人们心目中的有形想象都统称为图像。图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。实践表明,人类感知的外界信息,80%以上是通过视觉得到的。

然而,在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。所谓图像处理,就是通过某些数学运算对图像信息进行加工和处理,以满足人的视觉心理和实际应用需求[2]。图像增强是图像处理的一个重要环节,在整个图像处理过程中起着承前启后的重要作用。

随着图像处理设备性能的不断提高以及图像数字化和图像显示设备的普及化和低价化,人们对图像质量的要求越来越高。而图像质量的含义[3]包括两个方面的内容,即图像的保真度(Fidelity)和理解度(Intelligibility)。保真度是指被评价图像与标准图像的偏离程度,两者属于同一个映像,只是由于传输和处理等原因造成了偏差,因此保真度往往指的是图像细节方面的差异。理解度表示图像能向人或机器提供信息的能力,其中主要包括清晰度和美感等,因此,理解度通常指的是图像整体和细节的总体概念。

图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般

要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

1.2课题的研究现状

图像处理技术始于20世纪60年代,由于当时图像存储成本高,处理设备造价高,因而其应用面很窄。1964年美国加州理工学院的喷气推进实验室,首次对徘徊者7号太空飞船发回的月球照片进行了处理,得到了前所未有的清晰图像,这标志着图像处理技术开始得到实际应用。70年代进入发展期,出现了CT和卫星遥感图像,对图像处理的发展起到了很好的促进作用。80年代进入普及期,此时微机己经能承担起图形图像处理的任务。VLSI的出现更使得处理速度大大提高,其造价也进一步降低,极大的促进了图像处理系统的普及和应用。90年代是图像处理技术实用化时期,图像处理的信息量巨大,对处理的速度要求极高。21世纪的图像处理技术要向高质量化方面发展,实现图像的实时处理,采用数字全息技术使图像包含最为完整和丰富的信息,实现图像的智能生成、处理、理解和识别。[4]

图像增强是图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息的处理方法。其主要目的是使处理后的图像对某种特定的应用,比原始图像更适合,处理的结果使图像更适合于人的视觉特性或机器的识别系统[5]。

图像增强可归纳为两方面[6]:(1)消除噪声;(2)边缘增强和结构信息的保护。

图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的7]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,

如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。

目前,许多新的增强算法都充分利用了周围邻域这一重要的信息,形成了很多局部处理的灰度调整算法,该方法主要利用了邻域的统计特性[8]。自适应增强的研究主要集中在以下三大类增强算法:

1.既能平滑又能保护边缘的自适应滤波器。自适应滤波的基本思想是滤波器数可根

据像素所在的邻域情况而自适应选取,也可描述为加权平均滤波器。

(1)在提高算法的抗噪性能方面,文献[9]介绍了几种方法。这些方法可以较好的平滑噪声区域,并能保护较显著的边缘,但对图像细节的保护较差。

(2)在提高算法的细节保护能力方面,saint-Marc利用梯度来决定权值,建立了指数形式的权函数,较好的保护了图像细节。但该算法对脉冲噪声敏感,而且模型的性能受参数的影响比较大。另外,文献[10]还提出了各向异性扩散思想的改进方法,需要求解热传导方程。这些改进算法多数集中在权值的自适应选取上,但是由于自适应调整的参数较少,仍然不能很好的解决细节保护的问题。

2.基于图像建模和估计理论的增强算法。这类算法的基本思想是提出一个图像的模型,如果这个模型的参数由一种估计方法估计出来,则窗口中心的灰度值可由估计出来的参数计算得到。最简单的例子就是中值滤波器,对脉冲型噪声有很好的效果。但是,这类算法由于是以估计理论为基础,所以所采用的估计方法的鲁棒性对算法的性能有很大的影响。估计方法趋于复杂,使得算法本身也就较复杂。

3.基于模糊集合论的增强算法.近年来,模糊集合理论在图像处理中得到了广泛的应用[11]。采用模糊规则改进传统的中值滤波器中滤波窗口尺度的选择,改善了算法对高斯噪声的抗噪性能。自适应模糊滤波算子可以较好的保护图像细节和滤除高斯噪声,其算法中窗口的大小由邻域一致性程度决定,该一致性程度由一个模糊逻辑规则导出。算法不足是对脉冲噪声的滤除效果较差。

另外,还有其他的一些增强的方法。例如为了充分考虑细节问题,在直方图均衡中引入了局部直方图均衡法[12];近年来,数学形态等方法也都应用到图像增强中;需要说明的是,在图像增强中变换域增强也得到很广泛的应用,例如付傅氏变换、离散余弦变换、小波变换等,其中小波是近年来发展起来的一种新的时频分析工具,它具有时频局

相关文档
最新文档