高等数学基础形考作业参考答案修订
【高等数学基础】形成性考核册答案(附题目)7
【高等数学基础】形成性查核册答案【高等数学基础】形考作业 1 答案:第 1章函数第 2 章极限与连续(一)单项选择题⒈以下各函数对中,(C)中的两个函数相等.A. f (x)(x ) 2, g( x)xB. f (x)x2, g( x)xC. f ( x)ln x3,g( x) 3ln xD. f ( x) x1, g (x)x 21x1剖析:判断函数相等的两个条件(1)对应法例同样(2)定义域同样A 、f (x)( x )2x ,定义域x | x0 ;g ( x)x ,定义域为R定义域不一样,因此函数不相等;B 、f (x)x2x , g (x)x 对应法例不一样,因此函数不相等;C、f (x)ln x33ln x ,定义域为x | x0 ,g(x)3ln x ,定义域为x | x0因此两个函数相等D 、f (x)x211 ,定义域为x | x R, x1 x 1,定义域为R; g( x)xx1定义域不一样,因此两函数不等。
应选 C⒉设函数 f ( x) 的定义域为 (,) ,则函数 f ( x) f (x) 的图形对于(C)对称.A. 坐标原点B. x轴C. y轴D.y x剖析:奇函数,偶函数,f ( x) f ( x)f ( x) f ( x),对于原点对称,对于 y 轴对称y f x与它的反函数y f 1 x 对于y x对称,奇函数与偶函数的前提是定义域对于原点对称设 g x f x f x ,则 g x f x f x g x因此 g x f x f x为偶函数,即图形对于y 轴对称应选 C⒊以下函数中为奇函数是(B).A. y ln(1x 2 )B. y x cos xa x a xD. y ln(1x)C. y22剖析: A 、y x ln(1x ln 1 x2y x),为偶函数B 、y x xcos x x cosx y x,为奇函数或许 x 为奇函数, cosx 为偶函数,奇偶函数乘积仍为奇函数C、y x a x a xy x ,因此为偶函数21/16D 、 yx ln(1 x) ,非奇非偶函数应选 B⒋以下函数中为基本初等函数是( C ).A. y x 1B. y xC. yx 2 D. y1 , x 01 , x 0剖析:六种基本初等函数( 1) y c (常值)———常值函数( 2) y x , 为常数——幂函数( 3) ( 4)( 5)( 6)y a x a 0, a1 ———指数函数y log a x a 0, a 1 ———对数函数ysin x, y cos x, y tan x, y cot x ——三角函数yarc sin x, 1,1 , yarc cos x, 1,1 , ——反三角函数yarc tan x, yarc cot x分段函数不是基本初等函数,故D 选项不对比较比较选 C⒌以下极限存计算不正确的选项是(D ).A. limx 21 B. lim ln(1x)x22xx 0C. limsin x0 D. limxsin 1xxxx1剖析: A 、已知 lim0 nxnxx 2x 211x2lim lim lim 1x22 x 2 2xxx12 1 0x2x2x 2B 、 limln(1 x) ln(1 0) 0x 0初等函数在期定义域内是连续的C 、 limsin xlim 1sin x 0xxxxx时, 1是无量小量, sin x 是有界函数,x无量小量×有界函数还是无量小量1sin11,则原式 limsin tD 、 lim xsinlimx ,令 t0, x1xxx1xt 0tx应选 D⒍当 x 0 时,变量( C )是无量小量.sin x 1 A.B.xx2/16C. x sin1D. ln( x 2)x剖析; lim f x 0 ,则称 f x为 xa 时的无量小量x aA 、 limsin x1 ,重要极限x 0xB 、 lim1,无量大批x 0x1 0 ,无量小量 x ×有界函数 sin 1仍为无量小量C 、 lim x sinx 0xxD 、 limln( x2)=ln 0+2 ln 2 x 0应选 C⒎若函数 f ( x) 在点 x 0 知足( A ),则 f (x) 在点 x 0 连续。
高等数学基础形成性作业及答案1-4
⾼等数学基础形成性作业及答案1-4⾼等数学基础形考作业1:第1章函数第2章极限与连续(⼀)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D.x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.,1x x y ⒌下列极限存计算不正确的是(D ). A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是⽆穷⼩量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满⾜(A ),则)(x f 在点0x 连续。
A.)()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(⼆)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数?≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的⽆穷⼩量0x x →。
2022年电大高等数学基础形成性考核手册答案
高等数学基础形考作业1:第1章 函数第2章 极限与持续(一)单项选择题⒈下列各函数对中,(C )中旳两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 旳定义域为),(+∞-∞,则函数)()(x f x f -+旳图形有关(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不对旳旳是(D ).A. 12lim22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x⒍当0→x 时,变量(C )是无穷小量.A.x x sin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 持续。
A. )()(lim 00x f x f xx =→ B. )(x f 在点0x 旳某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=旳定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→x x x)211(lim 21e .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处持续,则=k e . ⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 旳间断点是0=x .⒍若A x f xx =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
国家开放大学《高数基础形考》1-4答案
2020年国家开放大学《高等数学》基础形考1-4答案《高等数学基础》作业一第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2x y = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A. 12lim22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量(C )是无穷小量. A.xxsin B. x 1C. xx 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f xx =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x >.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 1122211lim(1)lim(1)22x x x x e x x ⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e . ⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x =.⒍若A x f xx =→)(lim 0,则当0x x →时,A x f -)(称为 x →x 0时的无穷小量.(二) 计算题⒈设函数 ⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e == ⒉求函数21lgx y x-=的定义域.解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE ==则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯= ⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111lim lim lim 2sin(1)sin(1)sin(1)11xx x x x x x x x x x →-→-→---+---====-++++ ⒍求xxx 3tan lim0→.解:000tan3sin31sin311limlim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin11lim 20-+→. 解:20001lim sin x x x x→→→-== ()00lim 0sin 1111)x xx x→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x . 解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+---- ⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续 由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞《高等数学基础》作业二第3章 导数与微分(一)单项选择题 ⒈设0)0(=f 且极限x x f x )(lim→存在,则=→xx f x )(lim 0( C ). A. )0(f B. )0(f ' C. )(x f ' D. 0 ⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设x x f e )(=,则=∆-∆+→∆xf x f x )1()1(lim( A ). A. e B. e 2 C.e 21 D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f ( D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 21=k ⒋曲线x x f sin )(=在)1,4π(处的切线方程是 )41(2222π-==x y ⒌设x x y 2=,则 ='y )ln 1(22x x x + ⒍设x x y ln =,则 =''y x1(三)计算题⒈求下列函数的导数y ': ⑴x x x y e )3(+=解:x xe x e x y 212323)3(++='⑵x x x y ln cot 2+= 解:x x x x y ln 2csc 2++-='⑶xx y ln 2=解:xxx x y 2ln ln 2+=' ⑷32cos xx y x+= 解:4)2(cos 3)2ln 2sin (x x x x y x x +-+-='⑸xx x y sin ln 2-=解:xxx x x x x y 22sin cos )(ln )21(sin ---='⑹x x x y ln sin 4-= 解:x x xxx y ln cos sin 43--=' ⑺xx x y 3sin 2+=解:xx x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y x ln tan e +=解:xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ': ⑴21ex y -=解:2112xx ey x -='-⑵3cos ln x y =解:32233tan 33cos sin x x x xx y -=-=' ⑶x x x y =解:87x y = 8187-='x y⑷3x x y +=解:)211()(31213221--++='x x x y⑸x y e cos 2=解:)2sin(xxe e y -=' ⑹2e cos x y=解:22sin 2xx e xe y -='⑺nx x y n cos sin =解:)sin(sin cos cos sin 1nx x n nx x x n y n n -='- ⑻2sin 5x y =解:2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=解:xxey 2sin 2sin ='⑽22ex x x y +=解:222)ln 2(x x xex x x x y ++='⑾xxx y e e e+=解:x e x x e e e x e xe xy x x++=')ln ( ⒊在下列方程中,y y x =()是由方程确定的函数,求:⑴y x y 2e cos =解:y e x y x y y '=-'22sin cosyex xy y 22cos sin -=' ⑵x y y ln cos =解:xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=解:222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+'2020年国家开放大学《高等数学答案》22cos 2sin 22x y xy yy xy y +-='⑷y x y ln += 解:1+'='yy y 1-='y y y ⑸2e ln y x y =+ 解:y y y e xy '='+21)2(1y e y x y -='⑹y y x sin e 12=+解:x x e y y y e y y .sin .cos 2+'='ye y ye y x x cos 2sin -=' ⑺3e e y x y -= 解:y y e y e x y '-='2323y ee y y x+='⑻y x y 25+=解:2ln 25ln 5y x y y '+='2ln 215ln 5y x y -='⒋求下列函数的微分y d : ⑴x x y csc cot += 解:dx xxx dy )sin cos cos 1(22--= ⑵xxy sin ln =解:dx xx x x x dy 2sin cos ln sin 1-= ⑶xxy +-=11arcsin 解:dx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=⑷311xxy +-= 解:两边对数得:[])1ln()1ln(31ln x x y +--=)1111(31xx y y +---=' )1111(11313xx x x y ++-+--=' ⑸x y e sin 2=解:dx e e dx e e e dy x x x x x )2sin(sin 23== ⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln = 解:x y ln 1=='xy 1='' ⑵x x y sin = 解:x x x y sin cos +='x x x y cos 2sin +-=''⑶x y arctan =解:211x y +=' 22)1(2x xy +-='' ⑷23x y = 解:3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=- 两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。
高等数学基础形成性考核册和答案解析
高等数学基础第一次作业第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量( C )是无穷小量.A. xxsin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞). ⒉已知函数x x x f +=+2)1(,则=)(x f x 2 - x .⒊=+∞→x x x)211(lim e 1/ 2 .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -. 解:f(-2) = - 2,f(0) = 0, f(1) = e⒉求函数x x y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞)⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:如图梯形面积A=(R+b)h ,其中22h R b -=∴⒋求⒌求⒍求⒎求.⒏求⒐求hh R R A )(22-+=2322sin 233sin 3lim 2sin 3sin lim 00==→→xx x x x x x x 2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→xx xx x x x xx x x xx x x sin )11()11)(11(limsin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→x xx x x x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→4443])341[(lim ---+=+-+=e x x 2)4)(2(lim86lim 22=--=+-x x x x⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim 0( B ).A. )0(fB. )0(f 'C. )(x f 'D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设xx x f e 5e )e (2+=,则=xx f d )(ln d (2/x)lnx+5/x . ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .⒋曲线x x f sin )(=在)1,4π(处的切线方程是 y=1 .⒌设xx y 2=,则='y2x 2x(lnx+1).⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x=(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xx x y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x=[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x ⒉求下列函数的导数y ': ⑴21e x y -= ⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8 ⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =221(2)sin (ln )cos sin x x x x x xx---⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e = ⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1)⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot +=⑵xxy sin ln =⑶x xy +-=11arcsin⑷311xxy +-=⑸x y e sin 2=⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f'(x)是偶函数高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值. A. 0)(,0)(00=''>'x f x f B. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31 C. 0 D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 .⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值.解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5. (-∞,1)和 (5,+∞)为单调增区间, (1,5)为单调减区间,极值为Y max =32,Y min =0。
高等数学基础-国家开放大学电大学习网形考作业题目答案
高等数学基础一、单选题1.下列各函数对中,()中的两个函数相等.正确答案: B2.函数y=2sinx的值域是().A.(-2, 2)B.[-2, 2]C.(0, 2)D.[0, 2]正确答案: B3.函数y=x2+2x-7在区间(-4,4)内满足().A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升正确答案: A4.下列函数中为幂函数的是().正确答案: B5.下列函数在区间上单调递增的是().A.x3B.1/xC.-e xD.-sinx正确答案: A6.A.坐标原点B.x轴C.y轴D.y=x7.下列函数中为奇函数是().正确答案: B8.下列极限计算不正确的是().正确答案: D9.在下列指定的变化过程中,()是无穷小量.正确答案: A10.正确答案: A11.12.正确答案: B 13.正确答案: A 14.正确答案: B 15.正确答案: B 16.正确答案: D17.下列结论中()不正确.正确答案: D18.正确答案: D19.A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的正确答案: B20.正确答案: B21.正确答案: B22.下列等式成立的是().正确答案: A23.正确答案: D24.正确答案: A25.正确答案: B26.正确答案: D27.正确答案: B28.在斜率为的2x积分曲线族中,通过点(1,4)的曲线方程为().正确答案: A29.正确答案: D30.正确答案: D二、判断题1.A.对B.错正确答案: B2.A.对B.错正确答案: A3.A.对B.错正确答案: A4.A.对B.错正确答案: B5.A.对B.错正确答案: B6.A.对B.错正确答案: B7.A.对B.错正确答案: B8.A.对B.错正确答案: A9.A.对B.错正确答案: B10.A.对B.错正确答案: A11.A.对B.错正确答案: B12.A.对B.错正确答案: A13.A.对B.错正确答案: A 14.A.对B.错正确答案: B15.A.对B.错正确答案: A16.A.对B.错正确答案: B17.A.对B.错正确答案: B18.A.对B.错正确答案: A19.A.对B.错正确答案: B20.A.对B.错正确答案: B21A.对B.错正确答案: B22.A.对B.错正确答案: A23.A.对B.错正确答案: B24.A.对B.错正确答案: A25.A.对B.错正确答案: B26.A.对B.错正确答案: A27.A.对B.错正确答案: A28.A.对B.错正确答案: B29.A.对B.错正确答案: B30.A.对B.错正确答案: B 三、计算题1.计算极限答案:2.计算极限答案:3.设y=2x-sin x2,求y'.答案:4.设y=sin3x+ln2x,求y'.答案:5.计算不定积分.答案:6.计算不定积分.答案:7.计算定积分.答案:8.计算定积分.答案:四、应用题1.某制罐厂要生产一种体积为V的有盖圆柱形容器,问容器的底面半径与高各为多少时用料最省?正确答案2.用钢板焊接一个容积为62.5cm3的底部为正方形的水箱(无盖),问水箱的尺寸如何选择,可使水箱的表面积最小?3.圆柱体上底的中心到下底的边沿的距离为l,问当底半径与高分别为多少时,圆柱体的体积最大?。
【高等数学基础】形成性考核册答案.
1【高等数学基础】作业1答案:第1章函数极限与连续一、单项选择题1.C2.C3.B4.C5.D6.C7.A二、填空题1.(3+∞,; 2.2x x -; 34.e ; 5.0x =; 6.无穷小量.三、计算题1.解:(22, f =-(00, f =(11. f e e == 2.解:要使21lgx x- 有意义,必须 210, 0x x x -⎧>⎪⎨⎪≠⎩解得:10, 2x x <>或(211lg, . 2x y x -⎛⎫∴=∞⋃+∞ ⎪⎝⎭函数的定义域为-,0 3.解:如图,梯形ABCD 为半圆O 的内接梯形,AB DC AB 2R DE x ,=,高=, OD DEO 连接则为直角三角形,2DC OC ==((((122S , 0DE DC AB x R x R x R ∴+=+=+<<1梯形的面积S=2即其中4.解:原式=000sin 3233sin 323limlim lim . 3sin 2223sin 22x x x x x x x x x x x →→→⋅⋅=⋅=5.解:原式=((11111lim1lim lim 12sin 1sin 1x x x x x x x x x →-→-→-++⋅-=⋅-=-++6.解:原式=000sin 33sin 31lim3lim lim 3. 3cos33cos3x x x x x x x x x→→→⋅=⋅=7.解:原式=2110. x x →→==8.解:原式=4334441lim 1. 33x x x e x x -+---→∞⎡⎤--⎛⎫⎛⎫⎢⎥+= ⎪⎪⎢⎥++⎝⎭⎝⎭⎣⎦AE BOC29.解:原式=((444222lim lim . 4113x x x x x x x x →→---==---高等数学基础】作业2答案:导数与微分一、单项选择题1.B2.D3.A4.D5.C二、填空题1.0; 2.2ln 5x x +; 3.12; 4.10y -=; 5.(22ln 1x x x +; 6.1 x.三、计算题1. 求下列函数的导数y ':(3132223(13, 3212.2x xxx y x e y x e x e y e ⎛⎫⎛⎫'=+∴=++ ⎪⎪⎝⎭⎝⎭'=解:即 (22211122ln 2ln . sin sin y x x x x x x x x x'=-++⋅=-++解: ((2221132ln 2ln 1. ln ln x y x x x x x x x⎛⎫'=-⋅=- ⎪⎝⎭解: (((((3264414sin 2ln 23cos 221ln 23sin 3cos . x xxy x x x x xx x x x x x⎡⎤'=-+-+⎣⎦=--+解: ((222221152sin ln cos sin 12ln cos . sin sin y x x x x x x x x x xx x x x⎡⎤⎛⎫'=---- ⎪⎢⎥⎝⎭⎣⎦--=+⋅解:(3sin 64cos ln . xy x x x x'=--解: (((((222173cos 23ln 3sin 31cos 2sin ln 3ln 3. 3x x x x y x x x x x x x x ⎡⎤'= +-+⎣⎦=+--解:3(22118tan cos 11tan . cos x x x y e x e x xe x x x'=+⋅+⎛⎫=++ ⎪⎝⎭解:2. 求下列函数的导数y ': (1y ''=⋅=解:((1sin 2cos tan . cos cos x y x x x x''=⋅=-=-解: (112711288273, . 8y x x x x y x -⎡⎤⎛⎫⎢⎥'=⋅=∴= ⎪⎢⎥⎝⎭⎢⎥⎣⎦解: ((42sin sin 2sin cos sin 2. y x x x x x ''=⋅=⋅=解: ((225cos 2cos . y x x x x ''=⋅=解: ((6sin . x xxx y e e ee ''⋅=-⋅解:=-sin((((1117sin cos cos sin sin sin cos cos sin sin sin cos 1.n n n n y n x x nx x nx nn x x nx x nx n x n x ---'=⋅⋅+⋅-⋅=⋅-=⋅+解: ((sin sin 85ln 5sin 5cos ln 5. x x y x x ''=⋅⋅=解: ((cos cos 9cos sin . xx y ex xe ''=⋅=-解:3. 在下列方程中,(y y x =是由方程确定的函数,求y ':(((2221cos sin 2,cos sin , sin . cos y y yy x y x e y y x e y x y xy x e''+-=⋅'-='∴=-解:((cos 2sin ln , cos 1sin ln , cos .1sin ln yy y y x xyy x y xyy x y x ''=-⋅+'+='∴=+解:4(3sin , 21sin cos , 21.2sin cos xy y y y y y y y y y y =''+⋅='∴=+解:两边求导,得(41. y y y y y'''⋅=+1解:=1+ ((152,12, 1. 2y yye y y y xy e y x y x y e ''+⋅=⋅'-='∴=- ((62sin cos , 2cos sin ,sin . 2cos x x xx x xy y e y e y y y ey y e y e y y y e y''⋅=+⋅⋅'-='∴=-解:((22273,3,. 3y x yx xy e y e y y ey y e e y e y''⋅=-⋅'+='∴=+解:((85ln 52ln 2,12ln 25ln 5,5ln 5.12ln 2x y yx x y y y y y ''=+⋅'-='∴=-解:4. 求下列函数的微分dy :(((221csc cot csc csc cot csc , csc cot csc .y x x x x x x dy y dx x x x dx '=--=-+'∴==-+ 解:(2221sin cos ln sin cos ln 2, sin sin sin cos ln .sin x x xx x x xy x x xx x x xdy dx x x--'==-∴= 解:5(32sin cos sin 2, sin 2.y x x x dy xdx '==∴= 解:(2224sec sec ,sec .x x x xy e e e x dy e xdx '=⋅=∴= 解:5.求下列函数的二阶导数:(12332211, 2111. 224y x y x x ---'==⎛⎫''∴=⋅-=- ⎪⎝⎭解:(223ln 3,3ln 3.x xy y '=''∴=解:(213, 1. y xy x'=''∴=-解:((4sin cos , cos cos sin 2cos sin .y x x x y x x x x x x x '=+''∴=+-=-解:四、证明题((((((((((,,1, f x fx f x f x f x f x f x f x f x -=-''∴-=-⎡⎤⎡⎤⎣⎦⎣⎦''-⋅-=-''-='∴证:由题设,有即是偶函数.【高等数学基础】作业3答案第四章导数的应用一、单项选择题1.D2.D3.A4.C5.C6.A二、填空题1.极小值; 2.0; 3.(,0-∞; 4.(0, +∞; 5.(f a ; 6.(0,2.三、计算题(((((212521535101, 5.y x x x x x x x '=-++-=--===1. 解:令,得:列表如下6((( , 5, , 5. 3250. y ∴∞+∞函数的单调增区间为-,1单调减区间为1,当x=1时,函数取得极大值;当x=时,函数取得极小值([(][]((([]222. 22210, 1. 0,10; 1,30. 230,31. 03, 12, 36,0360.y xx x x yx y y x x xy y y y x x'=-=-==''∈<∈>∴=-+====∴= 解:令得当时,当时,函数在区间上的极值点为又函数-2+3在,上的最大值为,最小值为(((223. , , , 2,(0 0,11 212, 1, .P x y PA d y x x d d x x y y P P ==≥=='======⨯==∴解:设所求的点则令得易知,是函数d 的极小值点,也是最小值点. 此时,所求的点为或4. 解:如图所示,圆柱体高h 与底半径r 满足222h r L +=圆柱体的体积公式为 h r V 2π= 将222r L h =-代入得22(V L h h π=- 求导得22222(2( (3 V h L h L h ππ'=-+-=- 令0='V得h =,并由此解出r =. 即当底半径r L =,高h L =时,圆柱体的体积最大.5. 解:设圆柱体半径为R ,高为h ,则72222, 222V Vh S Rh R R R Rππππ==+=+表面积2240V S R R Rπ'=-==令得0,0S S ⎛⎫''∈<+∞> ⎪⎪⎝⎭R 时,时, S R ∴=的极小值点,也是最小值点. 此时答:当2πV R = 4πV h =时表面积最大.6. 解:设长方体的底边长为x 米,高为h 米. 则 2262.562.5x hh x ==由得用料的面积为:(2225040S x xh x x x=+=+>,令32250201255S x x x x '=-===得,易知,5S x =是函数的极小值点,也是最小值点. 答:当该长方体的底边长为5米,高为2.5米时用料最省。
高等数学基础形成性作业及答案1-4
A.
B.
C.
D.
⒌下列极限存计算不正确的是(D).
A.
B.
C.
D.
⒍当时,变量(C)是无穷小量.
A.
B.
C.
D.
⒎若函数在点满足(A),则在点连续。
A.
B. 在点的某个邻域内有定义
C.
D.
(二)填空题
⒈函数的定义域是.
⒉已知函数,则 x2-x .
⒊.
⒋若函数,在处连续,则 e .
⒌函数的间断点是.
⒍若,则当时,称为。
⒋函数满足的点,一定是的(C ).
A. 间断点
B. 极值点
C. 驻点
D. 拐点
⒌设在内有连续的二阶导数,,若满足( C ),则在取到极小值.
A. B.
C. D.
⒍设在内有连续的二阶导数,且,则在此区间内是( A ).
A. 单调减少且是凸的
B. 单调减少且是凹的
C. 单调增加且是凸的
D. 单调增加且是凹的
⒋曲线在处的切线方程是。
⒌设,则
⒍设,则。
(三)计算题
⒈求下列函数的导数:
⑴
解:
⑵
解:
⑶ 解: ⑷ 解: ⑸
解: ⑹ 解: ⑺ 解: ⑻ 解: ⒉求下列函数的导数: ⑴ 解: ⑵ 解: ⑶ 解: ⑷ 解: ⑸ 解: ⑹ 解:? ⑺ 解: ⑻ 解: ⑼ 解: ⒊在下列方程中,是由方程确定的函数,求: ⑴ 解: ⑵ 解: ⑶ 解:
第5章
第6章
(一)单项选择题
⒈若的一个原函数是,则(D).
A.
B.
C.
D.
不定积分 定积分及其应用
⒉下列等式成立的是(D).
A
高等数学基础形成性考核册与答案
高等数学基础第一次作业第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,(C)中的两个函数相等.A.2f(x)(x),g(x)xB.2f(x)x,g(x)xC.3f(x)lnx,g(x)3lnxD.f(x)x1,g( x)2xx11⒉设函数f(x)的定义域为(,),则函数f(x)f(x)的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.yx⒊下列函数中为奇函数是(B).2A.yln(1x)B.yxcosxC.xa xayyln(1x)D.2⒋下列函数中为基本初等函数是(C).A.yx1B.yxC.2yxD. y11,,xx⒌下列极限存计算不正确的是(D).2x A.lim12x2x B.limln(1x)0x0sinx C.lim0xx1 D.limxsin0xx⒍当x0时,变量(C)是无穷小量.A. s inxxB.1xC.1xsinln(x2)D.x⒎若函数f(x)在点x0满足(A),则f(x)在点x0连续。
A.limf(x)f(x0)xxB.f(x)在点x0的某个邻域内有定义C.limf(x)f(x)0 xx0 D.limf(x)limf(x)xxxx00(二)填空题2x9⒈函数(x)ln(1x)f的定义域是(3,+∞).x3⒉已知函数fx1)xx(2,则f(x)x2-x.⒊11/2 lime(1)xx2x.1⒋若函数f(x)x(1x),x0xk,x0,在x0处连续,则ke.⒌函数x1,x0y的间断点是x=0.sinx,x0⒍若limf(x)Axxx时,f(x)A称为无穷小量.,则当x(三)计算题⒈设函数f(x)xex ,,xx求:f(2),f(0),f(1).解:f(-2)=-2,f(0)=0,f(1)=e⒉求函数y2x1lglg的定义域.x2x1解:由0x 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞)⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,b试将梯形的面积表示成其高的函数.解:如图梯形面积A=(R+b)h,其中b2hR2∴⒋求22A(R Rh)limx0sinsin3x2xlimx032s in3x3xsin2x2xh32h RRRlimx12xsin(x11)limx1xsin( x11)(x1)2⒌求⒍求limx0tanx3xlimx03sin3x3xcos3x3⒎求.221x1(1x1)(1xlimlimsinx2x(11)sin0x0x2x1)2(1x)1xxlimlim0sinx22xx0(1x1)sinx1x1⒏求x1x34xxlim()lim()lim(1xx3x3xxx4)3xx3444[(1)]2⒐求x3x6x8(x2)(x4)2limelimlim24x4x54xx1)(x4)3x4x(3(1)x3⒑设函数2(x2),x14 f(x)x,1x1讨论f(x)的连续性,并写出其连续区间.x1,x1解:limx12f(x)(12)1limf(x)x11∴函数在x=1处连续limf(x)1f(1)x l imf(x)1limf(x)1101x1x1limx1f(x) 不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章导数与微分(一)单项选择题⒈设f(0)0且极限limx0 f(x)x存在,则limx0f(x)x(B).A.f(0)B.f(0)C.f(x)D.0⒉设f(x)在x0可导,则f(x2h)limh02hf( x)(D).A.2f(x0)B.f(x0)C.2f(x0)D.f(x0)⒊设xf(x)e,则limx0f(1 x)fx(1)(A).A.eB.2e1 C.e2 1 D.e 4⒋设f(x)x(x1)(x2)(x99),则f(0)(D).A.99B.99C.99!D.99!⒌下列结论中正确的是(C).A.若f(x)在点x0有极限,则在点x0可导.B.若f(x)在点x0连续,则在点x0可导.C.若f(x)在点x0可导,则在点x0有极限.D.若f(x)在点x0有极限,则在点x0连续.(二)填空题⒈设函数12xsin,x0 f(x),则f(0)0.x0,x0⒉设x2xxf(e)e5e ,则d(lnx(2/x)lnx+5/xf).d x是1/2.⒊曲线f(x)x1在(1,2)处的切线斜率π⒋曲线f(x)sinx在,1)(处的切线方程是y=1.42x(lnx+1)2x,则y2x⒌设.yx⒍设yxlnx,则y1/x.(三)计算题⒈求下列函数的导数y:⑴y(xx3)e x y=(x 3/2+3)e x,y'=3/2x1/2e x+(x3/2+3)e x=(3/2x1/2+x3/2+3)e x1/2+x3/2+3)e x ⑵ycotxx2lnxy'=-csc2x+2xlnx+x⑶yxln2xy'=(2xlnx-x)/ln 2x⑷y c os xx32xy'=[(-sinx+2 x ln2)x3-3x2(cosx+2x)]/x6⑸yln xsin2 xx =12 (2x)sinx(lnxx)cosxx2sinx⑹yx4sinxlnxy'=4x3-cosxlnx-sinx/x2sinxxyx-(sinx+x2)3x ln3]/32x⑺y'=[(cosx+2x)3x3=[cosx+2x-(sinx+x2)ln3]/3x x tanx+e x sec2x+1/x=e x(tanx+sec2x)+1/x⑻ye x tanxlnxy'=e⒉求下列函数的导数y:⑴ye 12 x⑵ylncosx3⑶yxxxy=x 7/8y'=(7/8)x-1/8⑷y3xx⑸ycose x2⑹y2x cosen-1xcosxcosnx-nsin n xsinnx⑺ysin n xcosnxy'=nsin⑻ysin52x2⑼yxsine ⑽yx 2x2 x e⑾yxx ee e x⒊在下列方程中,yy(x)是由方程确定的函数,求y:2y⑴yxy2cose方程对x求导:y'cosx-ysinx=2y'e2yy'=ysinx/(cosx-2e)⑵ycosylnx方程对x求导:y'=y'(-siny)lnx+(1/x)cosyy'=[(1/x)cosy]/(1+sinylnx)⑶2x2xsiny方程对x求导:2siny+y'2xcosy=(2xy-x2y')/y22y')/y2yy'=2(xy–y2siny)/(x2+2xy2cosy)⑷yxlny方程对x求导:y'=1+y'/y,y'=y/(y-1)y=2yy',y'=1/x(2y-e y)⑸lnxe y y2方程对x求导:1/x+y'exsiny+y 'e x cosy ⑹y 21e xsiny 方程对x 求导:2yy '=ey '=exsiny/(2y-e xcosy)yx2xy2⑺eey 3yx 方程对x 求导:y 'e =e-3yy ',y '=e/e+3y ⑻y5x 2y方程对x 求导:y '=5xln5+y '2y ln2,y '=5x ln5/(1-2yln2)⒋求下列函数的微分dy : ⑴ycotxcscx ⑵ yln sin x x⑶ yarcsin1 1 x x ⑷3y1 1 x x⑸ysin 2e x⑹ ytan 3xe⒌求下列函数的二阶导数: ⑴yxlnx ⑵yxsinx ⑶yarctanx⑷ y 2x3 (四)证明题设f (x)是可导的奇函数,试证f(x )是偶函数.证明:由f (x)=-f(-x)求导f '(x)=-f '(-x)(-x)' f '(x)=f '(-x),∴f '(x)是偶函数高等数学基础第三次作业第4章导数的应用(一)单项选择题⒈若函数f(x)满足条件(D ),则存在(a,b),使得 A.在(a,b)内连续 B.在(a,b)内可导 C.在(a,b)内连续且可导D.在[a,b]内连续,在(a,b)内可导 2x⒉函数f(x )x41的单调增加区间是(D ). A.(,2)B.(1,1) C.(2,)D.(2,)2x⒊函数yx45在区间(6,6)内满足(A ). ff (b)f(a) (). baA.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升⒋函数f(x )满足f(x)0的点,一定是f(x)的(C ). A.间断点B.极值点 C.驻点D.拐点⒌设f(x)在(a,b)内有连续的二阶导数,(,) x 0ab ,若f(x)满足(C ),则f(x)在x 0取到极小 值.A.f(x 0)0,f(x 0)0B.f(x 0)0,f(x 0)0C.f(x 0)0,f(x 0)0D.f(x 0)0,f(x 0)0⒍设f(x)在(a,b)内有连续的二阶导数,且f(x)0,f(x)0,则f(x)在此区间内是(A ). A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的3()2⒎设函数f(x)axaxaxa 在点x1处取得极大值2,则a (). A.1B. 1 3 C.0D.1 3(二)填空题⒈设f(x)在(a,b)内可导,x 0(a,b),且当xx 0时f (x)0,当xx 0时f (x)0,则x 0是 f(x)的极小值点.⒉若函数f(x)在点x 0可导,且x 0是f(x)的极值点,则f(x 0)0.2⒊函数yln(1x)的单调减少区间是(-∞,0).⒋函数 2xf(x)e 的单调增加区间是(0,+∞).⒌若函数f(x)在[a,b]内恒有f(x)0,则f(x)在[a ,b]上的最大值是f(a).⒍函数3 f(x)25x3x 的拐点是x=0. 3bx2⒎若点(1,0)是函数f(x)ax2的拐点,则a ,b . (三)计算题3⒈求函数 2 2y(x1)(x5)的单调区间和极值.解:y '=(x-5) 2 +2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5.列表x(-∞,1)1(1,5)5(5,+∞) y '+0—0+y ↑Y max =32↓Y min =0↑(-∞,1)和(5,+∞)为单调增区间,(1,5)为单调减区间,极值为Y max=32,Ymin=0。
国开电大《高等数学基础》形考任务一国家开放大学试题答案
国开电大《高等数学基础》形考任务一国家开放大学试题答案一、选择题(每题5分,共25分)1. 函数y = 3x^3 - 4x^2 + 1的导数为:A. 9x^2 - 8xB. 9x^2 - 4xC. 9x^2 + 8xD. 9x^2 + 4x答案:A2. 函数y = e^x 的反函数为:A. y = ln(x)B. y = lnxC. y = xlnxD. y = ln(e^x)答案:B3. 极限lim(x→0) (sinx)/x 的值为:A. 1B. 0C. πD. 无极限答案:A4. 函数y = x^3 - 3x + 2 的极值点为:A. x = 0B. x = 1C. x = -1D. x = 3答案:B5. 定积分∫(0→1) (x^2 + 1)dx 的值为:A. 1/3B. 2/3C. 1/2D. 3/2答案:B二、填空题(每题5分,共25分)1. 函数y = x^2 + 2x + 1 的导数为______。
答案:2x + 22. 极限lim(x→∞) (1/x^2) 的值为______。
答案:03. 定积分∫(0→π) sinx dx 的值为______。
答案:24. 函数y = x^3 - 6x^2 + 9x + 1 的单调递增区间为______。
答案:(0, 3)5. 函数y = ln(x^2) 的反函数为______。
答案:y = e^x/2三、解答题(每题25分,共75分)1. 已知函数f(x) = 2x^3 - 3x^2 + 4x + 1,求f'(x)。
解:f'(x) = 6x^2 - 6x + 4。
2. 求极限lim(x→0) (1 - cosx)/x^2。
解:lim(x→0) (1 - cosx)/x^2 = lim(x→0) (1 - cosx)/x^2 (1 + cosx)/(1 + cosx) = lim(x→0) (1 -cos^2x)/x^2(1 + cosx) = lim(x→0) sin^2x/x^2(1 + cosx) = 1/2。
国家开放大学《高等数学基础》形考任1—4答
(一)单项选择题1-1.()1-2.(3xf=,x)(xln)(=)3g lnx2-1.()。
2-2.()。
3-1.()。
3-2.()。
4-1.()。
5-1.().5-2.().6-1.(y轴)6-2.设函数)f(xx(x-的图形关于(坐标原点)对)f-f的定义域为)(,(+∞-∞,则函数)称.7-1.()。
7-2.()。
8-1.()。
8-2.()。
9-1.()9-2.(1)ln(+x)10-1.()第二套1-1.()。
1-2.()。
2-1.()s。
2-2.()s。
3-1.(e)。
3-2.(4)4-1.(0)。
4-2.(-99!)5-1.()。
5-2.下列结论中正确的是()6-1.()()6-2.()7-1.下列结论中()不正确.7-2. 下列结论中()不正确.8-1.()()8-2.()9-1.()。
9-2.()10-1.()。
10-2.()。
(第三套1-1. ()。
1-2.()。
2-1.()。
2-2.()。
3-1.()。
3-2.()。
4-1.()。
4-2.()。
5-1.()。
5-2.()。
6-1.()。
6-2.()。
7-1.()。
7-2.()。
8-1.()。
8-2.()。
9-1.(1)。
9-2.()。
10-1.()。
10-2.(4)。
(二)判断题11-1.(×)11-2.(×)12-1.已知函数f(x+1)=x2+2x+9,则f(x)=-x2+8.(×)12-2.(√)13-1.(√)13-2.(√)14-1.(√)14-2.(×)15-1.(×)15-2.(√)16-1.(×)16-2.(×)17-1.(√)17-2.(×)18-1.(√)18-2.(√)19-1.(√)19-2.(×)20-1.(√)20-2.(√)(第二套)11-1.(×)11-2.(√)12-1.12-2.(×)13-1.(×)13-2.(√)14-1.(×)14-2.(×)15-1.(√)15-2.(√)16-1.(√)16-2.(×)17-1.(×)17-2.(√)18-1.(×)18-2.(√)19-1.(×)19-2.(√)20-1.(×)20-2.(×)(第三套11-1.(√)11-2.(×)12-1.(√)12-2.(√)13-1.(×)13-2.(√)14-1.(×)14-2.(√)15-1.(√)15-2.(×)16-1.(√)16-2.(×)17-1.(×)17-2.(√)18-1.(√)18-2.(×)19-1.(×)19-2.(√)20-1.(√)20-2.(×)三计算题1.解:limx→0tanx2x=limx→0sinx2xcosx=limx→012cosx=122.解:limx→3sin(x−3)x2−5x+6=limx→3sin(x−3)(x−2)(x−3)=limx→31(x−2)=13.解:y′=2x ln2−2xcosx2 4.解:y′=3cos3x+2lnxx 5.解:∫1xlnx dx=∫1lnxd(lnx)=ln(lnx)+c6.解:∫sin1xx2dx=−∫sin1xd1x=cos1x+c7.解:∫5xe x dx =5xe x ∣01−∫e x d5x =5e −(5e −5)=5110 8.解:∫xcosxdx=xsins ∣0π2−∫cosxdx =π2−sinx π20π0∣0π2=π2−1(四)应用题9. 某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容器的底面半径与高各为多少时用料最省?解:设容器的底半径为r ,高为h ,则其表面积为S =2πr 2+2πrℎ=2πr 2+2V rS ′=4πr −2V r 2由S ′=0,得唯一驻点r =√V2π3,由实际问题可知,当r =√V2π3时可使用料最省,此时h =√4Vπ3,即当容器的底半径与高分别为√V2π3、√V2π3时,用料最省。
高等数学基础形成性作业及答案1-4
高等数学基础形考作业1:第1章 函数 第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D.x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ). A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A.)()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
国开电大《高等数学基础》形考任务参考答案
国开电大《高等数学基础》形考任务参考答案一、选择题1.答案:B 解析:题意为求函数f(f)=f2−4f+3的零点个数。
首先根据一元二次方程的求解公式可得$x=\\frac{-b±\\sqrt{b^2-4ac}}{2a}$,其中f=1,f=−4,f=3。
代入求解得到两个解f=1和f=3,即方程有两个零点,所以选项 B 是正确的。
2.答案:C 解析:题目给出了两个不等式,要求找出满足两个不等式同时成立的f的范围。
首先解不等式2f+ 1>3得到 $x>\\frac{1}{2}$,然后解不等式f2−5f+6> 0可以化简为(f−3)(f−2)>0,根据零点的性质得到f<2或f>3,所以合并两个不等式的解集得到$x>\\frac{1}{2}$ 且f<2或 $x>\\frac{5}{3}$ 且f>3,化简得到 $x>\\frac{5}{3}$ 且f>3,即f>3。
所以选项C 是正确的。
3.答案:A 解析:题目给出了一个反比例函数$y=\\frac{a}{x}+b$,求其中的常数f和f。
根据题意,函数的图像经过点(2,3)和(4,1),代入这两个点的坐标可以得到两个方程:$$ \\begin{cases} 3=\\frac{a}{2}+b \\\\ 1=\\frac{a}{4}+b \\end{cases} $$4.解方程组得到f=−4和f=5,所以选项 A 是正确的。
5.答案:D 解析:根据角度的定义可知,一直线与平面的交角为直角。
所以选项 D 是正确的。
6.答案:B 解析:根据等差数列的通项公式f f=f1+(f−1)f,其中f f为第f项,f1为第一项,f为公差。
根据题意可得f f=3+(f−1)2。
代入f=10可得f10= 3+(10−1)2=21,所以选项 B 是正确的。
二、填空题1.答案:$\\frac{1}{10}$ 解析:根据条件所给出的正方形的性质,可以得到正方形的边长为 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高等数学基础】形考作业1参考答案第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A 、2()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R 定义域不同,所以函数不相等;B 、()f x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x > 所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。
故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = 分析:奇函数,()()f x f x -=-,关于原点对称;偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称 设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+= 所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=分析:A 、()()()()22ln(1)ln 1y x x x y x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数 D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数 (2) ,y x αα=为常数——幂函数 (3) ()0,1x y a a a =>≠———指数函数 (4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数(6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对 对照比较选C⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→xx x分析:A 、已知()1lim 00n x n x →∞=>,2222222211lim lim lim 1222101x x x x x x x x x x x→∞→∞→∞====++++ B 、0limln(1)ln(10)0x x →+=+=, 初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x x x →∞→∞==, x →∞时,1x是无穷小量,sin x 是有界函数,无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim1x x x x x x→∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量.A.x x sin B. x1C. xx 1sin D. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量A 、0sin lim1x xx→=,重要极限B 、01lim x x→=∞,无穷大量C 、01lim sin 0x x x →=,无穷小量x ×有界函数1sin x仍为无穷小量D 、()0limln(2)=ln 0+2ln 2x x →+=故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=分析:连续的定义:极限存在且等于此点的函数值,则在此点连续即()()00lim x x f x f x →=连续的充分必要条件()()()()()00000lim lim lim x x x x x x f x f x f x f x f x →→+→-=⇔==故选A (二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x > .分析:求定义域一般遵循的原则(1) 偶次根号下的量0≥ (2) 分母的值不等于0(3) 对数符号下量(真值)为正(4) 反三角中反正弦、反余弦符号内的量,绝对值小于等于1 (5) 正切符号内的量不能取()0,1,22k k ππ±=L然后求满足上述条件的集合的交集,即为定义域)1ln(39)(2x x x x f ++--=要求2903010x x x ⎧-≥⎪-≠⎨⎪+>⎩得3331x x x x ≥≤-⎧⎪≠⎨⎪>⎩或-定义域为 {}|3x x > ⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x . 分析:法一,令1t x =+得1x t =-则()()22()11f t t t t t =-+-=-则()2f x x x =-法二,()()(1)(1)111f x x x x x +=+=+-+所以()()1f t t t =- ⒊=+∞→xx x)211(lim . 分析:重要极限1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭,等价式()10lim 1x x x e →+=推广()lim x af x →=∞则()()1lim(1)f x x ae f x →+= ()lim 0x af x →=则()()1lim(1)f x x af x e →+=⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .分析:分段函数在分段点0x 处连续()()()000lim lim x x x x f x f x f x →+→-⇔==()()()()00100lim lim 0lim lim 1x x xx x f x x k k kf x x e→+→+→-→-=+=+==+= 所以k e =⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x = .分析:间断点即定义域不存在的点或不连续的点初等函数在其定义域范围内都是连续的分段函数主要考虑分段点的连续性(利用连续的充分必要条件)()()()0000lim lim 1011lim lim sin 0x x x x f x x f x x →+→+→-→-=+=+===不等,所以0x =为其间断点⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 0x x →时的无穷小量 .分析:0lim(())lim ()lim 0x x x x x x f x A f x A A A →→→-=-=-=所以A x f -)(为0x x →时的无穷小量 (三)计算题⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x ,求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e == ⒉求函数21lgx y x-=的定义域. 解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或, 则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或 ⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: D AR O h EB C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R 直角三角形AOE 中,利用勾股定理得AE ==,则上底=2AE =故((22h S R h R =+=g ⒋求xxx 2sin 3sin lim0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯=⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111limlim lim 2sin(1)sin(1)sin(1)11x x x x x x x x x x x →-→-→---+---====-++++ ⒍求xxx 3tan lim0→.解:000tan3sin31sin311limlim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=g⒎求xx x sin 11lim 20-+→.解:20001lim sin x x x x →→→==⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x .解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+----⒑设函数讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性(1)所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续(2)所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞U。