第6章输入输出和中断技术

合集下载

微机原理与接口技术复习题(本)

微机原理与接口技术复习题(本)

微机原理与接口技术复习题(本)第1章概论1. 什么是程序和指令?2. 洪。

诺依曼计算机的核心原理是什么?3. 存储程序的概念是什么?4. CPU由那三部分组成?主机由那几部分组成?5. CPU对内存有那两种操作?6. 325.625D=- B= H234D= BCD7. 已知X=-1110011B,试求[X]原、[X]反、[X]补。

8. 已知X=-1110111B ,Y=+1011010B,求[X+Y]补。

9. 已知X=-1101001B ,Y=-1010110B 计算X-Y。

第2章微型计算机基础1. 微处理器内部由那三部分组成?2. 控制器有那些功能?3. 8086由那两部分组成?其功能是什么?4. 熟悉8088最小模式下的主要引脚功能。

5. 指令队列有什么功能?6. 8088的8个通用寄存器是什么?4个段寄存器是什么?两个控制寄存器是什么?7. 什么是逻辑地址和物理地址,有什么关系什么?8. 4个段寄存器中那一个段寄存器用户程序不用设置。

9. 什么是总线?10. 总线周期中,什么情况下要插入TW等待周期?11. 8088CPU中标志寄存器包含那些标志位什么?第3 章、第4章8088指令系统与汇编语言程序设计1. 什么是寻址方式? 8088CPU有那些寻址方式?2. 试说明MOV SI ,[BX ] 与LEA SI , [BX]两条指令的区别。

3. 设DS=212AH ,CS=0200H ,IP=1200H, BX=0500H , DATA=40H,[217A0H]=2300H, [217E0H]=0400H ,[217E2H]=9000H ,试确定下列指令的转移地址:(1) JMP BX(2) JMP WORD PTR [BX](3) JMP DWORD PTR [BX]4. 设SP=2300H ,AX=50ABH ,BX=1234H ,执行PUSH AX 后SP=?在执行PUSH BX ,POP AX后SP=?,AX=?,BX=?.5. 已知AL=7BH ,BL=38H ,试问执行ADD AL ,BL 后的6个状态标志是什么?6. 试判断下列程序执行后AX中的内容是什么。

Ch6 微型计算机原理与接口技术 答案

Ch6 微型计算机原理与接口技术  答案
能。 I/O端口的编址方式通常有两种:一是与内存单元统一编址,二是独立编址。8088/8086系统采用I/O端口独立编 址方式。 6.2 试比较4种基本输入输出方法的特点。(不要求) 解:在微型计算机系统中,主机与外设之间的数据传送有4种基本的输入输出方式: 无条件传送方式、查询工作方式、中断工作方式、直接存储器存取(DMA)方式。 它们各自具有以下特点: (1)无条件传送方式适合与简单的、慢速的、随时处于“准备好”接收或发送数据的外部设备,数据交换与指令的 执行同步,控制方式简单。 (2)查询工作方式针对并不随时“准备好”、且满足一定状态才能实现数据的输入/输出的简单外部设备,其控制方 式也比较简单,当CPU的效率比较低。 (3)中断工作方式是由外部设备作为主动的一方,在需要时向CPU提出工作请求,CPU在满足响应条件时响应该 请求并执行相应的中断处理程序。这种工作方式使CPU的效率提高,但控制方式相对较复杂。 (4)DMA方式适合于高速外设,是4种基本输入/输出方式中速度最高的一种。
解:16位地址信号通过译码电路与74LS244芯片连接。其连接如下图所示。
74LS244
...

IOR
A 15
A 13
A 12
A 11

A 10

A9

A8
线
A2
A 14
A7
A6
A5 A4 A3
A A
01
DB
≥1 ≥1
&
D0
I0
I1 D7
. . .
E1 I7
E2
2
www.khd课后a答w案.网com
断点的逆过程。即CPU会自动地将堆栈内保存的断点信息弹出到IP、CS和FLAG中,保证被中断 的程序从断点处继续往下执行。 6.11 CPU满足什么条件能够响应可屏蔽中断?

计算机原理 第六章输入输出系统

计算机原理 第六章输入输出系统

1
2
3
为保证总线所传输的信息的有效性,总线 信息应具有单一性:在同一时刻至多只能有一 个部件向总线发送信息,但可以有多个部件同 时接收总线信息。
1. 总线电路: 输出挂在总线上的部件需通过“总线电路” 向总线发送信息。
总线电路由三态输出器件(TSL器件)承担。 input TSL control output
1. ISA总线:用于IBM PC/XT 微机系统,(8086),一共62根信号线, 其中20根地址线,8根数据线,4个读写信号,6个中断请求线,3 路DMA请求,还包括时钟、电源线和地等,总线带宽 8.33 MB/s。
2.EISA总线 (80386), 数据线扩展到了32位,带宽达到了33.3MB/s。 3. PCI总线:(Peripheral component interconnection)(外围部 件互连) 总线频率为33 MHZ→66MHZ→133MHZ, 可以直接连接高速外部 设备。 同步时序总线,对地址信号和数据信号分时复用, 64根线,采用集中式的总线仲裁方式。 4.AGP总线(加速图形接口总线) AGP总线把主存和显存连接起来,不再走PCI总线。 5.USB总线(通用串行总线)主要用于连接低速输入输出设备。 带宽为1.5MB/s。
3. 控制总线CB(Control Bus) 控制总线用来传送各类控制/状态信号。
包括I/O读写命令,MEMR/W存储器读写命令,应答信号,总线请求与 总线使用信号,复位信号,时钟信号等。
4. 电源线
许多总线标准中都包含了电源线的定义,主要有+5V逻辑电源;GND逻 辑电源地;-5V辅助电源;±12V辅助电源。
2.计数器查询方式
在计数器查询方式中,总线上的任一设备申请使用总线时,通过 BR线发出总线请求。

微型计算机原理与接口技术(何宏)章 (6)

微型计算机原理与接口技术(何宏)章 (6)

第6章 输入/输出接口技术
2.端口编址方式 既然端口可被微处理器访问,如同存储单元,那么每个端口 也存在着编址的方式问题。在当今流行的各类微机中,对I/O接口 的端口编址有两种办法,即端口统一编址和端口独立编址。用 Motorola公司的微处理器,如6800、68000系列构成的微型机采用 前一种方法;而用Zilog和Intel 公司的微处理器,如Z-80、Z800、8086/8088、80286、80386、80486、Pentium等系列构成的 微型机都采用后一种方法。
期(WR为低电平时)呈现在数据总线上,这样短的时间用于向低速 外围设备传送是不可能的,因此,要在接口电路中设置数据锁存 器,将CPU输出的信息先放在锁存器中锁存,再由外设进行处理, 以解决双方的速度匹配问题。
第6章 输入/输出接口技术
2.缓冲隔离功能 CPU与外设的信息交换是通过CPU的数据总线完成的,系统不 允许外设长期占用数据总线,而仅允许被选中的设备在读周期(或 写周期)占用数据总线。通过接口电路,就可以实现外围设备信息 在CPU允许期内传递到CPU数据总线上,其他时间对CPU总线呈高阻 状态,这样,设备之间可互不干扰。一般在接口电路中设置输入 三态缓冲器满足上述要求。 3.转换功能 通过接口电路,可以实现模拟量与数字量之间的转换。若外 设电平幅度不符合CPU要求,则通过接口电路进行电平匹配,也可 以实现串行数据与并行数据的转换。
息、状态信息和控制信息3种类型。 1.数据信息 CPU和外围设备交换的基本信息就是数据,数据通常为8位或
16位。数据信息大致分为以下3种类型。 (1) 数字量。数字量是指由键盘、磁盘、扫描仪等输入设备
读入的信息,或者主机发送给打印机、磁盘、显示器、绘图仪等 输出设备的信息,它们是二进制形式的数据或是以ASCII码表示的 数据及字符,通常为8位。

操作系统题目第6章

操作系统题目第6章

第六章输入输出系统1、通过硬件和软件的功能扩充,把原来独占的设备改造成若干用户共享的设备,这种设备称为()。

A、存储设备B、系统设备C、虚拟设备D、用户设备2、CPU输出数据的速度远远高于打印机的打印速度,为解决这一矛盾,可采用()。

A、并行技术 B.通道技术C、缓冲技术D、虚存技术3、为了使多个进程能有效的同时处理I/O,最好使用()结构的缓冲技术。

A、缓冲池B、单缓冲区C、双缓冲区D、循环缓冲区4、磁盘属于①(),信息的存取是以②()单位进行的,磁盘的I/O控制主要采取③()方式,打印机的I/O控制主要采取③()方式。

①A、字符设备 B、独占设备 C、块设备D、虚存设备②A、位(bit) B、字节C、桢D、固定数据块③A、循环测试 B、程序中断 C、DMA D、SPOOLing5、下面关于设备属性的论述中正确的为()。

A、字符设备的一个基本特征是不可寻址的,即能指定输入时的源地址和输出时的目标地址B、共享设备必须是可寻址的和可随机访问的设备C、共享设备是指在同一时刻内,允许多个进程同时访问的设备D、在分配共享设备和独占设备时,都可能引起进程死锁6、下面关于虚拟设备的论述中,正确的是()。

A、虚拟设备是指允许用户使用比系统中具有的物理设备更多的设备B、虚拟设备是指把一个物理设备变成多个对应的逻辑设备C、虚拟设备是指允许用户以标准化方式来使用物理设备D、虚拟设备是指允许用户程序不必全部装入内存便可使用系统中的设备7、通道是一种特殊①(),具有②()能力,它用于实现③()之间的信息传输。

①A、I/O设备B、设备控制器C、处理机D、I/O控制器②A、执行I/O指令集 B、执行CPU指令集C、传输I/O指令D、运行I/O进程③A、内存与外设B、CPU与外设C、内存与外存D、CPU与外存8、为实现设备分配,应为每类设备设置一张①(),在系统中配置一张①(),为实现设备的独立性,系统中应设置一张②()。

①A、设备控制表B、控制器控制表C、系统设备表D、设备分配表②A、设备开关表B、I/O请求表C、系统设备表D、逻辑设备表9、下面不适合于磁盘调度算法的是()。

第六章_基本输入输出接口技术

第六章_基本输入输出接口技术

20
6.3 CPU与外设之间的数据传送方式
[例] 设状态端口地址为086H,数据端口地址为084H,外 设忙碌D7=1,请用查询方式写出CPU从存储器缓冲区 Buffer送出1KB的数据给外设的程序段。 LEA SI , Buffer ;取Buffer的有效地址送SI MOV CX , 1000 ;循环次数 W1: MOV DX, 086H ;状态端口地址送DX W2: IN AL , DX ;从状态端口读入状态信息 AND AL,80H ; BUSY=0? JNZ W2 ; BUSY=1,返回继续查询 MOV AL,[SI] ; BUSY=0,取数据 MOV DX, 084H ;数据端口地址送DX OUT DX,AL ;数据输出到数据端口 INC SI ;SI指向下一个字节数据 LOOP W1 ;CX-1送CX≠0,循环 HLT ;CX=0,传送结束
FFFFF
内存 空间 I/O 空间
10
§6-2 I/O端口的编址与访问
二、 I/O端口地址的译码方法:
I/O端口地址译码的一般原则是:把CPU用于I/O端口寻址 的地址线分为高位地址线和低位地址线两部分:
将低位地址线直接连到I/O接口芯片的相应地址引脚, 实现片内寻址,即选中片内的端口。 将高位地址线与CPU的控制信号组合,经地址译码电 路产生I/O接口芯片的片选信号。 常见的译码器: 2/4线译码器74LS139 3/8线译码器74LS138
返回断点

6.3 CPU与外设之间的数据传送方式
关于中断的几点说明:
采用中断的数据传送方式时,外设处于主动申请地 位,CPU配合进行数据传送;CPU不必反复去查询 外设的状态,而是可以与外设“并行工作”,因此 提高了CPU的工作效率,并且更具有实时性。

汇编语言第六章

汇编语言第六章

三.中断向量表
3. 设置或取出中断向量指令 (1) 设置中断向量指令 功能:把由AL指定的中断类型的中断向量DS:DX放入中
断向量表中。
(AH)= 25H
(AL)= 中断类型号
DS:DX = 中断向量 INT 21H
三.中断向量表
(2) 取出中断向量指令
功能:把AL中指定的中断类型的中断向量从中断
一、 WIN32编程基础
(2) 循环控制伪指令
格式:.WHILE 条件表达式 循环体 .ENDW 格式:.REPEAT 循环体 .UNTIL 条件表达式 格式:.CONTINUE 功能:终止本次循环, 开始下一次循环 格式:.BREAK 功能:退出当前循环
功能:实现循环结构
一、 WIN32编程基础
内中断的处理特点: ①中断类型号一般在指令中; ② 不受中断允许标志位IF的影响。
二、 中断源
2. 外中断 由外设控制器、协处理器等CPU以外的事件引起的中断, 称为外中断。 外中断的处理特点: ① 中断类型号由8259A提供,或由自制电路来提供;
② 受中断允许标志位IF的影响(IF=1,响应中断)。
个字节。
三.中断向量表
如:INT 4AH
中断向量地址 = 4AH*4 = 128H
DEBUG执行后, 用D命令查看: ―D0:0↙ … 执行INT 4AH时: IP=1805H CS=F000H IP F000: 1805 中断处理
0:128H
0:129H
05 18
0:12AH
0:12BH
00
F0 …
外设
二、 外设与主机传送的接口与信息
接口的组成:设备状态寄存器、设备控制寄存 器、数据寄存器。 I/O端口的地址空间:允许设置64K个8位端口 或32K个16位端口。 如:40H~43H时钟/定时器,60H~63H为 8255通讯芯片的接口。

第6章 输入输出及终端系统

第6章 输入输出及终端系统
外设状态端口地址为03FBH,第5位(bit5)为状态 标志(=1忙,=0准备好) 外设数据端口地址为03F8H,写入数据会使状态 标志置1 ;外设把数据读走后又把它置0。 试画出其电路图,并将DATA下100B数据输出。
51
状态端口地址:0000 0011 1111 1011 数据端口地址:0000 0011 1111 1000

外设应提供设备状态信息 接口应具备状态端口
48
查询工作方式流程图
开始
读入并测试外设状态
N
READY?
Y
进行一次 数据交换
N
每满足一次 条件只能进 行一次数据 传送
传送完?
Y
结束
防止死循环 超时?
N Y
读入并测试外设状态
N
超时错
READY?
Y
复位计时器
N
与外设进 行数据交换 传送完?
Y
结束
查询工作方式例
N 进行一次传送
修改地址指针
N
传送完否?
Y
结 束
查询工作方式

优点:

软硬件比较简单 CPU效率低,数据 传送的实时性差, 速度较慢
1号外设 准备就绪? N 2号外设 准备就绪? N 3号外设 准备就绪? N
Y
对1号外设服务

缺点:

Y
对2号外设服务
Y
对3号外设服务

n号外设 准备就绪? N
Y
对n号外设服务
按传输信息的类型分类:


模拟接口
并行接口 串行接口
33

按传输信息的方式分类:

接口特点

输入接口:

大学_《微型计算机原理及应用》(吴宁著)课后习题答案下载

大学_《微型计算机原理及应用》(吴宁著)课后习题答案下载

《微型计算机原理及应用》(吴宁著)课后习题答案下载《微型计算机原理及应用》(吴宁著)内容提要目录第1章计算机基础1.1 数据、信息、媒体和多媒体1.2 计算机中数值数据信息的表示1.2.1 机器数和真值1.2.2 数的表示方法——原码、反码和补码1.2.3 补码的运算1.2.4 定点数与浮点数1.2.5 BCD码及其十进制调整1.3 计算机中非数值数据的信息表示1.3.1 西文信息的表示1.3.2 中文信息的表示1.3.3 计算机中图、声、像信息的表示1.4 微型计算机基本工作原理1.4.1 微型计算机硬件系统组成1.4.2 微型计算机软件系统1.4.3 微型计算机中指令执行的基本过程 1.5 评估计算机性能的主要技术指标1.5.1 CPU字长1.5.2 内存储器与高速缓存1.5.3 CPU指令执行时间1.5.4 系统总线的传输速率1.5.5 iP指数1.5.6 优化的内部结构1.5.7 I/O设备配备情况1.5.8 软件配备情况习题1第2章 80x86/Pentium微处理器2.1 80x86/Pentium微处理器的内部结构 2.1.1 8086/8088微处理器的基本结构2.1.2 80386CPU内部结构2.1.3 80x87数学协处理器2.1.4 Pentium CPU内部结构2.2 微处理器的主要引脚及功能2.2.1 8086/8088 CPU引脚功能2.2.2 80386 CPU引脚功能2.2.3 Pentium CPU引脚功能2.3 系统总线与典型时序2.3.1 CPU系统总线及其操作2.3.2 基本总线操作时序2.3.3 特殊总线操作时序2.4 典型CPU应用系统2.4.1 8086/8088支持芯片2.4.2 8086/8088单CPU(最小模式)系统 2.4.3 8086/8088多CPU(最大模式)系统 2.5 CPU的工作模式2.5.1 实地址模式2.5.2 保护模式2.5.3 虚拟8086模式2.5.4 系统管理模式2.6 指令流水线与高速缓存2.6.1 指令流水线和动态分支预测2.6.2 片内高速缓存2.7 64位CPU与多核微处理器习题2第3章 80x86/Pentium指令系统3.1 80x86/Pentium指令格式3.2 80x86/Pentium寻址方式3.2.1 寻址方式与有效地址EA的概念 3.2.2 各种寻址方式3.2.3 存储器寻址时的段约定3.3 8086/8088 CPU指令系统3.3.1 数据传送类指令3.3.2 算术运算类指令3.3.3 逻辑运算与移位指令3.3.4 串操作指令3.3.5 控制转移类指令3.3.6 处理器控制类指令3.4 80x86/Pentium CPU指令系统3.4.1 80286 CPU的增强与增加指令 3.4.2 80386 CPU的增强与增加指令 3.4.3 80486 CPU增加的指令3.4.4 Pentium系列CPU增加的指令 3.5 80x87浮点运算指令3.5.1 80x87的数据类型与格式3.5.2 浮点寄存器3.5.3 80x87指令简介习题3第4章汇编语言程序设计4.1 程序设计语言概述4.2 汇编语言的程序结构与语句格式 4.2.1 汇编语言源程序的框架结构4.2.2 汇编语言的语句4.3 汇编语言的伪指令4.3.1 基本伪指令语句4.3.2 80x86/Pentium CPU扩展伪指令 4.4 汇编语言程序设计方法4.4.1 程序设计的基本过程4.4.2 顺序结构程序设计4.4.3 分支结构程序设计4.4.4 循环结构程序设计4.4.5 子程序设计与调用技术4.5 模块化程序设计技术4.5.1 模块化程序设计的特点与规范4.5.2 程序中模块间的关系4.5.3 模块化程序设计举例4.6 综合应用程序设计举例4.6.1 16位实模式程序设计4.6.2 基于32位指令的实模式程序设计 4.6.3 基于多媒体指令的实模式程序设计 4.6.4 保护模式程序设计4.6.5 浮点指令程序设计4.7 汇编语言与C/C 语言混合编程4.7.1 内嵌模块方法4.7.2 多模块混合编程习题4第5章半导体存储器5.1 概述5.1.1 半导体存储器的分类5.1.2 存储原理与地址译码5.1.3 主要性能指标5.2 随机存取存储器(RAM)5.2.1 静态RAM(SRAM)5.2.2 动态RAM(DRAM)5.2.3 随机存取存储器RAM的应用5.3 只读存储器(ROM)5.3.1 掩膜ROM和PROM5.3.2 EPROM(可擦除的PROM)5.4 存储器连接与扩充应用5.4.1 存储器芯片选择5.4.2 存储器容量扩充5.4.3 RAM存储模块5.5 CPU与存储器的典型连接5.5.1 8086/8088 CPU的'典型存储器连接5.5.2 80386/Pentium CPU的典型存储器连接 5.6 微机系统的内存结构5.6.1 分级存储结构5.6.2 高速缓存Cache5.6.3 虚拟存储器与段页结构习题5第6章输入/输出和中断6.1 输入/输出及接口6.1.1 I/O信息的组成6.1.2 I/O接口概述6.1.3 I/O端口的编址6.1.4 简单的I/O接口6.2 输入/输出的传送方式6.2.1 程序控制的输入/输出6.2.2 中断控制的输入/输出6.2.3 直接数据通道传送6.3 中断技术6.3.1 中断的基本概念6.3.2 中断优先权6.4 80x86/Pentium中断系统6.4.1 中断结构6.4.2 中断向量表6.4.2 中断响应过程6.4.3 80386/80486/Pentium CPU中断系统6.5 8259A可编程中断控制器6.5.1 8259A芯片的内部结构与引脚6.5.2 8259A芯片的工作过程及工作方式 6.5.3 8259A命令字6.5.4 8259A芯片应用举例6.6 82380可编程中断控制器6.6.1 控制器功能概述6.6.2 控制器主要接口信号6.7 中断程序设计6.7.1 设计方法6.7.2 中断程序设计举例习题6第7章微型机接口技术7.1 概述7.2 可编程定时/计数器7.2.1 概述7.2.2 可编程定时/计数器82537.2.3 可编程定时/计数器82547.3 可编程并行接口7.3.1 可编程并行接口芯片8255A7.3.2 并行打印机接口应用7.3.3 键盘和显示器接口7.4 串行接口与串行通信7.4.1 串行通信的基本概念7.4.3 可编程串行通信接口8251A7.4.3 可编程异步通信接口INS82507.4.4 通用串行总线USB7.4.5 I2C与SPI串行总线7.5 DMA控制器接口7.5.1 8237A芯片的基本功能和引脚特性 7.5.2 8237A芯片内部寄存器与编程7.5.3 8237A应用与编程7.6 模拟量输入/输出接口7.6.1 概述7.6.2 并行和串行D/A转换器7.6.3 并行和串行A/D转换器习题7第8章微型计算机系统的发展8.1.1 IBM PC/AT微机系统8.1.2 80386、80486微机系统8.1.3 Pentium及以上微机系统8.2 系统外部总线8.2.1 ISA总线8.2.2 PCI局部总线8.2.3 AGP总线8.2.4 PCI Express总线8.3 网络接口与网络协议8.3.1 网络基本知识8.3.2 计算机网络层次结构8.3.3 网络适配器8.3.4 802.3协议8.4 80x86的多任务保护8.4.1 保护机制与保护检查8.4.2 任务管理的概念8.4.3 控制转移8.4.4 虚拟8086模式与保护模式之间的切换 8.4.5 多任务切换程序设计举例习题8参考文献《微型计算机原理及应用》(吴宁著)目录本书是普通高等教育“十一五”国家级规划教材和国家精品课程建设成果,以教育部高等学校非计算机专业计算机基础课程“基本要求V4.0”精神为指导,力求做到“基础性、系统性、实用性和先进性”的统一。

第六章 中断技术-2

第六章 中断技术-2
CAS2 ~ CAS0
IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7
INTA DB INT

SP/EN
CAS2 ~CAS0
IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7
6-6 可编程中断控制器8259A
四、 8259A的工作流程 CPU

DB


8259A
INTA 中断类 IRR
中断被响应,则级别变最低
IR4 IR5 IR6 (级别最高) IR7 IR0 IR1 IR2 IR3 (级别最低)
4)优先级特殊循环方式: 编程指定初始队列最低优先级,其它依次排列
6-6 可编程中断控制器8259A
2、8259A中断结束方式
INTA
INT IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7
6-6 可编程中断控制器8259A
一、 功能 1、单片8259A可对8个中断源控制,9片级联可扩展到64级;
2、能向CPU提供中断类型码; 3、可通过编程选择多种工作方式
IR0
8086 CPU
中断 类型码
INTR INTA
8259A
IR1
中断 控制 电路
IR7
6-6 可编程中断控制器8259A
二、内部结构
类型1入口
INT 1
MOV AX,0000H MOV DS,AX MOV BX,OFFSET INTPROC MOV [0120H ] ,BX MOV BX,SEG INTPROC MOV [0122H],BX 或用DOS功能
0000: 0120H 0121H 0122H 0123H
50 20 00 10
2、CAS2~CAS0----级联信号线 用作主片时,为输出线;用作从片时,为输入线;

微机原理第六章 输入输出和中断技术 part 2 (2)

微机原理第六章 输入输出和中断技术 part 2 (2)
回复断点和硬件现场
中断处理的一般过程
6.4.3 8088/8086中断系统
8086/8088为每个中断源分配 一个中断类型码(中断向量码),其取值范围为 0~255,实际可处理56种中断。其中包括软件中断,系统占用的中断,已经开放 给用户使用的中断。所有中断又可分为两大类:内部中断和外部中断。
内部中断
6.4.2 中断处理的一般过程
1. 中断请求 2. 中断源识别及中断判优 3. 中断响应 4. 中断处理(服务) 5. 中断返回
1. 中断请求 ➢ INTR中断请求信号应保持到中断被处理为止 ➢ CPU响应中断后,中断请求信号应及时撤销
2. 中断源识别 ➢ 软件判优:由软件来安排中断源的优先级别。顺序查询中断请求,先查询的
➢ (4)能向存储器或外设发出读/写命令。 ➢ (5)能决定传送的字节数,并判断DMA传送是否结束。 ➢ (6)在DMA过程结束后,能向CPU发出DMA结束信号,将总线控制权交
还给CPU。
2. DMA控制器的工作过程 ➢ (1)当外设准备好,可以进行DMA传送时,外设向DMA控制器发出
“DMA传送请求”信号DRQ ➢ (2)DMA控制器收到请求后,向CPU发出“总线请求”信号HOLD ➢ (3)CPU在完成当前总线周期后会立即发出HLDA信号,对HOLD信号进
➢ (2)单步中断——1型中断,标志寄存器中有一位陷阱标志TF。 ➢ (3)断点中断——3型中断,专用于设置断点的指令INT 3,用于程序中设
置断点来调试程序。
➢ (4)溢出中断——4型中断,在算数指令的执行过程发出溢出 ➢ (5)用户自定义的软件中断——n型中断,执行中断指令INT n引起内部中
断。
需要时,CPU回到原来被中断的地方继续执行自己的程序。 优点: ➢ CPU效率高,实时性好 缺点 ➢ 程序编制相对较为复杂

微机原理第6章_3学分

微机原理第6章_3学分

第六章输入/输出方式与接口芯片第一节输入/输出方式第二节中断第三节可编程定时/计数器8254及其应用第四节可编程并行I/O接口芯片8255A及其应用第五节可编程中断控制器8259及其应用第一节输入/输出方式●教学目标介绍I/O 接口的基本概念介绍I/O端口的编址方式介绍CPU与外设间的数据传送关系●学习要求掌握I/O接口的基本功能,了解接口的一般结构熟悉I/O端口的编址方式,了解IN/OUT指令的执行过程掌握微机与外设的各种传送方式,了解DMA传送过程一、I/O接口1)I/O接口的基本概念I/O接口是连接CPU与外设的逻辑控制部件,它主要在CPU与外设间起着传输状态与命令信息,实现数据的缓冲、数据格式转换等作用。

它的主要功能有:选择外设对外设进行控制和监视进行数据寄存和缓冲进行数据格式转换进行信号电平转换I/O接口的分类并行I/O接口和串行I/O接口可编程接口和不可编程接口专用接口和通用接口2)I/O接口的基本结构主要包含有数据端口、状态端口和控制端口数据端口用于存放数据信息,包括数据输入寄存器和数据输出寄存器,主要作用是协调CPU和外设之间的数据传输速度。

控制端口用于存放控制信息,控制信息是CPU通过接口传送给外设的,其主要作用是控制外设工作,如控制输入输出装置的启/停等。

状态端口用于存放状态信息,即反映外设当前工作的状态信息,CPU可通过读取这些信息,了解外设当前的工作情况。

3)I/O端口的寻址方式在一个微机系统中既有存储单元地址又有I/O端口地址,根据两者地址的不同安排可分为以下两种寻址方式。

存储器统一编址在这种方式中,把I/O端口作为存储器的一个单元来对待,即每个端口占用一个存储单元地址。

此时,对I/O端口操作可以使用全部的存储器指令,而不必另设专门的I/O指令。

由于该方式是将I/O地址映射到了存储器地址空间,所以也称为存储器映像方式。

I/O端口独立编址在这种方式下,I/O端口与存储器各自独立编址,这样存储器地址和I/O端口地址可以重叠。

第06章-IO系统设计ppt课件(全)

第06章-IO系统设计ppt课件(全)
◦ 数据传输率等于所连接外设中速度最高的外设速率
A1 A2 …
B1 B2 …
通道 A1 A2 … B1 B2 … C1 C2 …
C1 C2 …
图6.16 选择通道传送方式示意图
(3)数组多路通道
◦ 综合前两种通道的优点,可连接多台高速设备,允许几 台设备并行工作,以成组交叉方式传送。每个外设都有 数据缓冲区。
硬件中断(硬中断):是一个异步信号,表明需要注意、 或需要改变执行一个同步事件。
软件中断(软中断):是利用硬件中断的概念,用软件方 式进行模拟,实现宏观上的异步执行效果。
外部中断:一般是指由计算机外设发出的中断请求,如: 键盘中断、打印机中断、定时器中断等。外部中断是可以 屏蔽的中断。
内部中断:是指因硬件出错(如突然掉电、奇偶校验错等) 或运算出错(除数为零、运算溢出、单步中断等)所引起 的中断。内部中断是不可屏蔽的中断。
主存

12H JMP 200 向量地址 13H JMP 300
14H JMP 400
入口地址 200 打印机服务程序
入口地址 300 显示器服务程序
… ……
图6.10 通过向量地址寻找入口地址
图6.12 链式排队线路和设备编码器
直接存储器访问方式(Direct Memory Access,DMA), 是一种直接依靠硬件在主存与I/O设备间进行数据传送,且 在 数 据 传 送 过 程 中 不 需 CPU 干 预 的 I/O 数 据 传 送 控 制 方 式 。 CPU与接口的数据传送的具体过程由硬件(DMA Controller, DMAC,DMA控制器)完成,传送速度比通过CPU快。 (1)CPU暂停方式 (2)周期挪用方式(周期窃取方式) (3)交替访问内存方式

微机原理与单片机接口技术(第2版)李精华 第6章微处理器中断及定时计数器应用设计

微机原理与单片机接口技术(第2版)李精华 第6章微处理器中断及定时计数器应用设计
低级中断,一个正在执行的高级中断是不能被低级中断而中断的。 (4)若多个同级中断请求同时发出,则单片机按照一定的原则决定执行的顺序。51系列单片机对中
断的查询顺序是“外部中断0→定时/计数器T0→外部中断1→定时/计数器T1→串行口中断”。 (5)若程序正在执行读/写IE和IP指令,则CPU执行该指令结束后,需要再执行一条其他指令才可
处理中断源的程序称为中断处理程序。 CPU执行有关的中断处理程序称为中断处理 。而返回断点的过程称为中断返回,中断响应 和处理过程如图6-1所示。
图6-1 中断响应和处理过程
4
2.中断的处理过程
①接收中断请求。 ②查看本级中断屏蔽位,若该位为1,则本级中断源参与优先级排队。 ③中断优先级选择。 ④处理机执行完一条指令后或者这条指令已无法执行完,则立即中止现 行程序。接着,中断部件根据中断级去指定相应的主存单元,并把被中 断的指令地址和处理机当前的主要状态信息存放在此单元中。 ⑤中断部件根据中断级又指定另外的主存单元,从这些单元中取出处理 机新的状态信息和该级中断控制程序的起始地址。 ⑥执行中断控制程序和相应的中断服务程序。 ⑦执行完中断服务程序后,利用专用指令使处理机返回被中断的程序或 转向其他程序。
7.中断屏蔽
对各中断级设置相应的屏蔽位。只有屏蔽位为1时,该中断级才能参加 中断优先级排队。中断屏蔽位可由专用指令建立,因而可以灵活地调整中断 优先级。有些机器针对某些中断源也设置屏蔽位,只有当屏蔽位为1时,相 应的中断源才起作用。。
6.2 单片机中断系统概述
51系列不同型号单片机的中断源的数量是不同的(5~11个) ,本节以8051单片机的中断系统为例分析51系列单片机的中断系 统,其它各种51单片机的中断系统与之基本相同,8051单片机的 中断系统结构框图如图6-2所示。8051单片机有5个中断源,2个中 断优先级,可以实现二级中断服务程序嵌套,每个中断源可以编 程为高优先级或低优先级中断,允许或禁止向CPU请求中断。与中 断系统有关的特殊功能寄存器有中断允许控制寄存器IE、中断优 先级控制寄存器IP和中断源寄存器TCON、SCON。

《计算机接口技术》(函授)部分习题参考解答

《计算机接口技术》(函授)部分习题参考解答

《计算机接口技术》部分习题参考解答第4章 PC机的总线结构和时序4-1 答:总线周期是指CPU从存储器端口或I/O端口存取一个字节所需的时间。

8088/8086基本总线周期由4个时钟周期组成。

IBM PC/XT/A T中,CPU时钟频率是4.77MHz,时钟周期是210ns。

XT机的一个基本总线周期是4个时钟周期,一个输入或输出周期是5个时钟周期。

4-2 答:在T1状态下,8088/8086CPU数据/地址线上是地址信息。

用ALE信号可将地址信息锁存起来。

数据信息在T2开始以后送出。

XT机的AD7~AD0在ALE下降沿控制锁存后送系统地址总线A7~A0。

A19/S6~A16/S3经ALE下降沿控制锁存后送系统地址总线A15~A8;CPU的AD7~AD0在8288发出的DT/!R(数据收发控制信号)和DEN(数据允许)信号控制下,经双向总线驱动器连接到系统数据总线D7~D0,这样,实现了地址和数据及状态信号的分离,使地址信号和数据信号同时分别出现在系统地址总线和数据总线上。

(注意:这里用符号“!”表示逻辑非,对于信号则表示低电平有效,下同。

)4-3 答:PC/XT机中8088的MN/!MX引脚接地,因此工作在最大模式。

8088最大模式系统由8088CPU、8284时钟信号发生器和8288总线控制器组成。

总线控制器发出一些存储器和输出控制信号,接入系统总线后的名称为!IOW、!IOR、!MEMW、!MEMR、ALE信号,此外它还发出中断响应信号!INTA、DT/!R和DEN 等信号。

这些信号是由CPU连接8288的S2、S1、S0三线的电平决定的。

4-4 答:8284时钟发生器的作用是将晶振信号分频,向8088及计算机系统提供符号定时要求的各种时钟信号,并产生准备好和系统复位信号。

CLK信号:4.77MHz,提供XT机时钟频率。

PCLK信号:2.38MHz,分频后供8253使用。

OSC信号:14.31818MHz,供显示器使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20H, AL AL, 08H
22H, AL AL, 08H
22H, AL AL, 11H
22H, AL
2011年12月23日星期五 年 月 日星期五
武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件
6
(2) 从片初始化程序 MOV OUT MOV OUT MOV OUT MOV OUT AL, 19H ;00011001B,写入 写入ICW1 写入 ;01110000B,写入 写入ICW2 写入 ;00000011B,写入 写入ICW3, 写入 , ;本从片的识别码为03H 本从片的识别码为 ;00000001B,写入 写入ICW4 写入
注意: 注意:初始化过程中可能没有ICW3或ICW4, 应根据具体情况确定。
2011年12月23日星期五 年 月 日星期五
武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件
2
4. 8259A编程举例 编程举例
例1 设8259A应用于8088系统,中断类型号为08H~ 0FH,它的偶地址为20H,奇地址为21H,设置单片8259A 按如下方式工作:电平触发,普通全嵌套,普通EOI,非 缓冲工作方式,试编写其初始化程序。 分析: 根据8259A应用于8088系统,单片工作,电 分析 : 平 触 发 , 可 得 : ICW1=00011011B; 根 据 中 断 类 型 号 为 08H~0FH,可得:ICW2=00001000B;根据普通全嵌套,普 通EOI,非缓冲工作方式,可得:ICW4=00000001B 。写 入置此三字,即可完成初始化,程序如下:
8259A 对ICW、OCW的识别 、 的识别
(重点) 重点)
8259A 只占两个端口,但ICW 有4个, OCW有3个。 1. A0 = 0 (偶地址端口 写入的有: 偶地址端口) 写入的有: 偶地址端口 ICW1, (D4=1) OCW2,
D3 = 0 D4 = 0
OCW3
0A0H, AL AL, 70H
0A2H, AL AL, 03H
0A2H, AL AL, 01H
0A2H, AL
2011年12月23日星期五 年 月 日星期五
武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件
7
END
2011年12月23日星期五 年 月 日星期五 武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件 8
2011年12月23日星期五 年 月 日星期五
武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件
Байду номын сангаас
3
MOV OUT MOV OUT MOV OUT
AL,
1BH
;00011011B,写入 写入ICW1 写入 ;00001000B,写入 写入ICW2 写入 ;00000001B,写入 写入ICW4 写入
20H, AL AL, 08H
21H, AL AL, 01H
21H, AL
2011年12月23日星期五 年 月 日星期五
武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件
4
例 2 设8259A应用于8086系统,采用主从两片级连工 作,主片偶地址为20H,奇地址为22H,(这里的偶地址和 奇地址是相对于8259A的片内地址而言),中断类型号为 08H~0FH,从片偶地址为0A0H,奇地址为0A2H,中断类 型号为70H~77H,主片IR3和从片级连,要实现从片级全嵌 套工作,试编写其初始化程序。 分析: 分析 : 根据8259A应用于8086系统,主从式级连工作, 主片和从片都必须有初始化程序,要实现从片级全嵌套工 作,必须主片采用特殊全嵌套,从片采用普通全嵌套,如 其他要求与上例相同,主片和从片初始化程序如下:
D3 = 1 D4 = 0
用标志位识别
2011年12月23日星期五 年 月 日星期五
武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件
1
2. A0 = 1 (奇地址端口 写入的有: 奇地址端口) 写入的有: 奇地址端口 ICW2 → ICW3 → ICW4 → OCW1 按写入顺序识别
2011年12月23日星期五 年 月 日星期五 武汉理工大学机电学院《机械系统计算机接口技术》 武汉理工大学机电学院《机械系统计算机接口技术》教学课件 5
(1) 主片初始化程序 MOV OUT MOV OUT MOV OUT MOV OUT AL, 19H ;00011001B,写入 写入ICW1 写入 ;00001000B,写入 写入ICW2 写入 ;00001000B,写入 写入ICW3, 写入 , ;在IR3引脚上接有从片 ;00010001B,写入 写入ICW4 写入
相关文档
最新文档