《核工程概论》第3章 核反应堆结构和材料

合集下载

第三章 核反应堆结构与材料 - 复件.

第三章 核反应堆结构与材料 - 复件.
第三章 核反应堆结构与材料
控制棒驱动机构
3.1 压水堆结构
3.1.1 概述
堆芯支撑 结构
压力容器
堆芯
压水堆的纵剖面
2010.07
2
3.1 压水堆结构
堆芯和压力容器的断面
2010.07
3
3.1 压水堆结构
3.1.2 反应堆压力容器
一座100万千瓦压水堆核电 站的压力壳,高12~13 m,直 径5~6 m,壁厚250 mm,总重 量达400~500 t。 一座110万千瓦沸水堆核电 站的压力壳,高约22 m,直径 6.4 m,壁厚约160 mm。 压力容器的制造材料要求 强度高、韧性好、耐高温腐蚀、 耐辐照,并且导热性能好,易 于加工和焊接。
2010.07
27
3.2 核反应堆材料
3.2.2 反应堆结构材料
反应堆内的结构材料应具有一定的机械强度,热导率高、热 膨胀率低,并且辐照稳定性好。 反应堆内的结构材料会受到多种粒子或射线的辐照,可能引 起材料性能的变化,因此具有良好的抗辐照性能对于反应堆内 的结构材料至关重要。
快中子辐照是反应堆结构材料产生辐照损伤的主要因素。
堆内下部构件
2010.07
8
3.1 压水堆结构
堆内上部构件
1.堆芯上栅格板 上栅格板用于固定堆芯组 件,带有和下栅板一样的流 水孔。
2.导向管支撑板 支撑板通过压力容器顶盖 和压紧弹簧来固定。它对堆 芯吊篮起到固定作用。
堆内上部构件
2010.07
9
3.1 压水堆结构
3.控制棒导向管 导向管内装有导向活塞, 当控制棒组件在上下抽插时 导向筒起导向作用。 4.支撑柱 支撑柱是支撑板和上栅格 板之间的连接件。它的作用 是使两板保持一定距离,并 传递机械载荷。

(完整版)反应堆本体结构

(完整版)反应堆本体结构
12
13
由外向内倒料方式的优缺点
优点:
可以展平堆芯功率,获得较高的燃耗深度,提高核燃料的 利用率。从第二循环开始,新装入的燃料组件的富集度为 3.25%,高于首次装料。 因为经过一段时间的运行,堆芯内积累了会吸收中子的裂 变产物,需要增加后备正反应性。
缺点:
中子注量率的泄漏率较高,导致压力容器中子注量率大, 中子利用率较低低,导致换料周期较短,燃料循环成本较 高。
偿因燃耗、氙、钐毒素、冷却剂温度改变等引起的比 较缓慢的反应性变化。 (即调节慢反应)
注:在新的堆芯中,还用可燃毒物棒补偿堆芯寿命初期的 剩余反应性。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。 组件内的燃料元件棒按正方形排列。常用的有14 14, 15 15,16 16和17 17排列等几种栅格型式。
第三讲 反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
➢ 反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特 殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
➢ 反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
➢ 堆芯结构由核燃料组件、控制棒组件、可燃毒物
➢ 燃料元件是产生核裂变
并释放热量的部件。
➢ 它是由燃料芯块、燃料包
壳管、压紧弹簧和上、下端 塞组成。燃料芯块在包壳内 叠装到所需要的高度,然后 将一个压紧弹簧和三氧化铝 隔热块放在芯块上部,用端 塞压紧,再把端塞焊到包壳 端部。
23
(a)燃料芯块
➢芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯

核反应堆工程概论第3章

核反应堆工程概论第3章
18
2.2、单群扩散连续性方程
单群扩散连续性方程:
S-∑aΦ - ∙J = 0 引入斐克定律:
D Φ-∑aΦ + S = 0
19
2.2、单群扩散连续性方程
单群扩散连续性方程: 反应堆功率运行中,中子源最初来自于裂变, 所以S与Φ有一定的比例关系(如S可以表示成 S= ν∑fΦ),扩散方程最终可写成如下的简单形式: ΔΦ + B2Φ = 0 B2称为材料曲率。求解通量随空间的变化归 结为求解上述二阶偏微分扩散方程。 上述扩散方程(扩散近似)成立的条件:散射各 向同性,介质均匀,吸收较弱,距离边界较远。
27
3.1、反应堆临界的概念
反应堆最重要的就是要能够维持连 续稳定的运行,即维持连续稳定的链式 核裂变反应。这种状态称为临界状态。 若裂变反应率自发地不断增加,称之为 超临界,反之为次临界。 倍增因子K:反应堆内中子产生率与消 失率的比值,或:代中子比值。

28
倍增因子k
新生一代中子数 k 直属一代中子数 系统内中子的产生率 k 系统内中子的总消失(吸收+泄漏)率 系统内中子的产生率 k 系统内中子的吸收率 系统内中子的吸收率 PL 系统内中子的吸收率+系统内中子的泄漏率 k k PL
25
2.4、扩散理论小结

反应堆物理分析的首要任务是得到中子 通量。一般情况下,中子通量是中子能 量、空间位置、时间等的函数(更细致 的考虑要包含空间角度,即中子输运理 论)。我们的处理办法是分离变量和离 散化,根据实际需要求得中子通量,从 而知道各种核反应的反应率。
26
三、反应堆临界理论
3.1、反应堆临界的概念 3.2、四因子、六因子公式 3.3、扩散方程确定的临界条件
17
2.1、中子流密度与斐克定律

反应堆本体结构

反应堆本体结构
第三讲 反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特
殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
堆芯结构由核燃料组件、控制棒组件、可燃毒物
运行和事故工况下快速控制 反应性的手段。下面看一下 17 17型燃料组件的棒束型 控制棒组件的结构图。
大约1/3的燃料组件的控制棒
导向管是为控制棒组件占据的。
41
2、控制棒组件
控制棒:由星型支架和吸收剂棒组成。
以连接饼为中心呈辐射状有16根连接
翼片,每个翼片上装有一个或两个指 状物,每个指状物带有一根吸收棒。 通过螺纹固定,然后用销钉紧固,这 些吸收剂棒可插入对应燃料组件24根
23
(a)燃料芯块
芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯
块)冷压成形再烧结成所需密度的圆柱体,直径 为8-9毫米,直径与高度之比为1:1.5。
(大亚湾采用直径8.192mm,高度13.5mm)
每一片芯块的两面呈浅碟形,以减小燃料芯块
因热膨胀和辐照肿胀引起的变形。
一根燃料棒内装有271个燃料芯块。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。
组件内的燃料元件棒按正方形排列。常用的有14 14,
15 15,16 16和17 17排列等几种栅格型式。
优点:减少了堆芯内的结构材料; 冷却剂可充分交混,改善了燃料棒表面的冷却。
下面看一下17 17型燃料组件的总体图。

核反应堆的工作原理和构造

核反应堆的工作原理和构造

核反应堆的工作原理和构造核反应堆是一种利用核裂变或核聚变反应产生能量的装置。

它是核能利用的重要设施,广泛应用于核电站、核动力舰艇和核研究等领域。

本文将介绍核反应堆的工作原理和构造。

一、核反应堆的工作原理核反应堆的工作原理基于核裂变或核聚变反应。

核裂变是指重核(如铀、钚等)被中子轰击后分裂成两个或多个轻核的过程,同时释放出大量的能量和中子。

核聚变是指轻核(如氘、氚等)在高温高压条件下融合成重核的过程,同样释放出巨大的能量。

核反应堆利用核裂变反应来产生能量。

在核反应堆中,将可裂变材料(如铀-235)装入燃料棒中,然后将燃料棒组装成燃料组件。

燃料组件被放置在反应堆的反应堆压力容器中。

当中子进入燃料组件时,会与铀-235核发生碰撞,使其裂变成两个轻核,并释放出大量的能量和中子。

这些中子会继续与其他铀-235核发生碰撞,形成连锁反应,从而产生更多的能量和中子。

为了控制核反应堆的反应速率,需要使用控制棒。

控制棒由吸中子材料(如硼、银等)制成,可以吸收中子,从而减缓或停止核反应。

通过调整控制棒的位置,可以控制核反应堆的功率输出。

二、核反应堆的构造核反应堆的构造主要包括反应堆压力容器、燃料组件、冷却剂、控制系统和安全系统等。

1. 反应堆压力容器:反应堆压力容器是核反应堆的主要组成部分,用于容纳燃料组件和冷却剂,并承受核反应过程中产生的高温高压。

反应堆压力容器通常由厚重的钢材制成,具有良好的密封性和强度。

2. 燃料组件:燃料组件是核反应堆中的核燃料载体,通常由燃料棒和燃料包壳组成。

燃料棒内装有可裂变材料,如铀-235,燃料包壳则起到保护燃料棒和防止核燃料泄漏的作用。

3. 冷却剂:冷却剂在核反应堆中起到冷却燃料和控制反应速率的作用。

常用的冷却剂包括水、重水、氦气等。

冷却剂通过循环流动,带走燃料棒中产生的热量,并将其转移到蒸汽发生器中,进而产生蒸汽驱动涡轮发电机组发电。

4. 控制系统:核反应堆的控制系统用于控制核反应的速率和功率输出。

哈工大反应堆结构与材料-核反应堆结构-3

哈工大反应堆结构与材料-核反应堆结构-3

❖ 热屏蔽
虽然堆芯吊篮的厚度
已能为压力容器壁提供对 堆芯快中子的辐照防护, 而借助热屏蔽可在辐照最 大区域(距压力容器壁最 近的堆芯四角)加强这种 防护,热屏蔽由四块不锈 钢板组合成不连续的圆筒 形,在反应堆中心轴的四 个象限位置上(即0°、 90°180°、和270°)直 接用螺钉连接在堆芯吊篮 外壁上。这些热屏蔽还支 撑辐照样品监督管。
固定堆芯上部支承筒; 固定导向管;
固定冷却剂搅混装置 。
❖ 堆芯上部支承筒:其作用是连接导向管支撑板与堆芯上 栅格板和保证两者间的空间距离,并在堆芯出口处为反 应堆冷却剂提供流道。堆芯上部支承还用作热电偶导管 的支承并使流到热电偶监测处的冷却剂受到适当的搅混。
❖ 导向管支撑板:它是一个焊接构件,由一块厚板、一个 法兰和一个环形段组成。在厚板上固定着棒束控制导向 管、热电偶导管和热电偶管座。环形段固定在厚板上, 而厚板与法兰相连接。该法兰与堆芯吊篮上法兰间放置 着压紧弹簧,并且一起被固定在反应堆压力容器和压力 容器顶盖之间。所有堆芯测温热电偶导管集装到四个热 电偶管座上,四个管座固定在导向管支撑板上,并通过 压力容器顶盖上的管座及管座顶端的密封机构穿出压力 容器。
❖ 堆内构件的主要功能
为反应堆冷却剂提供流道;
为压力容器提供屏蔽,使其免受或少受堆芯中子辐射 的影响;
为燃料组件提供支撑和压紧; 固定监督用的辐照样品;
为棒束控制棒组件和传动轴以及上下堆内测量装置提 供机械导向;
平衡机械载荷和水力载荷;
确保堆容器顶盖内的冷却水循环,以便顶盖保持一定 的温度。
❖ 堆芯围板组件:
该组件安装在堆芯吊篮内部,它是由围板和 辐板组成的,围板将布置燃料组件的整个活 性区的外形紧紧围住,以便从燃料组件外面 旁路流走的冷却剂减至最少,八层辐板确保 围板和堆芯吊篮间的牢固连接。

核反应堆的构造与原理

核反应堆的构造与原理

核反应堆的构造与原理核反应堆是人类利用核能进行能源转化和利用的重要装置,它是利用核裂变或核聚变等反应过程产生的能量,转化为电能或其他形式的能量。

核反应堆由反应堆本体、控制与保护等系统和辅助设备等部分组成。

一、反应堆本体反应堆本体是核反应堆的主体构件,核反应堆的反应主要在反应堆本体内进行。

反应堆本体包括反应堆压力容器、燃料组件和冷却系统。

1、反应堆压力容器反应堆压力容器是承受反应堆本体内高温、高压和强辐射环境的容器,它是反应堆安全的重要保障。

该容器采用钢制主体,内衬防辐射钢板和铅板等材料。

2、燃料组件燃料组件是反应堆内主要储能的部分,它包含了用于核反应的燃料和燃料包壳等外壳保护。

燃料包壳往往是由合金钢、锆合金或铝合金等制成。

燃料则往往是铀、钚等可用作核反应燃料的物质。

3、冷却系统冷却系统是反应堆内负责燃料排热的部分,它是确保反应堆正常运行的重要保证。

冷却系统采用水、氦气或钠等冷却剂。

二、控制与保护系统1、控制系统控制系统是保证反应堆反应正常的系统,它采用反应堆控制棒调节反应堆内核反应。

控制棒是一种圆筒形的中心空置管,一般由银、铝、钡等元素制成,其管壳外表面均匀地涂覆有镉等元素。

控制棒可根据能量需求随时控制反应堆中的核反应。

2、保护系统保护系统是反应堆安全的保护系统。

它包括常规保护系统和非常规保护系统两种保护方法。

常规保护系统指的是针对燃料组件的温度、压力和中子流量等测量来进行保护;非常规保护系统通常采用紧急关闭系统来保护反应堆安全。

三、辅助设备辅助设备是配合反应堆本体和控制系统使用的一些设备。

辅助设备包括冷却剂回路、泵站、容器防护等。

总之,核反应堆作为一种新型的能源生产方式,具有取之不尽,用之不竭之优势。

只有在技术得到充分保证和严格控制后,才能够达到效果,充分发挥其所以光芒。

反应堆本体结构

反应堆本体结构
来改善间隙的传热性能和降低包壳管内外压差, 以免包壳被外压压塌。(预充压技术)
(f)压紧弹簧
➢ 限制燃料元件的运输和操作过程中,芯块的
轴向串动。
30
(2)核燃料组件的“骨架”结构
➢在一个燃料组件的全长上,有6-8个
弹性定位格架。组装时,由24根控 制棒导向管,1根测量仪表套管把弹 性定位格架与上、下管座连接成一 体构成燃料组件“骨架”, 以支撑 燃料元件棒并保持 燃料元件棒之间的 间距。使264根细长的燃料元件棒形成 一个整体,承受整个组件的重量和控 制棒下落时的冲击力,并保证 控制棒 运动的通畅。
露燃料管理。
内→外装料方式可以减少中子的径向泄露,增加堆芯的 反应性,提高燃料的卸料燃耗。但该装料方式会使堆芯功 率分布不平坦性增加,功率峰因子增大,因此,需采用 203Gd作可燃毒物来抑制功率峰。
15
对于18个月换料低泄露燃料管理策略,与常规的年换料方
式相比,能够: (1)降低压力容器中子注量率,有利于延长压力容器的寿
岭澳核电站则从第二循环开始进入混合堆芯阶段;从 第三循环开始富集度提高到3.7%。循环周期暂维持12 个月。
17
堆芯的反应性控制
1、控制棒调节:依靠棒束型控制棒组件的提升或插
入,来实现电厂启动、停闭、负荷改变等情况下比较 快速的反应性变化。(即调节快反应)
2、硼浓度调节:调整溶解于冷却剂中硼的浓度来补
堆芯的重量通过堆芯下栅格板及吊兰传给压
力壳支持。堆芯的尺寸根据压水堆的功率水平和 燃料组件装载数而定。
10
大亚湾 900 MW 级压水堆第一个堆芯的布置共有
157个横截面呈正方形的无盒燃料组件。
53个插有控制棒组件
157个无盒燃料组件

核反应堆结构与材料材料

核反应堆结构与材料材料
2021/5/28
核科学与技术学院
13
Harbin Engineering University
金属型燃料(1)
① 金属型燃料的类型
主要包括金属铀及铀合金
② 金属铀的物理化学性质
银灰色金属,密度高(>18.6),热导率高,工 艺性能好,熔点1133 ℃,沸点3600 ℃(优 点)
陶瓷型燃料主要用来解 决金属或合金型燃料工 作温度限制(相变及肿
具有与高温水、钠等的 良好相容性,耐腐蚀能 力好
胀效应)
与包壳相容性良好
2021/5/28
核科学与技术学院
18
Harbin Engineering University
陶瓷型核燃料缺点UO2
• 二氧化铀的导热性能较差,热导率低 • 传热负荷一定时,燃料径向温度梯度大 • 在热梯度或热震作用下可能导致脆化
Harbin Engineering University
核反应堆结构与材料材料
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
➢热导率计算
K95 446 0 t 4.14.2 11 4 0 6 exp(607
K 95 0.019 .2 1 11 4 06 exp(607.0 t
Kp 11βε εK100
2021/5/28
核科学与技术学院
21
Harbin Engineering University
二氧化铀的典型物性(2)
2021/5/28
核科学与技术学院
26
Harbin Engineering University

核反应堆结构

核反应堆结构
.
❖ 反应堆的分类
.
❖ 核电厂基本原理
.
.
.
压水堆结构概述
❖ 核电厂是利用核燃料发生的受控自持链式裂变反应 所释放的能量作为热源发电,而常规电厂则利用化 石燃料(如煤,燃油,天然气等)燃烧所释放的能量
作为热源发电。 ❖ 压水堆核电厂约占世界核电厂的60%多,我国已经
建成的均为压水堆型核电厂,尽管各压水堆核电厂 在设计细节上略有不同,但压水堆核电厂在总体上 已经基本定型,压水堆本体由反应堆压力容器、堆 芯、堆芯支撑结构、控芯是反应堆的核心部分,是放置核燃料,实现持 续的受控链式反应,从而成为不断释放出大量能量, 并将核能转化为热能的场所。它相当于常规电厂中 释放出大量热量的锅炉。此外,堆芯又是强放射源, 因此,堆芯结构设计是反应堆本体结构设计中最重 要的环节之一。
❖ 压水堆堆芯由核燃料组件、控制棒组件、固体可燃 毒物组件、阻力塞组件以及中子源组件等组成,并 由上、下栅格板及堆芯围板包围起来后,依靠吊篮 定位于反应堆压力容器的冷却剂进出口管的下方。
.
.
.
❖ 反应堆压力容器是放置堆芯和堆内构件,防止放射 性外泄的高压设备。它的完整性直接关系到反应堆 的正常运行和使用寿命,而且它在高温、高压、强 辐照的条件下长期工作,它的尺寸大,重量重,加 工制造精度要求高。因此是压水堆的关键设备之一。
❖ 压水堆压力容器布置非常紧凑,运行在很高的压力 下,容器内布置着堆芯和若干其他内部构件。压力 容器带有偶数个(4~8)出入口管嘴,整个容器重量由 出口管嘴下部钢衬与混凝土基座(兼作屏蔽层)支承, 可移动的上封头用螺栓与筒体固定,由两道“O”形 密封圈密封,上封头有几十个贯穿件,用于布置控 制棒驱动机构、堆内热偶出口和排气口。
.

《核反应堆与核裂变》 讲义

《核反应堆与核裂变》 讲义

《核反应堆与核裂变》讲义一、引言在当今的能源领域,核反应堆与核裂变技术占据着重要的地位。

它们不仅为我们提供了大量的电力,还在医学、工业等众多领域发挥着关键作用。

然而,对于大多数人来说,核反应堆与核裂变的原理和应用可能还比较陌生。

接下来,让我们一起深入了解这一神秘而又强大的技术。

二、核裂变的基本原理核裂变,简单来说,就是一个重原子核分裂成两个或多个较轻原子核的过程。

在这个过程中,会释放出巨大的能量。

以铀-235 为例,当一个中子撞击铀-235 原子核时,铀原子核会吸收这个中子,变得不稳定并发生分裂。

分裂过程中,会释放出 2 到 3 个新的中子,以及大量的能量。

这些释放出的中子又会继续撞击其他铀原子核,引发链式反应,从而持续释放出更多的能量。

这个过程中释放的能量是极其巨大的。

根据爱因斯坦的质能方程E=mc²(其中 E 表示能量,m 表示质量的变化,c 表示光速),即使是微小的质量损失,也能转化为巨大的能量输出。

三、核反应堆的类型目前,常见的核反应堆类型主要有以下几种:1、压水堆压水堆是目前世界上应用最广泛的核反应堆类型之一。

在压水堆中,反应堆的冷却剂和慢化剂都是水。

水在反应堆堆芯中吸收热量,然后通过蒸汽发生器将热量传递给二回路的水,产生蒸汽驱动汽轮机发电。

2、沸水堆沸水堆与压水堆的主要区别在于,沸水堆中的水在反应堆堆芯中直接产生蒸汽,然后驱动汽轮机发电。

3、重水堆重水堆使用重水(即氘和氧组成的水)作为慢化剂和冷却剂。

重水对中子的吸收较少,因此可以使用天然铀作为燃料。

4、快中子增殖堆快中子增殖堆利用快中子引发核裂变,并通过增殖材料(如钚-239)将多余的中子转化为可裂变材料,从而实现核燃料的增殖。

四、核反应堆的结构和组成核反应堆通常由以下几个主要部分组成:1、堆芯堆芯是核反应堆的核心部分,其中包含核燃料(如铀、钚等)和控制棒。

核燃料在堆芯中发生核裂变反应,释放出能量和中子。

控制棒用于控制反应的速率,通过吸收中子来调节链式反应的强度。

核反应堆结构与材料材料1共33页文档

核反应堆结构与材料材料1共33页文档
铀在锆中的溶解度大(铀-锆合金 ) 熔点高,热导率高,便于轧制成型 铀-锆-2在高燃耗情况下辐照稳定性不好(西平港) 美国铀-锆-钚合金 可用于快中子增殖
2020/4/14
核科学与技术学院
15
金属型燃料的性能对比表 Harbin Engineering University
2020/4/14
核科学与技术学院
16
陶瓷型燃料
陶瓷型核燃料优点UO Harbin Engineering University 2
陶瓷燃料是指铀、钚、 钍的氧化物、碳化物和 氮化物
无同素异形体,只有一 种结晶形态(面心立方 ),各向同性,燃耗深
常见的陶瓷燃料有UO2 ,PuO2,UC,UN
陶瓷型燃料主要用来解 决金属或合金型燃料工 作温度限制(相变及肿
9
Harbin Engineering University
核燃料
二、核燃料
反应堆中使用的裂变物质及可转换物质的统称
主要指U,Pu易裂变同位素
其功用主要用来产生裂变并放出裂变能量
其功用主要用来产生裂变并放出裂变能量
2020/4/14
核科学与技术学院
10
核燃料的一般性要求
Harbin Engineering University
良好的热物性,例如热导率高
抗辐照能力强,燃耗深
燃料的化学稳定性好,燃料与包壳、冷却剂的相 容性好
熔点高,且在低于熔点时不发生有害相变 机械性能好,易于加工
2020/4/14
核科学与技术学院
11
核燃料的存在形态 Harbin Engineering University
• 液态 • 固态
➢金属,陶瓷,弥散体型
2020/4/14

核反应堆的构造与设计

核反应堆的构造与设计

核反应堆的构造与设计核反应堆是一种能够产生和控制核裂变或核聚变反应的设备,是核能利用的核心部分。

它的构造和设计直接关系到核能的安全性、效率和可持续性。

本文将介绍核反应堆的构造和设计原理,以及相关的安全措施。

一、核反应堆的构造核反应堆主要由以下几个部分构成:1. 燃料组件:燃料组件是核反应堆中最重要的部分,它包含了核燃料,如铀或钚等。

核燃料在反应堆中发生裂变或聚变反应,释放出巨大的能量。

燃料组件通常由多个燃料棒组成,燃料棒内部填充有核燃料,外部由包覆材料包裹。

2. 冷却剂:冷却剂是核反应堆中用于吸收和带走燃料产生的热量的物质。

常用的冷却剂有水、氦气、液态金属等。

冷却剂通过循环流动,将燃料产生的热量带走,保持反应堆的温度在安全范围内。

3. 反应堆容器:反应堆容器是核反应堆的外壳,用于包裹和保护核燃料和冷却剂。

反应堆容器通常由厚重的钢材制成,具有良好的密封性和辐射屏蔽性能。

4. 控制系统:控制系统用于控制核反应堆的反应速率和功率。

它包括控制棒、反应堆堆芯布置和监测设备等。

控制棒可以插入或抽出燃料组件,调节反应堆的反应速率。

监测设备用于实时监测反应堆的温度、压力和辐射等参数,确保反应堆的安全运行。

二、核反应堆的设计原理核反应堆的设计原理主要包括以下几个方面:1. 反应堆类型:根据核反应堆的工作原理和燃料类型的不同,可以将核反应堆分为裂变堆和聚变堆。

裂变堆利用核裂变反应释放能量,聚变堆利用核聚变反应释放能量。

不同类型的反应堆有不同的设计要求和特点。

2. 反应堆堆芯布置:反应堆堆芯布置是核反应堆设计中的重要环节。

合理的堆芯布置可以提高反应堆的热效率和燃料利用率,减少燃料浪费和核废料产生。

堆芯布置通常采用周期性或非周期性的方式,以满足反应堆的设计要求。

3. 安全措施:核反应堆的安全性是设计中最重要的考虑因素之一。

设计中需要考虑到核燃料的控制、冷却剂的循环、辐射屏蔽和事故应对等方面。

安全措施包括防止核燃料过热、防止冷却剂泄漏、防止辐射泄漏等。

核反应堆结构-gas_reactor

核反应堆结构-gas_reactor


涂敷颗粒类型有代表性的有两种:一种称BISO颗粒, 采用两种涂敷层,内层是低密度疏松热解碳层,用 以贮存裂变气体,外层是高密度的致密热解碳层, 用以承受裂变气体的压力,防止裂变产物进入氦回 路;另一种称TRISO颗粒,采用三种涂敷层,即在 热解碳的疏松层外的两层致密层之间加一层碳化硅 (SiC)层,用以防止金属裂片铯、锶、钡等的扩散迁 移。
高温气冷堆
概述 早在1956年英国就建成了净电功率45兆瓦的卡特霍 尔(Calder Hall)电站。这种第一代气冷堆采用石墨 慢化,二氧化碳冷却,金属天然铀燃料,镁合金(镁 铍)包壳,故称镁诺克斯型(Magnox)气冷堆。后来 在英、法、意和日本等国建造了一大批这样的堆。 经过改进,堆芯功率密度由开始的0.55MW/
高温气冷堆的特点:
(1)高温、高效率 高温气冷堆的氦气出口温度高,可达750~950 ℃, 不仅发电效率较高,而且可用作高温工业供热,这 是任何其他堆型所不能达到的,由此开辟了核能利 用的广阔途径。在发电方面,采用高效率的蒸汽循 环后,热效率可达40%。若采用直接循环氦气轮机, 则不仅使电站设备及系统大大简化,降低比投资, 而且可以充分利用氦气出口温度高的特点,进一步 提高发电热效率,当反应堆出口氦气温度达850℃时 其热效率即可达45%,可与新型的火电站相媲美 。
(4)对环境的污染
由于采用性能稳定的氦气作冷却剂,反应堆一回路 反射性剂量较低,而且由于它的热效率高,排出的 废热也比轻水堆少35~40%。因此,它是核电站中
较清洁的堆型,可以建在人口较密的城镇附近。
(5)有综合利用的广阔前景 如果进一步提高氦气的出口温度到900℃(左右),与氦 气轮机直接连接,热效率可达50%以上,在出口温度 提高到,1000~2000℃(左右)时,还可能将反应堆产 生的热直接用于炼铁,化工及煤的气化等工业生产中 去,达到综合利用的目的。另外,高温氦气技术经验 的取得可为将来发展气冷快堆和核聚变反应堆创造条 件。 由于这些特性,使高温气冷堆具有一回路反射性低, 易于维护和检修;固有安全性高,事故安全性好;对 环境反射性排放量少等优点。因此有可能较安全地建 造在人口稠密区,有利于选址和工业布局。

《核工程概论》第3章 核反应堆结构和材料

《核工程概论》第3章 核反应堆结构和材料

3.3 反应堆堆内构件
下栅板组件
下栅板组件由吊篮底板、流量分配板、堆芯下栅 板和可调整的支撑柱组成。
堆芯的燃料组件直立在堆芯下栅板上,每个燃料 组件下端的定位销孔与堆芯下栅板上的定位销相 配,使燃料组件在堆芯内精确定位。
下栅板上开有许多流水孔道,以保证水流过燃料 元件。根据热工水力要求,在堆芯下栅板与吊篮 底板之间设有流量分配板,以使冷却剂按一定流 量分配要求去冷却燃料元件。
堆芯具有很高的功率密度,为防止元件过热,必 须保证元件棒能获得充分冷却,同时还必须限制 堆内燃料元件的最大表面热流密度,实践中通常 限定燃料元件棒单位长度发热率。
3.4 燃料组件
燃料芯块
燃料芯块设计要综合考虑 物理、热工、结构等方面 的因素,燃料芯块由低富 集度的UO2粉末经冷压后 烧结而成,经滚磨成一定 尺寸的圆柱体。由于芯块 在高温和辐照作用下会发 生不均匀肿胀,使燃料芯 块形成沙漏形,从而使燃 料元件变成竹节状。
目前电站压水堆普遍采用 17×17排列的燃料组件, 每 个 组 件 由 289 个 栅 元 , 设有24根控制棒导向管和 一根堆内中子通量测量管, 其 余 264 个 栅 元 装 有 燃 料 棒。整个棒束沿高度方向 设有8~10层弹簧定位格架, 将元件棒按一定间距定位 并构成一束。
3.4 燃料组件
3.2 反应堆压力容器
当前压水堆的压力容器材料普遍选用低合金钢。 低合金钢及其焊缝在快中子积分通量大于1018cm2 的辐照后,脆性转变温度明显升高,这是危及反 应堆压力容器安全性的重要因素。改善低合金钢 抗辐照脆化能量的措施有:严格限制铜和磷的含 量,添加少量铝、钒、铬、铂、镍等元素。
反应堆压力容器是由容器本体以及双头螺栓连接 的反应堆容器顶盖组成。反应堆容器是由低合金 锻钢环形锻件焊接而成。反应堆压力容器包容堆 内构件、堆芯,以及作为冷却剂和慢化剂的水。 为防止锈蚀,凡与水接触的容器内表面都堆焊不 锈钢覆面层。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 反应堆压力容器
当前压水堆的压力容器材料普遍选用低合金钢。 低合金钢及其焊缝在快中子积分通量大于1018cm2 的辐照后,脆性转变温度明显升高,这是危及反 应堆压力容器安全性的重要因素。改善低合金钢 抗辐照脆化能量的措施有:严格限制铜和磷的含 量,添加少量铝、钒、铬、铂、镍等元素。
反应堆压力容器是由容器本体以及双头螺栓连接 的反应堆容器顶盖组成。反应堆容器是由低合金 锻钢环形锻件焊接而成。反应堆压力容器包容堆 内构件、堆芯,以及作为冷却剂和慢化剂的水。 为防止锈蚀,凡与水接触的容器内表面都堆焊不 锈钢覆面层。
3.2 反应堆压力容器
反应堆压力容器是用来固定和包容堆芯、堆内 构件,使核燃料的裂变链式反应限制在一个密 封的金属壳内进行。一般把燃料元件包系统称为第二 道屏蔽。
压力容器外形尺寸大、质量大,加工制造技术 难度大,特别是随着核电站单堆容量增大,压 力容器的尺寸也越来越大。
第3章 核反应堆结构和材料
3.1 概述
压水堆的结构形式多种多样,其结构特性要满足 物理设计和热工设计的基本要求,既要保证可控 的裂变链式反应可靠地进行,又要把裂变产生的 热量及时带出。一般来说压水堆主要是由反应堆 压力容器、堆芯、堆芯支撑结构、控制棒驱动机 构等组成。
反应堆的外壳称为压力容器,运行在很高的压力 下,容器内布置着堆芯和若干其他内部构件。压 力容器上带有若干个接口管嘴,整个容器重量由 出口管嘴下部钢衬与混凝土基座支撑。
近代压水堆的压力容器增大,下封头设有中子通 量测量管,需要较大的下堆腔。因此,在核电站 中,利用冷却剂进出口的接管作为压力容器的支 撑,整个压力容器依靠接管和与接管相连的钢垫 支撑在混凝土的基础上。
3.3 反应堆堆内构件
反应堆堆内构件包括吊篮部件、压紧部件、堆内 温度测量系统和中子通量测量管等。其作用是:
3.2 反应堆压力容器
压力容器的核安全设计标准中是安全一级的设备, 它在事故状态下的可靠性和完整性是核反应堆安 全的重要保证。正确选材是保证反应堆压力容器 安全的关键,其选材的原则:
(1)要保证材料的纯度; (2)材料应有适当的强度和足够的韧性; (3)材料应具有低的辐照敏感性; (4)导热性好,在温度变化时热应力较小; (5)便于加工制造,成本低廉。
(1)堆芯功率分布应尽量均匀; (2)尽量减小堆芯内不必要的中子吸收材料; (3)有最佳的冷却剂流量分配和最小的流动阻力; (4)有较长的堆芯寿命; (5)堆芯结构紧凑,换料操作简便。
3.1 概述
目前大型压水堆的 燃料组件都不设组 件盒,冷却剂可以 产生横向搅混。堆 芯周围有围板包围, 围板固定在吊篮上, 吊篮外侧固定着热 屏蔽,用以减少压 力容器可能遭受的 中子辐照。
在反应堆堆芯内,冷却剂流量的主要部分用于冷 却燃料元件,其中有一小部分旁通流量用来冷却 上腔室、上封头和控制棒导向管,使这些地方的 水温接近冷却剂入口温度。
3.1 概述
反应堆堆芯是释放能量的关键部分,因此反应堆 堆芯结构性能的好坏对核动力的安全性、经济性 和先进性有很大的影响。一般说来,它应满足下 述基本要求:
反应堆压力容器顶盖
反应堆压力容器顶盖由顶 盖法兰和顶盖本体焊接成 一个整体。
(1)顶盖法兰
该法兰上钻有若干个螺栓 孔,法兰支撑面上有二道 放置密封环用的槽。
(2)顶盖本体
压水堆一般都采用半球形 顶盖,半球形顶盖用板材 热锻成形。
3.2 反应堆压力容器
压力容器筒体
压力容器筒体由以下几个部分组成。 (1)法兰段 法兰上钻有若干个未穿透的螺纹孔。法兰段上还 包括:与反应堆容器顶盖匹配的不锈钢支撑面; 一根泄漏探测管;一个支撑台肩。 (2)接管段 反应堆的进出水口从这里引出,根据一回路环路 数量的不同有不同的接口数。
3.2 反应堆压力容器
(3)筒身段 由上筒体和下筒体组成;
(4)过渡段 过渡段把半球形的下封头和容器的筒体段连接起来。 (5)下封头 由热扎钢板锻压成半球形封头。装有几十根因科镍 导向套管,为堆内中子通量测量系统提供导向。
3.2 反应堆压力容器
反应堆容器支撑结构
根据反应堆压力容器在电站或舰船上所处的位置, 各自都采用不同的支撑结构。早期的压力容器底 部无通量测量装置,在堆的底部设有压力容器支 撑裙,将支撑裙焊接在压力容器的下封头或接管 段上。
3.1 概述
核反应堆运行周期之初,核燃料所具有的产生裂 变反应的潜力很大,必须妥善加以控制。可通过 布置一定数量的控制棒和在冷却剂中加入硼酸的 方法来实现对后备反应性的控制。
在堆芯内一般还布置一定数量的可燃毒物棒,目 的是补偿堆芯的部分后备反应性。
为了启动反应堆,在堆芯内必须布置中子源。中 子源有初级中子源和次级中子源两种。
3.1 概述
在压水堆中,所有燃料组件内都设有控制棒导 向管,约1/3的燃料组件的控制棒导向管布置 有控制棒。其它燃料组件的控制棒导向管内布 置可燃毒物棒或中子源棒。凡不布置控制棒、 可燃毒物或中子源棒的导向管,均用节流棒安 插在导管内以减少冷却剂旁流,这种棒称为阻 力塞。控制棒组件从上部插入堆芯实现反应性 控制和停堆。组件中心的仪表管允许从压力容 器底部将堆内中子通量测量探头伸入组件内任 意高度。
(1)使堆芯燃料组件、控制棒组件、可燃毒物组件、 中子源组件和阻力塞组件定位及压紧;
(2)保证燃料组件和控制棒组件对中,对控制棒组 件的运动起导向作用;
(3)分隔堆内冷却剂,使冷却剂按一定方向流动; (4)固定和引导堆芯温度和中子通量测量装置,补
偿堆芯和支撑部件的膨胀空间; (5)减弱中子和γ射线对压力容器的辐照。
3.1 概述
堆芯支撑结构由上部支撑结构和下部支撑结构组 成。吊篮以悬挂方式吊在压力容器上部的支撑突 缘上,吊篮与压力容器之间形成一个环形腔,称 为下降段。冷却剂从入口管嘴进入反应堆,沿下 降段流到压力容器下腔室,然后折返向上通过堆 芯,在堆芯内吸收核裂变产生的热量,再经由上 栅格板、上腔室,经出口管嘴流出。
相关文档
最新文档