连续时间系统的时分析
连续时间系统的时域分析经典法
在弹性限度内,拉力Fk与位移
k
m
FS
x成正比,x(t) t v( )d ,设
f
刚度系数为k,有 Fk (t) k t v( )d
Ff (t) f v(t)
牛顿第二定律
Fm
(t)
m
d dt
v(t)
m d v(t) dt
f
v(t) k t v( )d
FS (t )
m
d2 dt 2
v(t)
3B1 1 4B1 3B2 2 2B1 2B2 3B3 0
联立求解
B1
1, 3
B2
2, 9
B3
10 27
所以,特解为
rp
(t)
1 3
t
2
2 9
t
10 27
(2) 当e(t) et时,选择特解函数形式
rp (t) Bet
代入方程得
d2 dt 2
(Bet
)
2d dt
(Bet
)
3(Bet
特征方程 6
(
特征根
2, 4
齐次解 rh (t)
rh (t) A1e2t A2e4t
2)求非齐次方程 r(t) 6r(t) 8r(t) e(t)的特解 rp (t) 由输入e(t) 的形式,设方程的特解为
rp (t) Bet
将特解代入原微分方程
rp(t) 6rp(t) 8rp (t) et
i(t)
R2 R1L
d dt
e(t)
1 R1LC
e(t)
d2 d t2
i(t
)
1 R1C
d i(t) 1 d
dt
R1C dt
iL
连续时间系统的时域分析
连续时间系统的时域分析时域分析是对连续时间系统进行分析和研究的一种方法。
通过时域分析,可以了解系统的时间响应特性、稳定性以及系统的动态行为。
本文将从连续时间系统的时域分析方法、常用的时域参数以及时域分析在系统设计中的应用等方面进行详细介绍。
一、连续时间系统的时域分析方法连续时间系统的时域分析方法主要有两种:解析法和数值法。
1. 解析法:通过解析方法可以得到系统的解析表达式,从而分析系统的时间响应特性。
常用的解析方法包括微分方程法、拉普拉斯变换法和傅里叶变换法等。
- 微分方程法:对于线性时不变系统,可以通过设立系统输入和输出之间的微分方程,然后求解微分方程来得到系统的时间响应。
- 拉普拉斯变换法:通过对系统进行拉普拉斯变换,将微分方程转化为代数方程,从而得到系统的传递函数,进而分析系统的时间响应。
- 傅里叶变换法:通过对系统输入和输出进行傅里叶变换,将时域信号转化为频域信号,从而分析系统的频率响应。
2. 数值法:当系统的解析表达式难以获得或无法求解时,可以通过数值方法进行时域分析。
常用的数值方法包括欧拉法、中点法和四阶龙格-库塔法等。
- 欧拉法:通过差分近似,将微分方程转化为差分方程,然后通过计算差分方程的递推关系来得到系统的时间响应。
- 中点法:在欧拉法的基础上,在每个时间步长内,通过计算两个相邻时间点上的导数平均值来改进估计值,从而提高精度。
- 四阶龙格-库塔法:在中点法的基础上,通过对导数进行多次计算和加权平均,从而进一步提高精度。
二、常用的时域参数时域分析除了对系统的时间响应进行分析外,还可以提取一些常用的时域参数来描述系统的性能和特性。
1. 零点:系统的零点是指系统传递函数中使得输出为零的输入值。
2. 极点:系统的极点是指系统传递函数中使得输出无穷大的输入值。
3. 零极点图:零极点图是用来描述系统传递函数中的零点和极点分布情况的图形。
4. 频率响应:频率响应是指系统对不同频率的输入信号的响应。
连续时间系统的时域分析实验报告
连续时间系统的时域分析实验报告实验目的本实验旨在通过对连续时间系统的时域分析,研究信号在时域上的特性,包括信号的时域图像、平均功率、能量以及系统的时域响应。
实验原理连续时间系统是指输入输出都是连续时间信号的系统。
在时域分析中,我们关注的是信号在时间上的变化情况。
通过观察信号的时域图像,我们可以了解信号的波形和时域特性。
实验装置与步骤实验装置•函数发生器•示波器•连接线实验步骤1.将函数发生器和示波器连接起来,并确保连接正常。
2.设置函数发生器的输出信号类型和幅度,选择合适的频率和幅度。
3.打开示波器并调整合适的触发方式和触发电平。
4.观察示波器上的信号波形,并记录下观察到的时域特性。
实验数据与分析实验数据根据实验装置和步骤,我们得到了如下的实验数据:时间(ms)电压(V)0 01 12 23 14 05 -1实验分析根据实验数据,我们可以绘制出信号的时域图像。
从图像中可以看出,信号在时域上呈现出一个周期性的波形,且波形在[-1, 2]范围内变化。
由此可知,输入信号是一个连续时间周期信号。
接下来,我们可以计算信号的平均功率和能量。
平均功率表示信号在一个周期内平均消耗的功率,而能量表示信号的总能量大小。
首先,我们计算信号的平均功率。
根据公式,平均功率可以通过信号在一个周期内的幅值的平方的平均值来计算。
在本实验中,信号的周期为5ms,幅值范围为[-1, 2],所以信号的平均功率为:平均功率= (∫[-1, 2] x^2 dx) / T由此可知,信号的平均功率为(1^2 + 2^2 + 1^2 + 0^2 + (-1)^2) / 5 = 1.2。
接下来,我们计算信号的能量。
根据公式,信号的能量可以通过信号在时间上的幅值的平方的积分来计算。
在本实验中,信号在整个时间范围内的幅值范围为[-1, 2],所以信号的能量为:能量= ∫[-1, 2] x^2 dx由此可知,信号的能量为(1^2 + 2^2 + 1^2 + 0^2 + (-1)^2) = 7。
信号与系统分析第二章 连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
连续时间系统的时分析
连续时间系统的时分析连续时间系统的时分析是研究连续时间系统中信号在时间上的属性和特征的重要方法。
时分析的主要目的是深入理解信号在时间上的演化规律,以揭示系统的动态行为和性能。
时分析在多个领域都有广泛的应用,如信号处理、通信、控制系统等。
通过时分析,我们可以了解信号的频率成分、时域分布、瞬态特性、周期性等属性,从而为系统设计、故障诊断和优化提供重要的依据。
本文将介绍连续时间系统的时分析的重要性和背景,并讨论一些常用的时分析方法和工具。
通过深入研究和应用时分析,我们可以更好地理解和利用连续时间系统的动态行为,从而提高系统的性能和可靠性。
连续时间系统的定义连续时间系统是一种在时间上连续变化的系统。
它以无限多个时刻为基础,对连续时间内的输入信号进行分析和处理。
与离散时间系统相比,连续时间系统具有自变量和因变量均为连续的特点。
连续时间系统的概念和特点连续时间系统可以通过微分方程或差分方程来描述其动态行为。
连续时间系统可以是线性系统或非线性系统,可以是时变系统或时不变系统。
连续时间系统的特点之一是其输入和输出信号均是连续的,因此它能够处理包含连续时间范围内的信号。
这使得连续时间系统在模拟电路、控制系统和信号处理领域中得到广泛应用。
另一个特点是连续时间系统具有无限多个输入和输出值。
通过对连续时间内的输入信号进行积分运算,连续时间系统能够生成连续时间内的输出信号。
这使得连续时间系统能够对信号进行连续的分析和处理。
时分析是对连续时间系统进行的一种分析方法。
它通过研究连续时间系统在时域上的行为来理解系统的动态特性和性能。
在时分析中,我们研究系统对不同输入信号的响应情况,包括系统的稳态响应和暂态响应。
通过时分析,我们可以了解系统对不同输入信号的滤波特性、传递函数和频率响应等重要性能指标。
时分析可以通过使用微分方程、拉普拉斯变换或傅里叶变换等数学工具来进行。
这些工具可以帮助我们理解系统对不同输入信号的响应,并从中得出有关系统稳定性、阶数、传输速度等信息。
第二章 连续时间系统的时域分析 重要公式
零状态响应 rzs ( t ) 的求解有两种方法 方法一:直接求解微分方程 步骤: (1)求出通解;
(k ) (0 + ) = r (k ) (0 + ) − r (k ) (0 − ) 确定 n 个待定常数。 (2)由跳变量 rzs
方法二:卷积积分法 步骤: (1)先求冲激响应 h(t ) ; (2)再利用 rzs (t ) = h(t ) ∗ e(t ) 求零状态响应。 五、冲激响应 h ( t ) 和阶跃响应 g ( t ) 1、冲激响应 h ( t ) 的定义 定义: 系统在单位冲激信号 δ ( t ) 的激励下产生的零状态响应, 称为冲激响应。 冲激响应 h ( t ) 满足的微分方程为:
4
方法一:比较系数(等式两端奇异函数项相平衡)法求 h ( t ) 步骤:a. 先求特征根,直接写出冲激响应的函数形式; b. 再用冲激函数平衡法确定系数 Ak 。 方法二:利用系统的线性时不变特性求 h ( t ) 对于 h ( t ) 满足的微分方程
dn d n −1 d h(t ) + a n −1 n −1 h(t ) + + a1 h(t ) + a 0 h(t ) n dt dt dt
dn d n −1 d ( ) r t a + r (t ) + + a1 r (t ) + a 0 r (t ) n −1 n n −1 dt dt dt
= bm dm d m −1 d ( ) e t b e(t ) + + b1 e(t ) + b0 e(t ) + m −1 m m −1 dt dt dt
dn d n −1 d ( ) h t a h(t ) + + a1 h(t ) + a 0 h(t ) + n −1 n n −1 dt dt dt
第2章_时域分析
1 1 2t 3 3 i(t ) e c1 cos t c2 sin t 2 2 2
e
1 t 2
3 3 3 3 c1 sin t c2 cos t 2 2 2 2
24
第二章 连续时间系统的时域分析
零状态响应求解
12
第二章 连续时间系统的时域分析
• 性质4 微分和积分的运算次序不能任意颠倒, 两种运算也不一定能抵消。
13
第二章 连续时间系统的时域分析
(三)转移算子 H ( p)
n阶线性微分方程为: d nr d n1r dr d me d m1e de an1 n1 a1 a0 r bm m bm1 m1 b1 b0 e n dt dt dt dt dt dt
– 受迫响应(强迫响应)
• 有输入激励时系统的响应。 • 对应于特解(只含外加激励频率项) 。
• 形式由微分方程的自由项或外加激励信号决定。
7
零输入响应与零状态响应
第二章 连续时间系统的时域分析
• 一个连续系统的完全响应,可以根据引起响应的不同原因, 将它分解为零输入响应和零状态响应两部分。
– 零输入响应
p n r an1 p n1r a1 pr a0 r bm p m e bm1 p m1e b1 pe b0 e
( p n an1 p n1 a1 p a0 )r (bm p m bm1 p m1 b1 p b0 )e 即
14
第二章 连续时间系统的时域分析
令
D( p) p n an1 p n1 a1 p a0
N ( p) bm p m bm1 p m1 b1 p b0
实验三连续时间LTI系统的时域分析实验报告
实验三连续时间LTI系统的时域分析实验报告一、实验目的通过实验三的设计和实现,达到如下目的:1、了解连续时间LTI(线性时不变)系统的性质和概念;2、在时域内对连续时间LTI系统进行分析和研究;3、通过实验的设计和实现,了解连续时间LTI系统的传递函数、共轭-对称性质、单位冲激响应等重要性质。
二、实验原理在常见的线性连续时间系统中,我们知道采用差分方程的形式可以很好地表示出该系统的性质和特点。
但是,在本实验中,我们可以采用微分方程的形式来进行相关的研究。
设系统的输入为 x(t),输出为 y(t),系统的微分方程为:其中,a0、a1、…、an、b0、b1、…、bm为系统的系数,diff^n(x(t))和diff^m(y(t))分别是输入信号和输出信号对时间t的n阶和m阶导数,也可以记为x^(n)(t)和y^(m)(t)。
系统的单位冲激响应函数 h(t)=dy/dx| x(t)=δ(t),则有:其中,h^(i)(t)表示h(t)的第i阶导数定义系统的传递函数为:H(s)=Y(s)/X(s)在时域内,系统的输出y(t)可以表示为:其中,Laplace^-1[·]函数表示Laplace逆变换,即进行s域到t域的转化。
三、实验步骤1、在Simulink中,构建连续时间LTI系统模型,其中系统的微分方程为:y(t)=0.1*x(t)-y(t)+10*dx/dt2、对系统进行单位冲激响应测试,绘制出系统的单位冲激响应函数h(t);4、在S函数中实现系统单位冲激响应函数h(t)的微分方程,并使用ODE45框图绘制出系统单位冲激响应函数h(t)在t=0~10s之间的图像;6、利用数据记录栏,记录系统在不同的参数下的变化曲线、阶跃响应函数u(t)和单位冲激响应函数h(t)的变化规律。
四、实验数据分析1、单位冲激响应测试那么,当输入信号为单位冲激函数δ(t)时,根据系统的微分方程,可以得知输出信号的形式为:即单位冲激响应函数h(t)为一个包含了单位冲激函数δ(t)在内的导数项序列。
第二章 连续时间系统的时域分析
19
2.3 起始点的跳变(初始条件的确定)
分析 激励加入:t=0时刻
响应区间:t≥0+
0
0
0
t
起始状态(0-状态):激励加入之前瞬间的状态。
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
9
n阶线性时不变系统的模型
一个线性系统,其激励信号 e(t ) 与响应信号 r (t ) 之间的关 系,可以用下列形式的微分方程式来描述
d n r (t ) d n 1 r (t ) d r (t ) C0 C1 Cn 1 Cn r (t ) n n 1 dt dt dt d m e(t ) d m 1 e(t ) d e(t ) E0 E1 Em 1 Em e(t ) m m 1 dt dt dt
dt
21
[ 例 ] 如 图 所 示 , 已 知 R1=1Ω, R2=3/2Ω, e2(t)=4V,
e1(t)=2V, L=1/4H, C=1F, t<0时开关S处于1的位置而 且电路已经达到稳态;当t=0时,S由1转向2。
建立i(t)的微分方程并求解i(t)在t>0时的变化。
解 : (1) 由 元 件 的 约
k
初始条件(0+状态/导出的起始状态):
k
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
由于用经典法求解微分方程时,是考虑了激励作用以 (k ) 后的解, 时间范围是 0 t 所以要利用r (0 ) 确定系 数Ai,而不是利用 r ( k ) (0 ) 。 20
连续时间系统的时域分析
四.求解系统微分方程旳经典法
分析系统旳措施:列写方程,求解方程。
列写方程 : 根据元件约束,网络拓扑约束
经典法
解方程零输入零 零响状 输应态 入和::利可零用利状卷用态积经响积典应分法法求求解解
变换域法
求解方程时域经典法就是:齐次解 + 特解。
经典法
齐次解:由特征方程→求出特征根→写出齐次解形式
a ic
vt
b
代入上面元件伏安关系,并化简有
C
d2 vt
dt2
1 R
d vt
dt
1 L
vt
d iS t
dt
这是一种代表RLC并联电路系统旳二阶微分方程。
三.n 阶线性时不变系统旳描述
一种线性系统,其鼓励信号 e(与t) 响应信号 之r(t间) 旳 关系,能够用下列形式旳微分方程式来描述
一.物理系统旳模型
•许多实际系统能够用线性系统来模拟。 •若系统旳参数不随时间而变化,则该系统能够用 线性常系数微分方程来描述。
二.微分方程旳列写
•根据实际系统旳物理特征列写系统旳微分方程。 •对于电路系统,主要是根据元件特征约束和网络拓扑 约束列写系统旳微分方程。
元件特征约束:表征元件特征旳关系式。例如二端元 件电阻、电容、电感各自旳电压与电流旳关系以及四 端元件互感旳初、次级电压与电流旳关系等等。
第二章 连续时间系统旳时域分析 §2.1 引言
系统数学模型旳时域表达
时域分析措施:不涉及任何变换,直接求解系统旳 微分、积分方程式,这种措施比较直观,物理概念比 较清楚,是学习多种变换域措施旳基础。
输入输出描述 : 一元 N 阶微分方程 状态变量描述 : N 元一阶微分方程
本课程中我们主要讨论输入、输出描述法。
连续时间系统的时域分析实验报告
实验二连续时间系统的时域分析一、实验目的通过使用MATLAB 软件对连续时间线性非时变系统的时域特性进行仿真分析,熟悉IT 系统在典型激励下的响应及特征,熟悉相应MATLAB 函数的调用格式和作用,熟悉井掌握用MATLAB 函数求解冲激响应、阶跃响应、零输入响应、零状态响应及全响应的方法。
二、实验原理(一)连续时间系统的时域分析方法 连续时间线性非时变系统(LTI )的输入()t f 与输出()t y 可以用线性常系数微分方程来描述:()()()()()()()()()()t f b t f b t fb t y a t y a t y a t y a m m n n n n 0'10'111++=++++--如果已知系统的输入信号()t f 及系统的初始条件为()()()()()-----0,,0,0,01'''n y y y y ,就可以利用解析方法求出系统的响应。
线性系统的全响应由零输入响应分量和零状态响应分量组成。
零输入响应是指当输入为零时仅由t=0的初始条件产生的系统响应,零状态响应是当初始条件(在t=0)假定为零时仅由0≥t 时的输入产生的系统响应分量。
零输入响应(单极点时)为:()∑==+++=nk t k tn ttx k n e c ec ec ec t y 12121λλλλ f式中,n c c c 、、、 21为任意待定常数,由初始条件确定。
零状态响应为:()()()τττd t h f t y f -=⎰∞∞-此式是对任意输入()t f ,用单位冲激响应()t h 形式表示的零状态响应()t y f 的公式。
已知()t h 就可确定任意输入()t f 的零状态响应()t y f ,即系统对任意输入的响应都可以用单位冲激响应确定。
系统总响应为:()()()()()τττλd t h f ec t y t y t y tnj j f x j -+=+=⎰∑∞∞-=1对于高阶系统,手工计算非常繁琐。
第二章连续时间系统的时域分析
O
t
2u (t ) + 2 (一般式)
e(t )在t 0处有跳变 2 4相对跳变为2 即 r (0 + ) r (0 - ) + 2 = 故t 0时,有e(t ) 2u (t )
(2)
方程右端的冲激函数项最高阶次是 ,因而有
d u (t ) (t ) + Ku (t ) u (t )的积分为零 dt
给 定 如 图 所 示 电 路 , 0开 关S处 于 的 位 置 而 且 已 经 t 1 达 到 稳 态 。 当 0时S由1转 向2。 建 立 电 流(t )的 微 分 t i 方 程 并 求 解(t )在t 0时 的 变 化 。 i
把t<0电路看作起始状态,分别求t >0时的零输入响应和零 状态响应。 2 S R1 1 i L (t ) iC (t ) 1 i (t ) 1 L H C 1F e (t ) 4 V 4 3 e (t ) 2 V R2 2
可见,零输入响应是齐解中的一部分 分自由响应) 次 (部 零输入响应
k 1
n
Azik e k t
由于没有外界激励作用因而系统的状态不会生变化, , 发 即r (k ) (0 + )=r (k ) (0 - ), 所 以 zi (t )中 的 常 数 zik 可 以 由 (k ) (0 - )确 定 。 r A r
k
m
这是一个代表机械位移系统的二阶微分方程。教材P43-44
Fs
两个不同性质的系统具有相同的数学模型(二阶微分方 程),都是线性常系数微分方程,只是系数不同。对于复杂 系统,则可以用高阶微分方程表示。
三.n 阶线性时不变系统的描述
连续时间系统的时域分析实验报告
连续时间系统的时域分析实验报告连续时间系统的时域分析实验报告引言:时域分析是研究信号在时间上的变化规律,是连续时间系统分析的基础。
本实验旨在通过实际操作,探究连续时间系统的时域特性,并对实验结果进行分析和总结。
实验目的:1. 了解连续时间系统的时域分析方法和技巧;2. 掌握连续时间系统的单位冲激响应和单位阶跃响应的测量方法;3. 理解连续时间系统的零极点分布对系统特性的影响;4. 分析和总结实验结果,得出结论。
实验设备和材料:1. 信号发生器2. 示波器3. 连续时间系统实验箱4. 电缆、连接线等实验步骤:1. 连接信号发生器输出端和连续时间系统实验箱的输入端,调节信号发生器的频率和幅度,观察输出信号的波形,并记录数据;2. 改变信号发生器的频率和幅度,重复步骤1,记录不同条件下的输出信号数据;3. 切换到连续时间系统实验箱的单位冲激响应模式,输入单位冲激信号,观察输出信号的波形,并记录数据;4. 切换到连续时间系统实验箱的单位阶跃响应模式,输入单位阶跃信号,观察输出信号的波形,并记录数据;5. 根据实验数据,绘制系统的幅频响应曲线、相频响应曲线、零极点分布图等;6. 对实验结果进行分析和总结,得出结论。
实验结果分析:通过实验数据的记录和分析,我们可以得出以下结论:1. 连续时间系统的幅频响应曲线和相频响应曲线可以反映系统的频率特性,通过观察曲线的变化,可以判断系统的增益和相位变化情况。
2. 单位冲激响应是连续时间系统的重要特性之一,通过观察单位冲激响应的波形,可以了解系统的时域特性,如系统的稳定性、响应时间等。
3. 单位阶跃响应是连续时间系统的另一个重要特性,通过观察单位阶跃响应的波形,可以了解系统的阶跃响应情况,如系统的超调量、上升时间、调节时间等。
4. 零极点分布图可以直观地展示连续时间系统的零点和极点位置,通过观察分布图的形状,可以判断系统的稳定性和阻尼情况。
结论:通过本次实验,我们深入了解了连续时间系统的时域分析方法和技巧。
连续时间系统的时域分析
第二章连续时间系统的时域分析
学习目标
1.理解0_和0+时刻系统状态的含义,并掌握冲激函数匹配法
故方程 (5)
令 代入(5)式得
故系统的完全解为
(6)
c.确定待定系数
由于无冲激电压,故电容电压不能突变
,
而
d.求 在 时的完全响应
将 代入(6)式得
当系统已经用微分方程表示时,系统的0-状态到0+状态有无跳变,取决定于微分方程在右端自由项中是否包含(t)及其各阶导数.若包含有(t)及其各阶导数,说明相应的变量从0-到0+状态发生了跳变,即 此时为确定 等,可以用冲激函数匹配法。其原理根据t=0时刻微分方程左右两端的(t)及其各阶导数应该平衡相等。
的解h1(t)
再利用 求出h(t)
解:由
当t>0时,上方程为
将h1(t)代入方程(2)得
由对比系数法得:
方法4:
分析:由于方程等号右端含 ,故
对上方程两端同时由 进行积分得
由于 ,
由于 , 将初始化条件代入
中
得:
系统的阶跃响应g(t)微分方程
及起始状态 ,可以看出方程右端的自由项含有 及其各阶导数,同时还包含阶跃函数u(t),因而阶跃响应中,除含齐次解形式之外,还应增加特解项。
例:如图所示
而
将(2)式代入(1)式子得
令 则代入方程得
而
的电压不能突变,故
将 代入
,得
连续时间系统的时域分析
连续时间系统的时域分析连续时间系统是一种基础性的数学模型,用于描述物理系统、电路和控制系统等的行为。
在实际应用中,我们经常需要对连续时间系统进行时域分析,以更好地理解它们的行为特性和设计控制系统。
时域分析是指在时间域上通过观察时域响应,分析系统的动态特性和稳态特性,进而对系统行为进行描述和分析的一种方法。
对于连续时间系统,一般采用微分方程或者传递函数的形式来描述系统,从而进行时域分析系统的微分方程形式为:$$\frac{d^n y(t)}{dt^n}+a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}}+\cdots+a_1\frac{dy(t)}{dt}+a_0y(t)=b_m\frac{d^mx(t)}{dt^m}+\cdots+b_1\frac{dx(t)}{dt}+b_0x(t)$$其中,$y(t)$代表系统的输出,$x(t)$代表系统的输入,$a_i$和$b_j$是系数。
时域分析的主要目的是求解系统在单位施加输入的情况下的输出响应$y(t)$。
为了简单起见,我们这里主要关注一阶和二阶连续时间系统。
$$\frac{dy(t)}{dt}+ay(t)=bx(t)$$应用拉普拉斯变换,可以得到系统的传递函数:其中,$G(s)$代表系统的传递函数,$s$代表变换域变量。
通过求解系统的传递函数,我们可以得到系统的单位施加输入下的响应,进而进行时域分析,研究系统的动态和稳态特性。
$$\frac{d^2y(t)}{dt^2}+2\xi \omega_n\frac{dy(t)}{dt}+\omega_n^2 y(t)=x(t)$$其中,$\omega_n$代表系统的固有频率,$\xi$代表系统的阻尼比。
应用拉普拉斯变换,可以得到系统的传递函数:。
2第二章、连续时间系统的时域分析
1 4p
2
H2(
p)
2
p3
1 3p2
4
p
2
H1(
p)
2
2 p2 p3 3p2
p
1 4p
2
H2(
p)
2 p3
1 3p2
4
p
2
讨论:
1、在电路中有三个独立的储能元件,为一个三阶系 统,特征方程应为三次方程,即H(p)的分母多项式 的最高次数应为三次。
2、所以这类题目也可直接求解,最后通过核对电路 的阶数来确定是否能消去分子分母中的公共因子。
1 C1 r(0)
n
C2
r(0)
n2 C3 r(0)
nn1 Cn r(n1) (0)
C1 1
C2
1
C3 12
Cn 1n1
1
2 2 2
n1 2
1
3 32
n1 3
1
1
r(0)
n
r(0)
n2 r(0)
nn1 r(n1) (0)
一、特征根为异(实)根 算子方程写为: ( p 1)( p 2 ) ( p n )r 0
由前面的讨论可写出解的一般形式:
r(t) C1e1t C2e2t Cnent
若给定系统的n个初始条件:r(0), r(0), r(n1) (0)
我们就可以确定其中的待定常数C1,C2,…Cn。
)i1
1 p
i2
e
1 p
i1
(2 p
1
1 p
)i2
0
( p2
p
1)
1 p
i1
1 p
i2
e
1 p
i1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三连续时间系统的时域分析
一实验目的:
1、熟悉和掌握常用的用于信号与系统时域分析的MATLAB 函数;
2、掌握如何利用Matlab 软件求解一个线性时不变连续时间系统的零状态响 应、冲激响应和阶跃响应。
二实验原理:
在信号与线性系统中,LTI(线性时不变)连续时间系统以常系数微分方程描述,系统的零状态响应可以通过求解初始状态为零的微分方程得到。
在Matlab 中,控制系统工具箱提供了一个用于求解零初始条件微分方程数值解的函数lsim ,其调用形式为:
),,(t f sys lsim y =
式中,t 表示计算系统响应的抽样点向量,f 是系统输入信号向量(即激励),sys 是LTI 系统模型,用来表示微分方程。
在求解微分方程时,微分方程的LTI 系统模型sys 要借助Matlab 中的tf 函数来获得,其调用形式为:
),(a b tf sys =
式中,b 和a 分别为微分方程右端和左端各项的系数向量。
例如对于三阶微分方程:
)()()()()()()()(01230123t f b t f b t f b t f b t y a t y a t y a t y a +'+''+'''=+'+''+'''
可以用以下命令:
b=[b3,b2,b1,b0];
a=[a3,a2,a1,a0];
sys=tf(b, a);
来获得LTI 模型。
系统的LTI 模型建立后,就可以求出系统的冲激响应和阶跃响应。
在连续时间LTI 中,冲击响应和阶跃响应是系统特性的描述。
输入为单位冲击函数)(t δ所引起的零状态响应称为单位冲击响应,简称冲击响应,用)(t h 表示;输入为单位阶跃函数)(t ε所引起的零状态响应称为单位阶跃响应,简称阶跃响应,用)(t u 表示。
求解系统的冲激响应的函数是impulse ,求解系统的阶跃响应可以利用函数step ,其调用形式分别为:
),(t sys impulse y =和),(t sys step y =
式中t 表示计算系统响应的抽样点向量,sys 是LTI 系统模型。
三实验内容: 一、已知系统的系统转移算子为3
322)(21+++=p p p p H ,求该系统的零状态响应曲线。
假设系统的激励)(t e =)sin(t ,t 在[0,2π]之间,步长0.01。
t=0:0.01:2*pi;
b=[2 2];
a=[1 3 3];
sys=tf(b,a);
f=sin(t);
y=lsim (sys,f,t);
plot(t,y)
xlabel('t');
ylabel('y(t)');
grid on; 二、已知系统的系统转移算子为3
22)(22++=p p p p H ,求该系统的零状态响应曲线。
假设系统的激励)(t e =)cos(t ,t 在[0,2π]之间,步长0.01。
t=0:0.01:2*pi; b=[2 0];
a=[1 2 3];
sys=tf(b,a);
f=cos(t);
y=lsim (sys,f,t);
plot(t,y)
xlabel('t');
ylabel('y(t)');
grid on; 三、已知系统的微分方程为:)(6)(6)(5)(22t e t r dt
t dr dt t r d =++,求该系统的零状态响应曲线。
假设系统的激励)(t e =)2sin(10t π,t 在[0,2π]之间,步长0.01。
t=0:0.01:2*pi;
b=[6];
a=[1 5 6];
sys=tf(b,a);
f=10*sin(2*pi*t);
y=lsim (sys,f,t);
plot(t,y)
xlabel('t');
ylabel('y(t)');
grid on; 四、已知系统的微分方程为:)(10)(100)(2)(22t e t r dt t dr dt
t r d =++,求系统的冲激响
应和阶跃响应曲线,将两幅图显示在一个窗口,t 在[0,2π]之间,步长0.01。
t=0:0.01:2*pi;
b=[10];
a=[1 2 100];
sys=tf(b,a);
y1=impulse(sys,t);
y2=step(sys,t);
subplot(2,1,1);
plot(t,y1);
xlabel('t');
ylabel('h(t)');
grid on;
subplot(2,1,2);
plot(t,y2);
xlabel('t');
ylabel('u(t)');
grid on; 五、已知系统的微分方程为:)(16)()(32)(2)(22t e dt
t de t r dt t dr dt t r d +=++,假设系统的激励)(t e =t e 2-,t 在[0,2π]之间,步长0.01。
将系统的激励函数、冲激响应和零状态响应显示在一个窗口。
t=0:0.01:2*pi; b=[1 16];
a=[1 2 32];
sys=tf(b,a);
f=exp(-2*t);
y1=impulse(sys,t);
y2=lsim(sys,f,t);
subplot(3,1,1);
plot(t,f);
xlabel('t');
ylabel('e(t)');
grid on;
subplot(3,1,2);
plot(t,y1);
xlabel('t');
ylabel('h(t)');
grid on;
subplot(3,1,3);
plot(t,y2);
xlabel('t');
ylabel('y(t)');
grid on;
四思考题:
1、在Matlab中求解LTI连续时间系统的零状态响应以及冲激响应和阶跃响应时,
采用的方法与我们正常求解微分方程得出系统响应的方法之间有什么异同点?
2、在Matlab中符号数学函数使用时与一般的向量数学函数有什么区别的地方?
3、冲激响应和阶跃响应之间存在什么样的关系?
答(1):
共同点:都是对转移算子进行一系列的运算。
不同点:在matlabe中通过调用函数y=isim(sys,f,t),y=impulse(sys,t)和y=step(sys,t)对转移算子进行处理得到零状态响应,冲击响应和阶跃响应的图像。
而我们正常求解是对转移算子通过运算得到零状态响应,冲击响应和阶跃响应的函数表达式。
答(2)
C=A*B表示两个矩阵相乘。
而C=A.*B表示矩阵中的对应元素相乘。
在atlab 中.*表示乘,./表示除法。
答(3):
阶跃响应的导函数图像是冲响应的图像,冲激响应积分的图像是阶跃响应的图像。