.电介质材料ppt课件

合集下载

电介质-PPT课件

电介质-PPT课件

导体的静电感应过程


E0

加外电场---电子在电场力作用下运动
导体的 ' 外场 E 0
导体的静电感应过程


E0

感应 E ' 外场 E 0
导体的静电感应过程

q2
+ q1
q1 + q1
q 1+ q 2
三、静电平衡导体的表面场强
. dS = E s
=
. + S d E 内
0 +
. + S d E 表
E表 S +
. S d E 侧
0
E
1
0
q
i i
1
0
S
σ
E 0
S
有导体时静电场的分析方法
导体放入静电场中:
导体的电荷 重新分布
导体上的电荷分 布影响电场分布
b a
a、b在导体内部:
b
a
U0 E 0
a、b在导体表面:
Ed l 0 即 U 0 E d l
----静电平衡的导体是等势体
静电平衡条件:
用场强来描写: 1、导体内部场强处处为零; 2、表面场强垂直于导体表面。 用电势来描写: 1、导体为一等势体; 2、导体表面是一个等势面。
E0
感应 E ' 外场 E 0
导体的静电感应过程


E0
感应 E ' 外场 E 0
导体的静电感应过程
E0 E ' E E E ' 0 0

《电介质的电气强度》幻灯片

《电介质的电气强度》幻灯片

液体介质的相对介电常数
2.极性液体介质 (1)介电常数与温度的关系
低温时,分子间的黏附力 强,转向较难,转向极化
对 的贡献较小;
温度升高,分子间的黏附
力减弱,转向极化对 的 贡献较大, 随之增大;
温度进一步升高,分子热 运动加强,对极性分子定 向排列的干扰也随之增强, 阻碍转向极化的完成, 反而减小。
+
-
+
-
++
-
+
-
QQ0
真空
c0
Q0 U
0S
d
cQQ0 QS
U
Q0
d
+-
-+
++-
+-
+-
++-
-
+-
QQ0Q
插入电介质后
介电常数的物理意义
相对介电常数
r0Q 0Q 0 QC C 0
以该物质为介质的电容器的电容与以真空中为介质的同样 大小电容器电容量的比值,称为相对介电常数,简称介电 系数。它表征电介质在电场的作用下极化程度的物理量。
➢ 介质损耗的根本概念 ➢ 气体介质中的损耗 ➢ 液体和固体介质中的损耗
介质损耗的根本概念
电场的交变速度远低于极化建立速度时,介电常 数可视为一实数,接近于静态介电常数。
电场的交变速度与极化建立速度相近时,极化就
跟不上电场的变化,电通量密度 D 就滞后于电场
强度 一E个相位角 。
介质损耗的根本概念
电容性电流密度,超前场强90°
介质损耗的根本概念
r
气体介质的相对介电常数
气体物质分子 距离相对很大, 即气体密度很小

高介电常数电介质资料课件

高介电常数电介质资料课件

03
在风力发电领域,高介电常数电介质可以作为绝缘和润滑材料
,提高风力发电设备的效率和可靠性。
05
高介电常数电介质的未来发展
新材料与新技术的研发
新型高介电常数电介质材料
随着科技的发展,新型高介电常数电介质材料不断涌现,如聚合物复合材料、陶 瓷复合材料等,这些材料具有更高的介电常数和更好的电气性能,为高介电常数 电介质的应用提供了更多可能性。
封装材料
在电子封装领域,高介电常数电介质可以作为封 装材料,保护电子元件免受外界环境的影响。
在新能源领域的应用
太阳能电池
01
高介电常数电介质可以用于制造太阳能电池,提高光电转换效
率和稳定性。
储能装置
02
在新能源储能领域,高介电常数电介质可以作为储能介质,提
供较高的能量密度和较快的充放电速度。
风力发电
通过掺杂改性,可在较宽的频率和温度范围内保持高介电常数和低损耗。
钛酸锶钡(Ba1-xSrxTiO3)
通过调整锶的含量,可调节介电常数和温度稳定性,在高温环境下具有较好的稳定性。
有机高分子材料
聚烯(PE)
具有高介电常数和良好的绝缘性能,常用于制造电缆 绝缘层。
聚苯乙烯(PS)
具有高介电常数和低介电损耗,广泛应用于电子元件 的绝缘材料。
高介电常数电介质用于制造各种传感器, 如湿度传感器、压力传感器等,具有高灵 敏度和快速响应的特点。
02
高介电常数电介质的特性
介电常数与介质损耗
介电常数定义
介电常数是衡量电介质储存电荷 能力的物理量,与电介质内部自 由电荷和束缚电荷的分布及电场 强度有关。
介电常数的影响因

介电常数随温度、频率和电场强 度的变化而变化,不同电介质具 有不同的介电常数。

电介质材料PPT课件

电介质材料PPT课件

由于一切电介质材料均由分子、原子或离子组成的。
而它们又都是由原子核及核外电子云组成。当外加电场
时,电子云相对于原子核发生位移,因为产生感应电矩。
最简单的模型是图(a)所示的氢原子的电子极化。无外
电场时,正、负电荷重心重合;当施加电场后,电子云
与核产生相对位移。电子极化的频率响应极快,外加电
场后经
即能1产0生14 极1化01。5s
1、探针法
金刚石探针沿膜表面移动, 触针 而探针在垂直方向上的位移通
过电信号可以被放大1 0 1 6 倍并
被记录下来。从膜的边缘可以 直接通过探针针尖所检测的阶 梯高度确定膜的厚度。
薄膜 基片
优点:简单,测量直观; 缺点:(1)容易划伤较软的薄膜并引起测量误差;
(2)对于表面粗糙的薄膜,并测量误差较大。
第一章 简 介
电介质材料是指电阻率大于1010cm 的材料,是相对于金属材料和半导体材料 而区分的。
金属材料 :共有化电子 半导体材料:载流子 电介质材料:束缚电荷
一、电介质材料的分类及应用
电介质材料的分类
绝缘材料:电阻率很高,能承受很强的电场,不 易被击穿。主要是高分子电介质和无碱玻璃。
电容器材料:主要是陶瓷材料,包括两种,一种 是具有严格温度系数的高频稳定型陶瓷,一种是 介电系数特别大的铁电陶瓷。
(2)离子极化 由异号离子组成的晶体,如Nacl,在外电场作
用下,正、负离子均发生位移,见图(b),以一 维排列的正、负离子原来间隔均等,加了外电场后, 正、负离子的相对距离发生变化,产生了偶极矩。 离子极化的频率响应速度比电子极化略慢,约 为 1012 1。013s
(3)偶极极化 有些电介质分子是由极性较强的离子键构成的,

电介质及其介电特性电导ppt课件

电介质及其介电特性电导ppt课件

绝缘(常压)
导体(极高压力)
电介质理论及其应用
6
概述——共性问题
p 电子(空穴)载流子是通过热激发、光激发、电极注 入等方式产生。从能带理论来看,电介质的禁带宽度较 大,常温下热激发载流子很少,在光照或强场电极注入 的情况下才有明显的电子电导。
p 弱电场作用下,固体和液体电介质中的载流子主要是 离子,离子的来源可能是组成介质的分子离解或是杂质 的离解,前者为本征离子后者为杂质离子。
p 参与介质导电的载流子并非介质中的全部离子,而是 与主体结构联系较弱或易于迁移的部分活化离子。这些 活化离子的产生和在电场作用下的定向迁移都与质点的 热运动有关,所以也有“热离子电导”之称。
ቤተ መጻሕፍቲ ባይዱ
电介质理论及其应用
7
离子晶体的离子电导
2.离子晶体的离子电导
口 离子晶体是正负离子以离子键相结合,并有周期性。 口 离子晶体中绝大部分离子都处于晶格点阵的格点上作热
1- 电工瓷 2-高频瓷 3-超高频瓷 4-刚玉瓷
电介质理论及其应用
22
液体介质的离子电导 (1)离子的来源
非离子性介质的离子电导
➢根据液体介质中的离子来源,液体介质离子电导可分为本 征离子电导和杂质离子电导。
➢本征离子电导是介质本身的基本分子热离解而产生的离子 所形成,在强极性液体介质中(如有机酸、醇、酯类等) 才明显存在。
弗兰凯尔(Frenkel)缺陷:
p 离子晶体中如含有半径较小的离 子,由于热激发这些离子有可能从晶 格点位置跃迁到点阵间形成填隙离子, 同时在点阵上产生一个空位。这种填 隙离子和离子空位,同时成对产生的 缺陷。
电介质理论及其应用
9
离子晶体的离子电导
肖特基(Shottky)缺陷:

《导体,电介质》课件

《导体,电介质》课件
通过电容器的充电和放电过程,测定电介质的介电 常数。
2
电介质的性质
电介质的密度通常比导体大,并且可以在电场中存储电荷。
3
导体和电介质的相互作用
导体和电介质在一定条件下可以互相作用,例如电容器。
导体和电介质的应用
电动机
电容器
电动机利用导体在磁场中的运动 产生动力,如电风扇、电动车等。
电容器是利用导体和电介质的相 互作用存储电荷的装置。
电子器件
导体和电介质在电子器件中有着 广泛的应用,如灯泡、集成电路 等。
导体和电介质的示例
1 导体示例
你身边的许多物品都是导 体,如金属勺子、电线、 手机等。
2 电介质示例
你身边也有很多电介质, 如空气、玻璃、塑料等。
3 导体和电介质的区别
区别导体和电介质的最简 单的方法是看是否能传导 电流。
导体和电介质的实验方法
电导实验
通过电压和电流的关系,测定导体的电导率。
电介质实验
《导体, 电介质》PPT课 件
欢迎来学习导体和电介质,这门课程将会涵盖物理,化学,电ቤተ መጻሕፍቲ ባይዱ和电子等领 域的知识。
导体的介绍
金属导体
金属导体是指具有良好导电性的 金属材料,如铜和银。
非金属导体
非金属导体是指除金属以外的材 料,如石墨、某些半导体等。
导体在自然界中的应用
导体在自然界中有着广泛的应用, 如闪电的传导、大地的导电层等。
电介质的介绍
电介质的定义
电介质是指电场中能够储存电荷的材料,如空气、玻璃等。
电介质的应用
电介质在电力,电子器件,地球物理探测等领域有广泛使用。
导体和电介质的区别
导体和电介质最大的区别是导电性,导体具有良好的导电性,电介质通常没有。

电介质材料的介电常数及损耗的频率特性ppt课件

电介质材料的介电常数及损耗的频率特性ppt课件
(6)再分别将内偏调到5V, 10V重复测量。
可编辑课件
9Leabharlann 〈五〉数据处理1. 由测量数据,进行转换:C→ε'; 2. 用origin软件绘图,绘出 ε'~ f和 tg δ ~ f关系曲线; 3. 对所得曲线进行分析:分析,tan与频率变化的
原因,并分析产生误差的可能性; 4. 比较不同偏压下的ε , tg δ与频率关系曲线的异同,
3
〈二〉实验仪器
TH2816型宽频LCR数字电桥、样品
可编辑课件
4
〈三〉实验原理
介电常数,又称电容率,是电位移D与电场强度E之比 = D/E ,其单位为F/m ,真空的介电常数 F/m ,而相对介电 常数为同一尺寸的电容器中充入电介质时的电容和不充入电 介质时真空下的电容之比。介电常数小的电介质,其分子为 非极性或弱极性结构,介电常数大的电介质,其分子为极性 或强极性结构。在交变电场作用下,电介质的介电常数为复 数,复介电常数的实部与上述介电常数的意义是一致的,而 虚部表示损耗。介质的介电损耗是指由于导电或交变电场中 极化弛豫过程在电介质中引起的功率损耗。这一功率损耗是 通过热耗散把电场的电能消耗掉的结果。
可编辑课件
7
〈四〉操作步骤
(1)接通电源,电桥开始自检。自检结束后,面板显示: 显示A:C(电容) 显示B:D(即损耗tan) 显示C: F(显示:1.00kHz) 速度:慢(40ms A/D积分时间) 读数:直读 等效: 串联 偏置:OFF 方式:连续 量程:自动 打印:OFF
(2)使用按键[显示A]、[显示B]在LCR上选择测试参数;如 果需要测量的是电容C和损耗tan,则不需要另外选择。 等待仪器稳定20 分钟后,对仪器进行清 “0”;
可编辑课件
1

电介质材料ppt课件

电介质材料ppt课件

烧结型固体电解质片状钽电容器
固体钽电解电容器的构造表示图
它的正极的制造过程为:用非常细的钽金属粉压制成块,在高温及高真空 条件下烧结成多孔形基体,然后再对烧结好的基体进展阳极氧化,在其外 表生成一层Ta2O5膜,构成以Ta2O5膜为绝缘介质的钽粉烧结块正极基体。
其负极的制造过程是:在钽正极基体上浸渍硝酸锰,经高温烧结而构成固 体电解质MnO2再经过工艺处置构成负极石墨层,接着再在石墨层外喷涂 铅锡合金等导电层,便构成了电容器的芯子。可以看出,固体钽电解电容 器的正极是钽粉烧结块,绝缘介质为Ta2O5,负极为MnO2固体电解质。 将电容器的芯子焊上引出线后再装入外壳内,然后用橡胶塞封装,便构成 了固体钽电解电容器。
2. 电容器纸的浸渍
图中,Cc、Cg分别为由纤维素及气隙极化构成的电容量;x为气 隙在纸中所占的体积分数。由此可根据串联等效电路表示出浸渍 液体介质后纸的总介电常数:pl1xxf1f 1xf1f 1
式中,εf、ε1分别为纤维素和液体浸渍料的介电常数;x为纤维素密度系数。
2. 电容器纸的浸渍
当采用固体浸渍料时,由于固化收缩后会留下部分空隙,其等效电路 如图6.1.3(b)所示。这时浸渍纸的总介电常数可表为:
§ 6.1.4 陶瓷电容器介质
陶瓷电容器的用量约占整个电容器的40%左右, 相当于铝电解和钽电解电容器的总和,作为陶瓷 电容器钓介质称为“介电陶瓷〞,其特点有四个:
①、介电系数大,以制造小体积、分量轻的陶瓷电容器,ε↑→电容 器体积↓→整机体积、分量↓ ②、介质损耗小,tgδ=〔1~6〕×10-4,保证回路的高Q值。高介电 容器瓷任务在高频下时ω↑、tgδ↑ 。 ③、陶瓷电介质及高稳定导电电极Ag、Pt、Pd等均经过高温烧 结,具有高强度构造和高可靠性,耐高任务温度。本身不仅作为电 介质,同时作为基体和支承构造。 ④具有高电阻率,高耐电强度。

《电介质陶瓷》课件

《电介质陶瓷》课件

断裂韧性
衡量电介质陶瓷抗裂纹扩展能力的物 理量。断裂韧性好的电介质陶瓷在受 到裂纹作用时不易破裂。
热性能
热导率
衡量电介质陶瓷导热性能的物理量。热 导率越大,电介质陶瓷的导热性能越好

耐热性
衡量电介质陶瓷在高温下稳定性的物 理量。耐热性好的电介质陶瓷在高温
下不易分解和氧化。
热膨胀系数
衡量电介质陶瓷受热后尺寸变化的物 理量。热膨胀系数的大小影响陶瓷与 其它材料的匹配程度。
气氛稳定性
衡量电介质陶瓷在特定气氛下稳定性的物理量。气氛稳定性好的电 介质陶瓷在特定气氛下不易发生化学反应或性能变化。
03
电介质陶瓷的制备工艺
粉体制备
固相法
通过物理或化学手段将原料混合 、研磨、破碎,最终得到所需粒 度的粉体。
液相法
通过溶胶-凝胶法、化学沉淀法等 手段将原料转化为溶液,再通过 热处理得到粉体。
表面改性
通过物理或化学手段对陶瓷表面进行处理,改变其表面形态和化学性质,以提高其润湿性、粘结性等 性能。Leabharlann 04电介质陶瓷的应用实例
高压电容器
高压电容器是一种能够储存大量电荷的电子元件,广泛应用于电力系统中 。
电介质陶瓷作为高压电容器的介质材料,具有高介电常数、低损耗、温度 稳定性好等优点,能够提高电容器的储能密度和可靠性。
烧结工艺
高温烧结
在高温下使陶瓷胚体中的 颗粒相互熔融、扩散,形 成致密的陶瓷材料。
低温烧结
在较低的温度下使陶瓷胚 体中的颗粒相互熔融、扩 散,形成致密的陶瓷材料 。
烧结助剂
在烧结过程中添加适量的 烧结助剂,以促进陶瓷材 料的致密化。
表面处理
表面涂层
在陶瓷表面涂覆一层具有特殊功能的涂层,以提高其耐腐蚀、耐磨损等性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 电容器纸的结构和特性
由图6.1.1可见,纸纤维基的原子组成的摩尔分数比为: O:C:H = 49.39%:44.44%:6.7%。由于每个分子链 上含有三个不相对称的(OH)基,故具有较强的极性。在 交变电场作用下,(OH)基产生转向极化,纤维素介电系 数ε≈6.5-7,并伴随着较高的tanδ值。又由于纸中有较 大气孔率,所以ε<5。
用特制的电容器纸作为介 质,铝箔或锡箔作为电极并 卷绕成圆柱形,然后接出引 线,再经过浸渍处理,用外 壳封装或环氧树脂灌封而成。
1. 电容器纸的结构和特性
电容器纸由无纺植物纤维素和空气隙交替分布 构成,其密度为1-1.3g/cm3,抗拉强度约1000 kg/cm2, 未浸渍前空气隙体积分数为30%,水分体积分数为 5%~7%,灰分体积分数为0.2%-0.3%。其主要成 分纤维素为天然高分子物质,分子式(C6H10O5)n, 聚合度n>1000。纤维素分子是由β葡萄糖环构成的 长链,相互间由氧桥相连接。其分子结构如图 6.1.1所示。
ps
1
x
f s
f 1 xy f
f s
式中,εs为固体浸渍料介电常数;y为浸渍料收缩率,通常为( 10-20)%。
§ 6.1.2 有机薄膜电容器介质材料
有机薄膜电容器介质分为非极性(包括弱极性)及极性薄膜 两大类。
非极性主要优点是: 介质损耗很低,比纸介质约低一个数量级。一般具有较高电阻率,
§ 6-1 电容器介质材料
当在电容的极板上 施加电场以后,由于 电介质的极化过程, 使束缚电荷在两极板 上积累而储存电能, 因此称为电容器。
电容器在电路中具有隔断直流电、通过交流电的作用, 常用于级间耦合、滤波、去耦、旁路及信号调谐(选择电 台)等。它是电子设备中不可缺少的基本元件。
§ 6-1 电容器介质材料
2. 电容器纸的浸渍
图中,Cc、Cg分别为由纤维素及气隙极化形成的电容量;x为气
隙在纸中所占的体积分数。由此可根据串联等效电路表示出浸渍
液体介质后纸的总介电常数:
pl
1
f
x
x
f 1
1
f
x
f 1
1
式中,εf、ε1分别为纤维素和液体浸渍料的介电常数;x为纤维素密度系数。
2. 电容器纸的浸渍
当采用固体浸渍料时,因为固化收缩后会留下部分空隙,其等效电路 如图6.1.3(b)所示。这时浸渍纸的总介电常数可表为:
电介质材料主要分为两类 绝缘材料 如纸、玻璃、陶瓷、云母、有机薄膜等。
由铝、钽、铌等阀金属表面生成的介电氧化膜等。
(阀金属:铝、铌、钛、钽;阀的意思就是正向导通,反向开路;)
§ 6-1 电容器介质材料
超级电容器是一种高能量密度
的无源储能元件。它是根据电化
学双电层理论研制而成的,所以又 称双电层电容器。
2. 电容器纸的浸渍
电容器纸中的大量空气隙由于具有较低ε值,并成为极 性基(OH)吸附水分的储存场所,故通常采用真空浸渍方 法(将空气排除而将有机浸渍材料填隙其中)以达到改 性的目的。可供电容器纸浸渍的材料很多,按极性程度 可划分为极性和非极性;按物理状态则可分为液态和固 态等不同类别。极性浸渍材料的介电性能有很大差别, 液态与固态浸渍材料的填充程度有所不同。液体浸渍材 料可填充绝大部分气孔,适用于高压和脉冲电容器中; 固体浸渍材料则可使电容器外部结构简化,甚至无需再 使用外壳,但在固化收缩时会形成部分气隙,一般用于 直流或低压通用电容器中。
有机薄膜电容器的时间常数约为106 MΩ.uF。
主要缺点是: 热胀系数大,并且在温度变化后产生不可逆形变,从而产生了不可
逆的电容量变化,电容量的温度系数一般为负值。介电常数低, ε≈2~2.5。比率电容量为纸介电容器的1/4-1/2。此外,机械强度较 差。常见的非极性有机电介质有聚苯己烯、聚乙烯、聚丙烯和聚四氟 乙烯等。
1. 电容器纸的结构和特性
电容器纸为纤维素与气隙交错分布组成,由于空气的ε随温度变化极 小,所以其ε= f(T)曲线取决于纤维素的作用,即ε值随温度升高而增大。 ε值与频率的关系中,由于空气的ε值与频率几乎无关,故也只能取决于 纤维素的频率特性。空气的tanδ值极小,电容器纸的tanδ亦主要由纤 维素决定,随着纤维素密度增大而增加。
第六章 电介质材料
§6.1 电容器介质材料 §6.2 铁电材料 §6.3 压电材料与热释电材料 §6.4 微波陶瓷介质材料 §6.5 玻璃电介质材料 §6.6 有机电介质材料

§ 6-1 电容器介质材料
电容器是由两个金属板,中间夹有绝缘材料 (绝缘介质)构成的。绝缘材料不同,构成电容器 的种类也不同。
§ 6.1.1 纸电介质及其浸渍材料
纸电容器是电容器的主要类型之一,使用较早,用 量很大。电容量值及工作电压范围较宽,通常为470 pF~30uF,63V-1500V,甚至高压纸电容器耐压值 高达30~40kv。电容器纸以硫酸盐木质纤维素为主要 原料,经抄纸,烘干,压光等工艺制成,要求质地密 实,厚薄均匀。目前国内可生产4-22um纸,同国际 水平相当。
§ 6-1 电容器介质材料
电容器的电介质材料主要有四个方面要求: 第一,为达到高比容量的目的,应采用介电常数ε值尽 可能高的材料。 第二,为了保证电容器具有纯容抗,即避免因极化过程 造成能量损耗,导致产生热量,要求具有尽可能低的损 耗角正切值,特别要求在高工频率或脉冲条件使用时, tanδ值低。 第三,电容器电介质还应具有高的绝缘电阻值,并保证 电阻值在不同频率与温度条件下尽可能稳定,避免因为 杂质的分解和材料的老化引起绝缘电阻值下降。 第四,要求电介质具有高的击穿电场强度。
在外电场的作用下,由于离子 的迁移形成双电层,或在电解质/ 电极界面产生欠电位沉积等电化学 作用而形成电容效应。
不存在通常所说的“电介质”, 而是由“电解质”[可为液体电解 质,也可为“固体电解质” 或称 为“快离子导体”。]
超级电容器结构框图
§ 6-1 电容器介质材料
于是,从传统静电电容器到电解电容器再发 展到超大容量电化学离子电容器,其中的电极 化或电荷迁移载体,发生了从纯电介质到阀金 属氧化物,再到具有离子输运特点的电介质的 变化。
相关文档
最新文档