初中数学化简求值练习有答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型1 实数的运算

1.(2016·玉溪模拟)计算: (2 016-π)0-|1-2|+2cos45°. 解:原式=1-(2-1)+2×

22

=1-2+1+ 2

=2.

2.(2016·邵阳)计算:(-2)2+2cos60°-(10-π)0. 解:原式=4+2×1

2-1

=4+1-1

=4.

3.计算:(-1)2 017+38-2 0170-(-12)-2

.

解:原式=-1+2-1-4

=-4.

4.(2016·宜宾)计算:

(1

3)-2-(-1)2 016-25+(π-1)0.

解:原式=9-1-5+1

=4.

5.(2016·曲靖模拟改编)计算:

(-1

2)-3-tan45°-16+(π-3.14)0.

解:原式=-8-1-4+1

=-12.

6.(2016·云南模拟)计算:

(13)-1-2÷16+(3.14-π)0

×sin30°.

解:原式=3-2÷4+1×1

2

=3-1

2+1

2

=3.

7.(2016·广安)计算:

(1

3)-1-27+tan60°+|3-23|.

解:原式=3-33+3-3+2 3

=0.

8.(2016·云大附中模拟)计算:

-2sin30°+(-13)-1-3tan30°+(1-2)0+12. 解:原式=-2×12+(-3)-3×33

+1+2 3 =-1-3-3+1+2 3

=3-3.

类型2 分式的化简求值

9.(2016·云南模拟)先化简,再求值:x -32x -4÷x 2

-9x -2

,其中x =-5. 解:原式=x -32(x -2)·x -2(x +3)(x -3)

=12(x +3). 将x =-5代入,得原式=-14

. 10.(2016·泸州改编)先化简,再求值:(a +1-3a -1)·2a -2a +2

,其中a =2. 解:原式=(a +1)(a -1)-3a -1·2(a -1)a +2

=a 2

-4a -1·2(a -1)a +2

=(a +2)(a -2)a -1·2(a -1)a +2 =2a -4.

当a =2时,原式=2×2-4=0.

11.(2016·红河模拟)化简求值:[x +2x (x -1)-1x -1]·x x -1

,其中x =2+1. 解:原式=[x +2x (x -1)-x x (x -1)]·x x -1

2x (x -1)·x x -1 =2

(x -1)

2. 将x =2+1代入,得

原式=2(2+1-1)2=2(2)2=22

=1. 12.(2015·昆明二模)先化简,再求值:(a a -b -1)÷b a 2-b

2,其中a =3+1,b =3-1. 解:原式=a -(a -b )a -b ·(a +b )(a -b )b

=b a -b ·(a +b )(a -b )b

=a +b.

当a =3+1,b =3-1时,

原式=3+1+3-1=2 3.

13.(2016·昆明盘龙区一模)先化简,再求值:x 2-1x 2-x ÷(2+x 2

+1x

),其中x =2sin45°-1.

解:原式=(x +1)(x -1)x (x -1)÷2x +x 2+1x

=(x +1)(x -1)x (x -1)·x (x +1)

2 =1x +1

. 当x =2sin45°-1=2×22-1=2-1时, 原式=12-1+1=22. 14.(2016·云南考试说明)已知x -3y =0,求2x +y x 2-2xy +y

2·(x -y)的值. 解:原式=

2x +y (x -y )

2·(x -y) =2x +y x -y . 由题有:x =3y , 所以原式=6y +y 3y -y =72

.

15.(2016·西宁)化简:2x x +1-2x +4x 2-1÷x +2x 2-2x +1

,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值. 解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2

x +2

2x x +1-2x -2x +1 =

2x -2x +2x +1 =2x +1. ∵不等式x ≤2的非负整数解是0,1,2,

∴答案不唯一,如:把x =0代入2x +1

=2.(注意x =1时会使得原分式中分母为零,所以x 不能取1)

16.(2016·昆明盘龙区二模)先化简,再求值:

(a 2-b 2a 2-2ab +b 2+a b -a )÷b 2

a 2-ab

,其中a ,b 满足a +1+|b -3|=0. 解:原式=[(a +b )(a -b )(a -b )2-a a -b ]·a (a -b )b

2 =(a +b a -b -a a -b )·a (a -b )b

2 =b a -b ·a (a -b )b

2 =a b

. 又∵a +1+|b -3|=0,∴a =-1,b = 3.

∴原式=-13

=-33. 类型3 方程(组)的解法

17.(2016·武汉)解方程:5x +2=3(x +2).

解:去括号,得5x +2=3x +6.

移项、合并同类项,得2x =4.

系数化为1,得x =2.

18.(2015·中山)解方程:x 2-3x +2=0.

解:(x -1)(x -2)=0.

∴x 1=1,x 2=2.

19.(2015·宁德)解方程:1-2x -3=1x -3

. 解:去分母,得x -3-2=1.

解得x =6.

检验,当x =6时,x -3≠0.

∴原方程的解为x =6.

20.(2015·黔西南)解方程:2x x -1+11-x

=3. 解:去分母,得2x -1=3(x -1).

去括号、移项、合并同类项,得-x =-2.

系数化为1,得x =2.

检验,当x =2时,x -1≠0.

∴x =2是原分式方程的解.

21.(2015·重庆)解二元一次方程组:⎩

⎪⎨⎪⎧x -2y =1,①x +3y =6.② 解:②-①,得5y =5,y =1.

将y =1代入①,得x -2=1,x =3.

∴原方程组的解为⎩

⎪⎨⎪⎧x =3,y =1. 22.(2015·荆州)解方程组:⎩

⎪⎨⎪⎧3x -2y =-1,①x +3y =7.② 解:②×3,得3x +9y =21.③

③-①,得11y =22,y =2.

把y =2代入②,得x +6=7,x =1.

∴方程组的解为⎩

⎪⎨⎪⎧x =1,y =2. 23.(2016·山西)解方程:2(x -3)2=x 2

-9.

解:原方程可化为2(x -3)2=(x +3)(x -3).

2(x -3)2-(x +3)(x -3)=0.

(x -3)[2(x -3)-(x +3)]=0.

(x -3)(x -9)=0.

∴x -3=0或x -9=0.

∴x 1=3,x 2=9.

类型4 不等式(组)的解法

相关文档
最新文档