初中数学化简求值练习有答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型1 实数的运算
1.(2016·玉溪模拟)计算: (2 016-π)0-|1-2|+2cos45°. 解:原式=1-(2-1)+2×
22
=1-2+1+ 2
=2.
2.(2016·邵阳)计算:(-2)2+2cos60°-(10-π)0. 解:原式=4+2×1
2-1
=4+1-1
=4.
3.计算:(-1)2 017+38-2 0170-(-12)-2
.
解:原式=-1+2-1-4
=-4.
4.(2016·宜宾)计算:
(1
3)-2-(-1)2 016-25+(π-1)0.
解:原式=9-1-5+1
=4.
5.(2016·曲靖模拟改编)计算:
(-1
2)-3-tan45°-16+(π-3.14)0.
解:原式=-8-1-4+1
=-12.
6.(2016·云南模拟)计算:
(13)-1-2÷16+(3.14-π)0
×sin30°.
解:原式=3-2÷4+1×1
2
=3-1
2+1
2
=3.
7.(2016·广安)计算:
(1
3)-1-27+tan60°+|3-23|.
解:原式=3-33+3-3+2 3
=0.
8.(2016·云大附中模拟)计算:
-2sin30°+(-13)-1-3tan30°+(1-2)0+12. 解:原式=-2×12+(-3)-3×33
+1+2 3 =-1-3-3+1+2 3
=3-3.
类型2 分式的化简求值
9.(2016·云南模拟)先化简,再求值:x -32x -4÷x 2
-9x -2
,其中x =-5. 解:原式=x -32(x -2)·x -2(x +3)(x -3)
=12(x +3). 将x =-5代入,得原式=-14
. 10.(2016·泸州改编)先化简,再求值:(a +1-3a -1)·2a -2a +2
,其中a =2. 解:原式=(a +1)(a -1)-3a -1·2(a -1)a +2
=a 2
-4a -1·2(a -1)a +2
=(a +2)(a -2)a -1·2(a -1)a +2 =2a -4.
当a =2时,原式=2×2-4=0.
11.(2016·红河模拟)化简求值:[x +2x (x -1)-1x -1]·x x -1
,其中x =2+1. 解:原式=[x +2x (x -1)-x x (x -1)]·x x -1
=
2x (x -1)·x x -1 =2
(x -1)
2. 将x =2+1代入,得
原式=2(2+1-1)2=2(2)2=22
=1. 12.(2015·昆明二模)先化简,再求值:(a a -b -1)÷b a 2-b
2,其中a =3+1,b =3-1. 解:原式=a -(a -b )a -b ·(a +b )(a -b )b
=b a -b ·(a +b )(a -b )b
=a +b.
当a =3+1,b =3-1时,
原式=3+1+3-1=2 3.
13.(2016·昆明盘龙区一模)先化简,再求值:x 2-1x 2-x ÷(2+x 2
+1x
),其中x =2sin45°-1.
解:原式=(x +1)(x -1)x (x -1)÷2x +x 2+1x
=(x +1)(x -1)x (x -1)·x (x +1)
2 =1x +1
. 当x =2sin45°-1=2×22-1=2-1时, 原式=12-1+1=22. 14.(2016·云南考试说明)已知x -3y =0,求2x +y x 2-2xy +y
2·(x -y)的值. 解:原式=
2x +y (x -y )
2·(x -y) =2x +y x -y . 由题有:x =3y , 所以原式=6y +y 3y -y =72
.
15.(2016·西宁)化简:2x x +1-2x +4x 2-1÷x +2x 2-2x +1
,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值. 解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2
x +2
=
2x x +1-2x -2x +1 =
2x -2x +2x +1 =2x +1. ∵不等式x ≤2的非负整数解是0,1,2,
∴答案不唯一,如:把x =0代入2x +1
=2.(注意x =1时会使得原分式中分母为零,所以x 不能取1)
16.(2016·昆明盘龙区二模)先化简,再求值:
(a 2-b 2a 2-2ab +b 2+a b -a )÷b 2
a 2-ab
,其中a ,b 满足a +1+|b -3|=0. 解:原式=[(a +b )(a -b )(a -b )2-a a -b ]·a (a -b )b
2 =(a +b a -b -a a -b )·a (a -b )b
2 =b a -b ·a (a -b )b
2 =a b
. 又∵a +1+|b -3|=0,∴a =-1,b = 3.
∴原式=-13
=-33. 类型3 方程(组)的解法
17.(2016·武汉)解方程:5x +2=3(x +2).
解:去括号,得5x +2=3x +6.
移项、合并同类项,得2x =4.
系数化为1,得x =2.
18.(2015·中山)解方程:x 2-3x +2=0.
解:(x -1)(x -2)=0.
∴x 1=1,x 2=2.
19.(2015·宁德)解方程:1-2x -3=1x -3
. 解:去分母,得x -3-2=1.
解得x =6.
检验,当x =6时,x -3≠0.
∴原方程的解为x =6.
20.(2015·黔西南)解方程:2x x -1+11-x
=3. 解:去分母,得2x -1=3(x -1).
去括号、移项、合并同类项,得-x =-2.
系数化为1,得x =2.
检验,当x =2时,x -1≠0.
∴x =2是原分式方程的解.
21.(2015·重庆)解二元一次方程组:⎩
⎪⎨⎪⎧x -2y =1,①x +3y =6.② 解:②-①,得5y =5,y =1.
将y =1代入①,得x -2=1,x =3.
∴原方程组的解为⎩
⎪⎨⎪⎧x =3,y =1. 22.(2015·荆州)解方程组:⎩
⎪⎨⎪⎧3x -2y =-1,①x +3y =7.② 解:②×3,得3x +9y =21.③
③-①,得11y =22,y =2.
把y =2代入②,得x +6=7,x =1.
∴方程组的解为⎩
⎪⎨⎪⎧x =1,y =2. 23.(2016·山西)解方程:2(x -3)2=x 2
-9.
解:原方程可化为2(x -3)2=(x +3)(x -3).
2(x -3)2-(x +3)(x -3)=0.
(x -3)[2(x -3)-(x +3)]=0.
(x -3)(x -9)=0.
∴x -3=0或x -9=0.
∴x 1=3,x 2=9.
类型4 不等式(组)的解法